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Abstract. Numerical simulation of stratified flow of two fluids between two infinite
parallel plates using the Moving Particle Semi-implicit (MPS) method is presented.
The developing process from entrance to fully development flow is captured. In the
simulation, the computational domain is represented by various types of particles.
Governing equations are described based on particles and their interactions. Grids are
not necessary in any calculation steps of the simulation. The particle number density
is implicitly required to be constant to satisfy incompressibility. The weight function
is used to describe the interaction between different particles. The particle is consid-
ered to constitute the free interface if the particle number density is below a set point.
Results for various combinations of density, viscosity, mass flow rates, and distance
between the two parallel plates are presented. The proposed procedure is validated
using the derived exact solution and the earlier numerical results from the Level-Set
method. Furthermore, the evolution of the interface in the developing region is cap-
tured and compares well with the derived exact solutions in the developed region.

AMS subject classifications: 76TXX
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1 Introduction

Stratified two-phase flow is commonly found in petroleum and chemical processing
industries where crude oil and water are produced from wells and transported in a
pipeline [1–3]. Therefore, it is necessary to understand the flow behavior phenomena of
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liquid-liquid systems. In particular, prediction of the flow characteristics, such as veloc-
ity distribution, pressure gradient, and holdup of liquid, are essential for proper design
of two-phase flow systems, and have been predicted and measured since the 1930s.

Many empirical correlations based on different flow conditions were developed ex-
perimentally. Chenais and Hulin [4] measured water holdup in a 20cm-diameter pipe
at mean velocities between 2.7 and 3.5cm/s. The pressure gradient of the liquid-liquid
co-current flow in 2.54cm pipes was measured by Angeli and Hewitt [5]. Abduvyat et
al. [6] measured pressure drop and liquid holdup of liquid-liquid flow in a horizontal
pipe with 4 inch diameter. Some researchers also conducted experimental studies on
liquid-liquid systems in various pipes [7–10]. However, the prediction capabilities are
generally restricted to the flow conditions on which they are based.

Mathematical modeling provides another method to study the liquid-liquid flow sys-
tem. Most of previous methods describing the liquid-liquid flow were based on empirical
correction such as the correction proposed by Lockhart and Martinelli [11]. In a gen-
eral case, analytical solution was limited to solving a laminar-laminar two-phase strat-
ified flow based on different interface geometry. The other researchers [12–16] solved
the fully developed Navier-Stokes equations and obtained exact solutions which were
expressed in the terms of Fourier series or Fourier integrals with constant interface ge-
ometry. Brauner et al. [14] developed another model to improve the understanding of
laminar-laminar two-phase flow. Hall and Hewitt [17] developed an analytical model to
predict liquid-liquid laminar flow in a circular pipe. The exact solutions about holdup
of liquid dependent on Martenelli parameter as well as viscosity ratio of the two phases
were obtained. For complex problems, such as turbulent-turbulent liquid-liquid flow,
accurate solutions can be obtained numerically. Torres-Monzon [3] introduced a two-
dimensional model for fully developed, turbulent-turbulent liquid-liquid stratified flow.
The velocity profiles of both phases showed an agreement with the experimental data.

Most of the analytical and semi-empirical models can predict and describe the fully
developed conditions of two-phase flow. Computational fluid dynamic (CFD) plays an
important role in understanding the physics in two-phase flows. Compared with exper-
imental and analytical methods, CFD is simpler, faster and more economical. Khor et
al. [18] numerically studied one-dimensional modeling to predict the phase holdups and
developed a computer code. Elseth et al. [19] simulated the turbulent stratified liquid-
liquid pipe flow using a Volume of Fluid (VOF) model. However, their numerical results
cannot compare well with experimental data. Gao et al. [1] improved Elseth’s VOF model
to compute turbulent smooth-stratified liquid-liquid flow in a horizontal pipe. Surface
tension is included in Gao’s paper. Yap et al. [20] developed models for uniform stratified
flow of two liquids using the Level-Set method. A significant advantage of the level set
method is that it may be combined very effectively with anisotropic mesh adaptivity to
get very efficient solutions [21, 22]. Razwan [2] numerically simulated stratified liquid-
liquid two-phase flow using multiphase volume of fluid model. The velocity distribution
and holdup of liquids were compared with experimental data.

The interfacial interaction is a critical factor to predict the flow behavior [23]. The
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Figure 1: Liquid-liquid two-phase stratified flow.

flow patterns of two-phase flow is defined according to different interface shape [24, 25].
Most of the previous works cannot adequately account for interfacial interaction between
two phases. For the Level-Set and VOF methods, the interface was captured within the
flow field computation by solving a special equation on Eulerian grid. In 1996, a new
method called Moving Particle Semi-implicit (MPS) method for incompressible flow was
proposed by Koshizuka and Oka [26]. Compared with Level-Set and VOF methods, MPS
can track the fluid flow and interface deformation simultaneously without introducing
any extra equations and special treatments for the interface. This method avoids mesh
generation and numerical diffusion due to the fully Lagrangian treatment of discrete
particles. This method has been explained and reviewed by Gotoh and Sakai [27].

This article presents a MPS method to simulate liquid-liquid two-phase stratified flow
between two parallel plates. The flow behavior from the inlet to the fully development is
simulated. Fig. 1 illustrates the problem. Unlike the Level-Set method and VOF method,
the MPS method is based on different types of particles and their interactions. To comple-
ment the numerical simulations, an analytical method is presented for the prediction of
the fully developed flow. The analysis focuses on steady-state solutions of the continuity
and momentum equations.

The substance of this article is divided into three sections. The governing equations,
the MPS method and the numerical procedure are discussed in the next section. Analyti-
cal solution is in Section 3. This is followed by the analysis of the results in section four.
Finally, some conclusions are given.

2 Mathematical formulation

2.1 The theory about MPS method

The MPS method was first proposed by Koshizuka and Oka in 1996 [6]. It uses different
types of particles to represent different parts of the computational domain. In the frame
work of this method, particles contain the information of flow velocity, pressure and
density. Each particle interacts with all neighbor particles in the vicinity of a kernel. The
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information about each particle can be evaluated by the information and weight func-
tion of neighboring particles. Finally, the governing equations change into the particle
interaction model. The Navier-Stokes equation is then discretized into the particle inter-
action equation based on a particle interaction model. Incompressibility is calculated by
a semi-implicit algorithm where the pressure field is implicitly solved using the Poisson
equation, while the other terms are explicitly calculated.

2.2 Governing equations

In this paper, two liquid are assumed to be incompressible liquid. Governing equations
for an incompressible liquid are expressed by the conservation laws of mass and momen-
tum

Dρ

Dt
=0 (2.1)

and

Du

Dt
=−

1

ρ
∇p+ν∇2u+g, (2.2)

where D= ∂
∂t+u·∇, ρ denotes the density, t the time, p the pressure, u the velocity, ν the

kinematic viscosity, and g the gravity acceleration. In the MPS method presented in this

paper, the term of
Dρ
Dt and Du

Dt are directly expressed by calculating moving particles.
In MPS method, the density of liquids, ρ in Eq. (2.1) and Eq. (2.2) is expressed using

the mass of the particle and the number density of the particle

ρi =(mρ)i=
mini

∮

vi
w(r)dv

(2.3)

and

ni=∑
j 6=i

w
(∣

∣rj−ri

∣

∣

)

. (2.4)

In Eqs. (2.3) and (2.4), ρn is the number density of the particle, the subscript i and j means
the arbitrary different particles respectively, m denotes mass of a particle, n is the parti-
cle number density, |r| is the magnitude of vector r, vi is the maximum incidence of the
weight function for particle i. For incompressible flow, the fluid density is required to
be constant. The constant value of the particle number density is denoted by n0. In the
present investigation, as multiple materials of different densities are calculated simulta-
neously, the particle mass is changed and the particle number density n0 is kept constant.
The term w(r) represents a weight function which measures the interaction between a
particle and its neighboring particles. The weight function is defined as

w(r)=







re

r
−1, 0≤ r< re,

0, re < r,
(2.5)
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Figure 2: The concept of gradient model.

where re is a finite distance which restricts the interaction, r denotes the distance between
the particle and the neighboring particles. Eq. (2.5) indicates that it is infinity at r = 0.
re = 2l0 is used in this paper. This is good for avoiding clustering of particles, which is
explained by Koshizuka et al. [28].

The governing equations of Eqs. (2.1) and (2.2) include the gradient operator and
the Laplacian operator. These operators can be expressed using the weight function. A
gradient vector between two neighboring particles i and j can be described as (Appendix
A)

(∇ f )j−i=
d( f j− fi)(rj−ri)

|rj−ri|
2

, (2.6)

where f is arbitrary physical quantity, d is the number of space dimensions. In this paper,
d= 2. The gradient vector at ri is the weight average effect of all neighboring particles.
According the definition of Eq. (2.6), the gradient vector at ri can be described as (Fig. 2)

(∇ f )i=
d

n0 ∑
j 6=i

[

f j− f ∗i

|rj−ri|
2
(rj−ri)w(|rj−ri|)

]

. (2.7)

Comparing Eq. (2.6) and Eq. (2.7), the equations indicate that fi in Eq. (2.6) is replaced by
f ∗i in Eq. (2.7). f ∗i is determined by the following equation

f ∗i =min( f j) for
{

j|w(|rj−ri|) 6=0
}

. (2.8)

This method was suggested by Koshizuka et al. [28]. It is beneficial for the numerical
stability.

The Laplacian operator is modeled based on the understanding about transient dif-
fusion problems. Part of a quantity retained by a particle i will diffuse to neighboring
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Figure 3: Concept of Laplacian model.

particles j. The quantity diffused from i to j can be calculated using the weight function
(Fig. 3)

∆ fi−j =
2dν∆t

n0λ
fiw(|rj−ri|), (2.9)

where λ can be described as

λ=
∑j 6=i w(|rj−ri|)|rj−ri|

2

∑j 6=i w(|rj−ri|)
. (2.10)

Based on Eqs. (2.9) and (2.10), the Laplacian operator of particle i can be expressed as
(Appendix B)

(∇2 f )i=
2d

noλ ∑
j 6=i

( f j− fi)w(|rj−ri|). (2.11)

Substituting Eqs. (2.3), (2.7) and (2.11) into Eq. (2.2), the discrete formation of governing
equation Eq. (2.2) can be expressed as (Appendix C)

mn
∮

vi
w(r)dv

u

∆t
+u

d

n0 ∑
j 6=i

[

uj−ui

|rj−ri|
2
(rj−ri)w(|rj−ri|)

]

=−∇p+
µi2d

noλ ∑
j 6=i

(uj−ui)w(|rj−ri|). (2.12)

For an incompressible liquid, the particle number density is constant and equal to n0.
In the calculation, the new particle number density is assumed as n∗. In the iteration,
the calculated new particle number density (n∗) is not equal to the constant value n0. In
order to keep the particle number density constant and equal to n0, the deviation of the
particle number density (n′) is calculated as

n′=n0−n∗. (2.13)
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Substituting Eqs. (2.3) and (2.13) into the continuity equation of Eq. (2.1), it is expressed
as

n′=−(∆t)n0(∇·u′). (2.14)

The modification of the velocity u′ can be calculated from the pressure gradient according
the simplified MAC (SMAC) method [29]:

u′|
s
=−

∆t

ρ
∇p

∣

∣

s+1
, (2.15)

where f |s is the calculated value of f in step s of the iteration. Substituting Eqs. (2.14)
and (2.15) into Eq. (2.13), the Poisson equation of pressure is expressed as (Appendix D)

(∇2p|
s+1

)i=−
ρ

(∆t)2

(n∗)i−no

no
. (2.16)

Combining Eqs. (2.11) and (2.12) with Eq. (2.16) together, the discrete formation of gov-
erning equation for the iteration s can be described as

mn
∮

vi
w(r)dv

ui|
s

∆t
+ui|

s d

n0 ∑
j 6=i

[

uj|
s−ui|

s

|(rj|
s−ri|

s)|
(rj|

s−ri|
s)w(|(rj|

s−ri|
s)|)

]

=
d

n0

{

∑
j 6=i

[

2µi

λ
(u′

j|
s
−u′

i|
s
)−

(pj|
s−p∗i |

s)

|(rj|
s−ri|

s)|
(rj|

s−ri|
s)

]

w(|(rj|
s−ri|

s)|)

}

(2.17)

and

2d

noλ ∑
j 6=i

(pj|
s−pi|

s+1)w((rj|
s−ri|

s))=−
1

(∆t)2

miu
′
i|

s

∫

w(|(rj|
s−ri|

s)|)dv
. (2.18)

2.3 Boundary conditions

Boundary conditions in this paper include free surface boundary conditions and rigid
wall boundary conditions.

In MPS method, particle number density is used to determine the free surface. Since
no particle exists in the outside of the free surface, the particle number density is low at
particles on the free surface. Thus, a particle is considered on the surface if it satisfies

〈n〉∗i <βno, (2.19)

where β is a parameter. Almost the same solution was obtained between β = 0.8 and
β= 0.99. Following the references [26, 28], β= 0.95 is chosen in this paper. A Dirichlet
boundary condition of pressure is given to this particle.
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The rigid wall boundary is represented by arranging fixed wall particles, which is
much simpler than the corresponding procedure for grid methods. The particles are
divided into two parts: particle within the fluids and particle within the wall. When
the pressure is calculated, the particles within the fluid layer contacting with the wall are
involved while the particles within the wall are not included. It means that the particles
within the wall have no effect on the pressure calculation. When the velocity is calculated,
velocity of particle within the liquid was updated according the calculation. But the
velocities of particle within the wall are always zero.

2.4 Summary of the solution

The solution procedure is described in Fig. 4. It can be summarized as follows:

(1) Give the initial information of all particles. The initial information of all particles
includes velocity of particle, location of particle, and pressure at the location of the
particle.

r
s

,u
s
, p

s

Check of termination

Explicit calculation of source terms

Input of configuration ofparticles

r
0
, u

0
, p

0

Calculation of pressure gradient terms and

modification of particle motion

Input of calculation parameters

Solving pressure Poisson equation

Check of output

Calculation of particle motion

End

Start

Output of configuration

of particles

Increment of

time step

s=s+1

Explicit

Implicit

Figure 4: The algorithm of the simulation program using MPS methods.
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(2) Solve the governing equation (2.18) to calculate the new pressure pi|
s+1.

(3) Submit new pressure pi|
s+1

into Eq. (2.17) to calculate new velocity ui|
s+1

.

(4) Calculate particle motion according ri|
s+1= ri|

s+(∆t)ui|
s+1

.

(5) Update the value of velocity, location of particle, and pressure according the values

of ui|
s+1, ri|

s+1, and pi|
s+1.

(6) Repeat steps from 2 to 5 until the solution converges.

3 Analytical solution for liquid-liquid flow between parallel

plates for fully developed steady flow

The movement of liquids can be described using Eq. (2.2). For the fully developed liquid-
liquid flow, Eq. (2.2) reduces as

∇2u=
1

µ
∇p. (3.1)

The boundary conditions at the wall is

u1(0)=0, (3.2a)

u2(1)=0. (3.2b)

The velocity and the shear stress at the interface (y=h) is continuous

−
1

µ1

dp

dx
h2+A1h=−

1

µ2

dp

dx
h2+A2h+

1

µ2

dp

dx
−A2. (3.3)

The shear stress is also continuous at the interface

µ1

(∂u1

∂y

)

h

=µ2

(∂u2

∂y

)

h

. (3.4)

Substituting boundary conditions (Eqs. (3.2a)-(3.4)) into governing equations, the veloc-
ity profiles can be described as

u1=−
1

2

1

µ1

dp

dx
y2+A1y+B1, (3.5a)

u2=−
1

2

1

µ2

dp

dx
y2+A2y+B2, (3.5b)
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where

A1=
2Q1

h2
−

4Q2h
(µ2

µ1
h−h+1

)

(1−h)2
(

h2−
µ1

µ2
h2+2

µ1

µ2
h−

µ1

µ2
−4h

) , (3.6a)

A2=−
2Q2

(1−h)2
−

4Q2(h+2)
(

h−h
µ1

µ2
+

µ1

µ2

)

(1−h)2
(

h2−
µ1

µ2
h2+2

µ1

µ2
h−

µ1

µ2
−4h

) , (3.6b)

B1=0, (3.6c)

B2=
1

µ2

dp

dx
−A2, (3.6d)

dp

dx
=−

6Q2µ2

(

h−h
µ1

µ2
+

µ1

µ2

)

(1−h)2
(

h2−
µ1

µ2
h2+2

µ1

µ2
h−

µ1

µ2
−4h

) , (3.6e)

Q1 and Q2 are the total flow rates of liquid 1 and liquid 2, respectively. The interface lo-
cation (h) can be calculated according the continuity condition of velocity at the interface
by iterating the following equation:

Q1

Q2

µ1

µ2

(1−h)2

h2

(

h2−
µ1

µ2
h2+2

µ1

µ2
h−

µ1

µ2
−4h

)

+
(

h2−
µ1

µ2
h2−2h

µ1

µ2
+3

µ1

µ2

)

=0. (3.7)

4 Results and discussion

Fig. 1 describes the overall configuration of the developing processing of the liquid-liquid
two-phase flow. For given inlet velocities or flow rates, the code of this paper with MPS
method simulates the development of velocity and interface locations. Three problems
are considered:

(1) Various particle densities were used in order to determine the suitable particle den-
sity for the simulation. This procedure corresponds to grid independency check for
a conventional CFD method. In this problem, two liquids have equal properties
including density, viscosity, and inlet velocity. The initial height keeps the constant
values of h1,inlet = 0.3W and h2,inlet = 0.7W where W is the distance between two
parallel plates. In this paper, W is 100µm. This problem determines the suitable
particle density in the following calculations.

(2) The proprieties of two liquids (including density and viscosity) also set to equal
values. The volumetric flow rates are consistent. In the calculation, the inlet heights
(h1,inlet and h2,inlet) changes.
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(3) The mass flow rate, density, and viscosity of two liquids have different values.

The second problem and the third problem indicate the capabilities of the procedure of
capturing the interface position.

4.1 Validation of MPS method

In this part, for the channel geometry, the length is set to L=500µm and the width is W=
100µm. Two immiscible fluids with the same density (ρ1=ρ2=ρ) and viscosities (µ1=µ2=
µ) are considered. With this choice of properties, the velocity profile of two-phase flow is
in fact the single-phase flow velocity. To initiate this study, the inlet velocities of the two
fluids are also set to the same value, u1,inlet=u2,inlet=1cm/s. The inlet interface location is
h1,inlet=0.3W and h2,inlet=0.7W. For the number of particle in the computational domain,
computations are carried out using 1.25×104, 1.5×104, 1.75×104, 2×104, and 2.25×104. It
can be seen in Fig. 5 that the interface location does not change when 2×104 and 2.25×104

are used. As a result, unless otherwise specified, 2×104 is used as particle number in
the subsequence computations. It is obvious that from Fig. 5 that there is no noticeable
change in the interface location beyond x/W = 0.8 with the interface setting down at
around h1,inlet=0.3W. This indicates that the flow becomes fully developed at x/W=0.8.

The efficiency of algorithm for the MPS method is calculated. Fig. 6 indicated the re-
sults. For the number of particle in the computational domain, computations are carried
out using 1.25×104, 1.5×104, 1.75×104, 2×104, and 2.25×104. The computational time
increases dramatically as the increase of particle number. With the same computational
accuracy, one case using the MPS method (2.25×104) need about 48 hours but it needs
more than 60 hours using the Level set method.

Fig. 7 shows the interface location and the velocity profiles at three streamwise loca-
tions. The inlet condition and liquid properties are set to be same with Fig. 5. The veloc-
ity profiles and interface locations are compared with results calculated using Level-Set
method [20]. The fully developed velocity profile and interface location also compare
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Figure 5: Particle number independent study for the interface location when two liquids have identical properties.



S. Rong et al. / Commun. Comput. Phys., 15 (2014), pp. 756-775 767

1.2 1.4 1.6 1.8 2.0 2.2 2.4

Number of particle

(   10 )
4

10

15

20

25

30

35

40

45

50

C
o
m

p
u
ta

ti
o
n
a
l 
T
im

e
 (

h
)

Figure 6: The efficiency of the algorithm with various particle number.
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Figure 7: Evolutions of velocity and interface profiles along flow directions for h1in/W=0.3, µ1 =µ2, ρ1 = ρ2,
u1=u2: (a) MPS results; (b) Comparison of MPS results with published Level-Set method [20] and analytical
solutions.

with analytical solution of Eqs. (3.5a) and (3.5b). The results using MPS method is iden-
tical to the published data and exact solutions. This shows that with MPS method, the
velocity profile and interface are correctly captured.
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4.2 Liquid-liquid flow with different properties

Fig. 8 shows the evolutions of the interface for three values of the inlet heights (h1,inlet),
namely, h1,inlet=0.3W, h1,inlet=0.5W, h1,inlet=0.7W, respectively. In this problem, the two
liquids has same properties (ρ1=ρ2=ρ, µ1=µ2=µ). The volumetric flow rates are identi-
cal (Q1=Q2). A channel with the length L=500µm and the width W=100µm is studied.
The figure shows that the interface evolves along the axial direction. It also indicates that
for fully developed flow, the interfaces with different inlet height are developed to h=0.5.
This indicates that the fully developed interface location is dependent on the volumetric
flow rates but is independent of the inlet height, h1,inlet.

The evolutions of the velocity and the interface location for two liquids with different
inlet velocity and viscosity are shown in Fig. 9. In this figure, the inlet height of water
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Figure 8: Evolution of interface along flow direction for liquid-liquid two-phase flow between parallel plates for
different inlet velocities.
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Figure 9: Evolutions of velocity and interface profiles along flow directions for h1in/W=0.7, µ1=10µ2, Q1/Q2=
0.4185. Symbols represent the results obtained from MPS simulations while the solid line is the results from the
Level-Set Method. Symbol � represents the analytical solution which is obtained only for the fully developed
flow profile.
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is h1,inlet =0.7W. The viscosity ratio is µ1/µ2 =10. The flow rate ratio is Q1/Q2 =0.4185.
The numerical result is compared with exact analytical solution of Eqs. (3.5a) and (3.5b).
Thus, for liquid-liquid flow with different fluid properties, the MPS can also accurately
capture the interface and velocity.

The velocity and the interface location are compared with the previous results cal-
culated using Level-Set method. Similar as before, this figure also compared the results
from MPS method with exact solutions of Eqs. (3.5a) and (3.5b). The good agreement be-
tween the MPS method, the Level-Set method and the analytical solution confirms that
the MPS method can capture the evolutions of the interface under different inlet condi-
tions.

5 Conclusions

The MPS method is used to simulate the developing procedures of liquid-liquid two-
phase stratified flow between two parallel plates. This method can track fluid flow and
interface deformation simultaneously without introducing any extra equations and spe-
cial treatments for interface. Effects of density, viscosity and flow rate ratios are exam-
ined. The results arising from the MPS method are also compared with the Level-Set
method and the exact analytical solutions. The results indicate that the MPS method can
correctly capture the velocity profile and interface for liquid-liquid stratified flow.

Comparing with the level set approach, the MPS method doesn’t need to define and
calculate the interface. There is no additional force balance for the interface. But there are
also some drawbacks for the MPS method. The particle number is constant for the fixed
liquid. If the flow domain changed dramatically, the accuracy of calculation will reduce.

Furthermore, the success of the MPS method in these relatively simple flow config-
urations indicates that applications towards complex fluids and/or geometry is indeed
promising as the method eliminates the need for an almost always otherwise necessary
task of creating a mesh for the numerical solution procedure.
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Appendix A

Eq. (2.6) can be derived as:
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The gradient of parameter f can be described as

(∇ f )j−i=
(∆ f

∆r

)

j−i
. (A.1)

In Eq. (A.1),

∆ f = f j− fi. (A.2)

The direction of the gradient can be described as

(rj−ri)

|rj−ri|
. (A.3)

The distance from point j to point i is

|rj−ri|. (A.4)

Submitted Eqs. (A.2)-(A.4) into Eq. (A.1), the gradient of parameter f is shown

(∇ f )j−i=
d( f j− fi)(rj−ri)

|rj−ri|
2

. (A.5)

Appendix B

Eq. (2.11) can be derived as:
The gradient of parameter f between j and i is

(∇ f )j−i=
d[( f j− fi)(rj−ri)]

|rj−ri|
2

. (B.1)

The gradient of parameter f at point i is the total effect of neighboring particles. The
effect can be described as

(∇ f )i=
d

n0 ∑
j 6=i

[

f j− fi

|rj−ri|
2
(rj−ri)w(|rj−ri|)

]

. (B.2)

Eq. (2.11) in the manuscript is

(∇2 f )i =∇·(∇ f )i. (B.3)

Substituting Eq. (B.2) into Eq. (B.3), the Laplace operator of particle i can be expressed as

(∇·(∇ f )ij)i
=

2d

n0 ∑
j 6=i

( f j− fi)(rj−ri)

|rj−ri|2
·(rj−ri)

|rj−ri|2
w(|rj−ri|,re). (B.4)
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We defined that

λ=
∑j 6=i w(|rj−ri|)|rj−ri|

2

∑j 6=i w(|rj−ri|)
. (B.5)

Substituting Eq. (B.4) and Eq. (B.5) into Eq. (B.3), we have

(∇2 f )i=
2d

noλ ∑
j 6=i

( f j− fi)w(|rj−ri|). (B.6)

Appendix C

Eq. (2.12) can be derived as:
The governing equation is:

Du

Dt
=−

1

ρ
∇p+ν∇2u+g. (C.1)

The gravity effect can be ignored in the microchannel. Then Eq. (C.1) reduces into

Du

Dt
=−

1

ρ
∇p+ν∇2u. (C.2)

Eq. (C.2) can be rewritten as

ρ
Du

Dt
=−∇p+µ∇2u. (C.3)

The left side of Eq. (C.1) can be rewritten as

Du

Dt
=

∂u

∂t
+u·∇u. (C.4)

Substituting Eq. (C.4) into Eq. (C.3), we have

ρ
∂u

∂t
+ρu·∇u=−∇p+µ∇2u. (C.5)

According the definition that

(∇2 f )i=
2d

noλ ∑
j 6=i

( f j− fi)w(|rj−ri|). (C.6)

Eq. (C.6) can be rewritten as

(∇2u)i=
2d

noλ ∑
j 6=i

(uj−ui)w(|rj−ri|). (C.7)
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According the definition that

(∇ f )i=
d

n0 ∑
j 6=i

[

f j− fi

|rj−ri|
2
(rj−ri)w(|rj−ri|)

]

. (C.8)

We have

(∇u)i=
d

n0 ∑
j 6=i

[

uj−ui

|rj−ri|
2
(rj−ri)w(|rj−ri|)

]

. (C.9)

Substituting Eqs. (C.7) and (C.9) into Eq. (C.5), we have

mn
∮

vi
w(r)dv

u

∆t
+u

d

n0 ∑
j 6=i

[

uj−ui

|rj−ri|
2
(rj−ri)w(|rj−ri|)

]

=−∇p+
µi2d

noλ ∑
j 6=i

(uj−ui)w(|rj−ri|). (C.10)

Appendix D

Eq. (C.5) can be derived as:

n′=n0−n∗. (D.1)

The continuity equation can be described as

1

ρ

dρ

dt
+∇·u=0, (D.2a)

ρi =(mρn)i=
mini

∮

vi
w(r)dv

. (D.2b)

Substituting the equation of the density into Eq. (D.2a), we have

1

n

dn

dt
+∇·u=0. (D.3)

Because that

1

n0−n′

d(n0−n′)

dt
+∇·(u0−u′)=0. (D.4)

Comparing with the initial particle number, the derivation of particle number is small. It
means that

n0≫n′. (D.5)
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According Eq. (D.5), Eq. (D.4) reduces into

1

n0

(dn0

dt
−

dn′

dt

)

+
(

∇·u0−∇·u′
)

=0. (D.6)

Because that

1

n0

dn0

dt
+∇·u0=0. (D.7)

We have

1

n0

dn′

dt
+∇·u′=0. (D.8)

Eq. (D.8) can be rewritten as

n′=−(∆t)n0(∇·u′). (D.9)

The modification of the velocity u′ can be calculated from the pressure gradient according
the simplified MAC (SMAC) method [29]:

u′|
s
=−

∆t

ρ
∇p|s+1. (D.10)

Eq. (C.4) can be rewritten as

∇p|s+1=−
ρ

∆t
u′|

s
. (D.11)

Because that

∇·∇p|s+1=−
ρ

∆t
(∇·u′|

s
), (D.12a)

∇2p|
s+1

=−
ρ

∆t
(∇·u′|

s
). (D.12b)

Substituting Eq. (2.14) into Eq. (D.12b), we have

(

∇2p|
s+1)

i
=−

ρ

(∆t)2

n′

no
, (D.13)

where f |s is the calculated value of f in step s of the iteration. Because that n′=n0−n∗,
Eq. (D.13) can be rewritten as

(

∇2 p|
s+1)

i
=−

ρ

(∆t)2

(n∗)i−no

no
. (D.14)
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