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Abstract. This paper investigates the reduction of backscatter radar cross section (RCS)
for a rectangular cavity embedded in the ground plane. The bottom of the cavity is
coated by a thin, multilayered radar absorbing material (RAM) with possibly differ-
ent permittivities. The objective is to minimize the backscatter RCS by the incidence
of a plane wave over a single or a set of incident angles. By formulating the scatter-
ing problem as a Helmholtz equation with artificial boundary condition, the gradient
with respect to the material permittivities is determined efficiently by the adjoint state
method, which is integrated into a nonlinear optimization scheme. Numerical exam-
ple shows the RCS may be significantly reduced.
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1 Introduction

Radar cross section (RCS) is an important measure for the detection of a target by radar
systems. The RCS from a cavity is significant since the overall RCS of a target is often
dominated by some cavities, such as the jet inlet of an aircraft. Therefore, effective reduc-
tion of the RCS from a cavity has been an important problem in wave propagation with
many practical applications. In this paper, we focus on a 2-D rectangular cavity which is
embedded in the ground plane and illuminated by a time-harmonic plane wave. A thin,
multilayered RAM is coated horizontally at the bottom of the cavity for the reduction of
backscatter RCS, as shown in Fig. 1.
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Many methods have been proposed on RCS reduction with RAM [7,15,17]. A popular
one is based on genetic algorithm (GA), which is a gradient-free optimization method
and widely used in engineering community. The problem is, even for a small parameter
space, GA usually requires thousands of generations to obtain the best population, or
the global optimal. While designing a fast algorithm for the direct scattering problem
already presents a huge challenge especially when the cavity is large and deep [10,13], it
is computationally unaffordable to employ GA to find the optimal synthesized RAM of
a cavity.

In this paper, the problem is addressed by the gradient-based sequential quadratic
programming (SQP) method. SQP is a one of the most effective optimization methods
particularly for nonlinear constraint like partial differential equations (PDE) [16]. The
basic idea of this method is to generate steps by solving a sequence of quadratic sub-
problems. The gradient involved in the quadratic subproblems is provided accurately by
the continuous adjoint state method. The accuracy plays an important role in the design
especially when the backscatter RCS is highly sensitive to the change of permittivities.

Due to the difficulty in the forward scattering problem of a cavity as we mentioned,
a crucial step underlying the optimization method is to find a fast solver for the direct
problem. Lots of methods have been studied during the last decades. Standard tech-
niques include method of moment (MoM) [9] or the finite element-boundary integral
(FE-BI) method [10]. High frequency asymptotic approaches include Gaussian beam
shooting [6], the bounding and shooting ray method [12]. Recently, we also proposed
a fast mode matching method for 2-D and 3-D large cavities [3,5]. Mathematical analysis
for the cavity scattering problem can be seen in [1, 2]. In order to satisfy both the effi-
ciency and the accuracy, we adopt the method proposed in [4], which is based on finite
difference with second order accuracy in the interior.

In the following section, the optimal design of a cavity with multilayered RAM is for-
mulated as a minimization problem, with the constraint being formulated as a Helmholtz
equation with artificial boundary condition. The objective function and design variables
are also defined in this section. The continuous adjoint method is applied in Section 3
for the gradient of the backscatter RCS. Section 4 introduces the SQP optimization tech-
nique to the RCS reduction. Numerical experiments are provided in Section 5 to show
the application of the method.

2 Problem formulation

Consider a rectangular cavity Ω=[0,a]×[−b,0] embedded in a ground plane illuminated
by a plane wave, as illustrated in Fig. 1. The problem is in 2-D by assuming the cavity
and the materials are invariant in the z direction. Above the ground plane is empty space
with dielectric permittivity ε0. The surface of the ground plane Γc and the boundary S of
the cavity are assumed to be perfect conductors. The cavity is filled with inhomogeneous
material in layered structure with permittivities ε i, i = 1,2,··· ,n, where n is the number



G. Bao and J. Lai / Commun. Comput. Phys., 15 (2014), pp. 895-910 897

S
ε
n

ε
1

ε
2

Ω

Ei
Er

Es

Γ Γc

y

x

Figure 1: Geometry of the problem.

of layers and presumably small from the practical point of view. Assume the magnetic
permeability µ0 is the same everywhere.

In 2-D, there are two fundamental polarizations in the wave propagation, namely,
TM (transverse magnetic) polarization and TE (transverse electric) polarization. In this
paper, we consider TM polarization only, which implies the magnetic field is transverse
to the xy plane and the electrical field is simply expressed as (0,0,u(x,y)). The goal is to
determine the permittivities of the coating material within a small thickness h such that
the backscatter RCS is minimized.

Assume the incident field is given by a plane wave: ui = ej(αx−βy), where α= k0 cosθ,
β = k0 sinθ, θ is the incident angle with respect to the x-axis. Let k = ω

√
εµ0 be the

wavenumber in the space. In particular, k0 =ω
√

ε0µ0 is the wavenumber in the upper
half space R

2+. Denote u(x,y) and us(x,y) as the total electrical field and the scattered
field respectively. The total field u(x,y) can be expressed as :

u(x,y)=us(x,y)+ui−ej(αx+βy), (2.1)

where −ej(αx+βy) is identified as the reflected field ur caused by the infinite ground plane.
In addition, u(x,y) satisfies the following equation:

∆u+k2u=0 in Ω∪R
2+, (2.2a)

u=0 on Γc∪S, (2.2b)

together with the radiation condition satisfied by us:

lim
ρ→∞

ρ1/2
(∂us

∂ρ
−ik0us

)
=0, (2.3)

where ρ=
√

x2+y2.
In general, analyzing Eq. (2.2) directly is difficult both theoretically and numerically

due to the unboundedness of the domain. The general approach is to introduce some
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kind of artificial boundaries so that the domain is reduced to be bounded. Here we intro-
duce a transparent boundary condition, which essentially is Dirichlet-to-Neumann (DtN)
map, to truncate the unbounded domain. The idea of transparent boundary condition
has been applied to many wave scattering problems; for instance, see [14]. Following the
formulation in [1], we derive the boundary condition based on the Fourier Transform.

The exterior scattered field us(x,y) satisfies the equation:

∆us+k2
0us =0 in R

2+, (2.4a)

us =ψ(x,0) on Γ, (2.4b)

us =0 on Γc, (2.4c)

together with the radiation condition (2.3). Here we assume ψ(x,0) is the known scattered
field at the aperture Γ.

Take the Fourier Transform of us with respect to variable x and denote it by ûs(ξ,y).
Eq. (2.4) becomes:

∂2ûs

∂y2
+(k2

0−ξ2)ûs =0, (2.5a)

ûs(ξ,0)= ̂̃ψ(ξ,0) on Γ∪Γc, (2.5b)

where ψ̃(x,0) denotes the zero extension of ψ(x,0) on y=0. This equation admits a simple
solution:

ûs(ξ,y)= ̂̃ψ(ξ,0)ei
√

k2
0−ξ2y. (2.6)

We drop another linearly independent solution by the radiation condition (2.3). Taking
an inverse Fourier Transform of (2.6) yields the following solution for us:

us(x,y)=
1

2π

∫

R

̂̃ψ(ξ,0)ei
√

k2
0−ξ2yeiξxdξ. (2.7)

Differentiating both sides with respect to y at y=0 gives us:

∂us

∂n

∣∣∣
y=0+

=
i

2π

∫

R

√
k2

0−ξ2 ̂̃ψ(ξ,0)eiξxdξ. (2.8)

We use y=0+ since the derivative is derived from y>0. From the expression (2.1) for the
total field u and the fact ui+ur =0 on y=0, it yields:

∂u

∂n

∣∣∣
y=0+

= I(u)+g, (2.9)

where g=2iβeiαx and I(·) is the boundary operator defined by:

I(u)=
i

2π

∫

R

√
k2

0−ξ2̂̃u(x,0)eiξxdξ. (2.10)



G. Bao and J. Lai / Commun. Comput. Phys., 15 (2014), pp. 895-910 899

By the continuity condition on the boundary Γ, boundary condition (2.9) is also satisfied
by u in Ω. We therefore reduce the unbounded domain problem for u to the following:

∆u+k2u=0 in Ω, (2.11a)

u=0 on S, (2.11b)

∂u

∂n
= I(u)+g(x) on Γ. (2.11c)

Problem (2.11) is uniquely solvable for any incident plane wave. Proof can be found
in [1].

2.1 Objective function

The RCS reduction problem may be formulated as minimizing the following cost func-
tion:

σ :=
4

k0

∣∣∣∣
k0

2
sinθ

∫

Γ
ue−jk0xcosθdx

∣∣∣∣
2

, (2.12)

which is the backscatter RCS for TM polarization [11]. In the case of the RCS reduction
over a set of incident angles {θ1,θ2,··· ,θm}, the cost function may be changed to the fol-
lowing:

σt :=
m

∑
l=1

wlσ(θl), (2.13)

where wl >0, l=1,2,··· ,m are the weights for different angles. Furthermore, depending
on which angle is important, these weights may be chosen accordingly.

Since u depends on ε from the model (2.11), the optimization problem can be rewritten
as:

min
ε∈Λ

σ(ε), (2.14)

where the admissible set Λ for electrical permittivity ε satisfies the following two condi-
tions:

• Layered medium: ε(y) in Λ is constant for each layer, either lossy or lossless. In other
words, ε(y)= ε j at the jth layer, where ε j = ε′j+iε

′′
j , j= 1,2,··· ,n, n is the number of

layers of the coating material. In particular, permittivity with nonzero imaginary
part corresponds to lossy material.

• Boundness: We assume there exist two constants εmin=ε′min+iε′′min and εmax=ε′max+

iε′′max such that ε′min < ε′j < ε′max and ε′′min < ε
′′
j < ε′′max for j=1,2,··· ,n. Namely, the

permittivity ε(y) is bounded between εmin and εmax.

The existence of the minimizer for (2.14) follows from the compactness of the admissible
set Λ and the continuous dependence of the total field u on the permittivity ε, but the
uniqueness of the minimizer generally does not hold. To investigate the concavity of the
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Figure 2: Backscatter RCS at normal incidence with one-layer coating. X axis is the real part of the relative
permittivity ε for the coating material. Y axis is the corresponding imaginary part. (a) When k0 =16π, a local
minimum is located at [33.491,0] with RCS 0.56. (b) When k0=32π, two local minimums exist. One is located
at [10.739,0] with RCS 0.727, and another one is located at [87.517,0] with RCS 0.732.

optimization problem (2.14), we simply consider a one-layer coating problem. Assume
the dimension of the cavity is [0,1]×[−0.3,0]. The thickness of the coating layer is 0.0047.
Figs. 2(a), (b) show the backscatter RCS at the normal incidence for k0=16π and k0=32π,
respectively.

From Fig. 2, we observe two facts: the first is in general the optimization problem
(2.14) is not concave, so our gradient based method is only expected to generate a local
minimum; the second is in a given region, higher wavenumber tends to generate more
local minimums, which increases the difficulty for optimal design in the high frequency.
However, one good thing is that the value of those local minimums are very close to each
other. Hence, although we do not expect to find a global minimum, we expect to find a
very reasonable local minimum using the gradient based method. We therefore proceed
to discuss how to find the gradient of the objective function efficiently in the next section.

3 Gradient by the adjoint state method

To use a gradient based optimization method for the backscatter RCS (2.12) with respect
to the permittivity, we need to evaluate the gradient along with the PDE constraint (2.11).
Here we adopt the adjoint state method to give the gradient for TM polarization. The ad-
joint state method has a broad range of applications in nonlinear optimizations; see [8]
for example. Theoretically, the gradient obtained by the adjoint state method is more
accurate compared to the approximated gradient given by the finite difference. Numer-
ically, it is also more efficient since the evaluation only requires solving an extra adjoint
problem regardless of the number of variables. Here we give a formal derivation of the
gradient.
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Denote the far field coefficient:

Pθ(ε)=
k0

2
sinθ

∫

Γ
ue−ik0xcosθdx. (3.1)

Then

σ(ε)=
4

k0
|Pθ(ε)|2.

Let δε be a ”small” perturbation to the permittivity ε. We denote the linearization of σ(ε)
with respect to δε by δσ, which is:

δσ=2Re
( 4

k0
δPPθ(ε)

)
, (3.2)

where δP denotes the linearization of Pθ(ε) and Pθ is the complex conjugate of Pθ. From
(3.1), it is easy to calculate that

δP=
k0

2
sinθ

∫

Γ
δue−ik0xcosθdx, (3.3)

where δu solves the linearized problem

∆δu+k2δu=−(ω2µ0δε)u in Ω, (3.4a)

δu=0 on S, (3.4b)

∂δu

∂n
= I(δu) on Γ. (3.4c)

Let u∗ solve the adjoint state equation:

∆u∗+k2u∗=0 in Ω, (3.5a)

u∗=0 on S, (3.5b)

∂u∗

∂n
= I∗(u∗)+eik0xcosθPθ(ε) on Γ, (3.5c)

where I∗(u∗) is the adjoint operator of I(u), given by

I∗(u∗)=
−i

2π

∫

R

√
k2

0−ξ2̂̃u∗(x,0)eiξxdξ.

Given Eqs. (3.4) and (3.5), an integration by parts yields that

∫

Ω
ωµ0δε·uu∗dx=

∫

Γ
δue−ik0xcosθds·Pθ(ε). (3.6)

Comparing with (3.2), we then have

δσ=4Re
(

sinθ
∫

Ω
ω2µ0δε·uu∗dx

)
. (3.7)
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Up to a constant multiple, the gradient of the cost function σ(ε) is the function g(ε) such
that

δσ(ε)=Re
∫ 0

−b
δεg(ε)dy. (3.8)

Comparing (3.7) with (3.8), we arrive at the formula for the gradient:

g(ε)=4sinθω2µ0

∫ a

0
uu∗dx, (3.9)

where u∗ is the solution of (3.5).
For the cost function (2.13), since it is a linear combination of (2.12), the gradient can

be easily deduced from (3.9). It can be seen that the adjoint problem shares the same
structure as the original scattering problem, hence the same solver may be used for the
adjoint problem. This is a huge advantage given the level of difficulties for solving the
scattering problem from a cavity. In the numerical approximation, the finite-dimensional
counterpart of the gradient (3.9) is used, which is given by:

(∫ −b+h

−b
g(ε)dy,

∫ −b+2h

−b+h
g(ε)dy,··· ,

∫ −b+nh

−b+(n−1)h
g(ε)dy

)
, (3.10)

where h is the thickness of each layer. Table 1 gives a comparison between the gradient
obtained by (3.10) and the numerical gradient obtained by finite difference. Assume the
dimension of the cavity is [0,1]×[−0.3,0] with two layers of coating material placed at the
bottom. The permittivities of the two layers are (1+i,2+2i) with the thickness of each
layer being 5.848E-4. Consider the normal incidence of a plane wave with k0 = 16π on
the cavity. The ratio between these two gradients are close to one, but the computational
time by (3.9) is much smaller than the time spent by the finite difference. The time gap
will enlarge as the number of design variables increase. The efficiency and accuracy
of the gradient obtained by the adjoint state method provide a huge advantage for the
optimization method.

Table 1: A comparison for the gradients obtained from the adjoint state method (ASM) and the finite difference
method (FDM).

Re(ε1) Im(ε1) Re(ε2) Im(ε2) CPU Time

ASM -8.8402E-6 -3.2758E-5 -3.8514E-4 -1.5E-3 2.24s

FDM -8.8332E-6 -3.2730E-5 -3.8514E-4 -1.5E-3 3.89s

Ratio 1.0008 1.0008 1.0000 1.0000

4 Optimization method: sequential quadratic programming

We adopt the Sequential Quadratic Programming (SQP) method to optimize the problem
(2.14) largely because of its outstanding performance on the nonlinear constraint prob-
lem. For a sufficiently smooth problem, this method provides a superlinear convergence
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near the region of optimal point under some suitable assumptions [16]. The principle idea
is to generate a sequence of quadratic programming (QP) subproblems that are based on
the approximation of Lagrangian function in a small region. For each QP subproblem,
the solution is used to form a search direction for a line search. In general the Hessian
matrix used in the QP subproblem is not obtained analytically, but instead is updated
by some quasi-Newton methods. Here we give three steps on how to apply SQP to our
problem. One resorts to [16] for a complete discussion on this method.

Step 1: Let d=(Re(ε1), Im(ε1),Re(ε2),··· , Im(εn))T =(di)
j=2n
j=1 . Define a sequence of func-

tions {hj(d)}j=4n
j=1 to be:

h4(j−1)+1(d)=d2j−1−ε′max, h4(j−1)+2(d)= ε′min−d2j,

h4(j−1)+3(d)=d2j−1−ε′′max, h4(j−1)+4(d)= ε′′min−d2j,

for j= 1,2,··· ,n. It is easily seen that hj(ε)≤ 0 means ε is bounded below and above by
the two constants εmin and εmax. Hence, Problem (2.14) can be rewritten in the following
form:

min
d∈R2n

σ(d) (4.1)

subject to hj(d)≤0, for j=1,2,··· ,4n.

Define the Lagrangian function for (4.1):

L(d,λ)=σ(d)+
4n

∑
j=1

λjhj(d), (4.2)

where λj is the Lagrangian multiplier.

Step 2: It is difficult to solve (4.2) directly due to the nonlinearity of σ(d). The idea is to
replace (4.2) by its quadratic approximation, which results in a QP subproblem, so that
many QP algorithms can be used. At the m−th iteration, the QP subproblem of SQP
when d=d(m) is given by:

min
x∈R2n

g(d(m))Tx+
1

2
xT Hmx (4.3)

subject to hj(d
(m)+x)≤0, for j=1,2,··· ,4n,

where g(d(m)) is the gradient of σ(d) at d(m) and Hm is the Hessian of the Lagrangian
function (4.2), which is in fact the Hessian of σ(d) by the linearity of the constraint. It
is usually approximated by some quasi-Newton methods to keep the Hessian positive
definite. Here we choose the widely used Broyden-Fletcher-Goldfarb-Shanno (BFGS)
formula, which is given by:

Hm+1=Hm−
HT

mxT
mxmHm

xT
mHmxm

+
ymyT

m

yT
mxm

, (4.4)
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where

xm =d(m+1)−d(m), (4.5a)

ym = g(d(m+1))−g(d(m)). (4.5b)

The Hessian keeps being positive definite whenever the initial Hessian matrix H0 is pos-
itive definite and yT

mxm >0. This follows from the following identity:

zT Hm+1z=(z−ω)T Hm(z−ω)+
zTymyT

mz

yT
mxm

, (4.6)

where ω = xmxT
mHmz/xT

mHmxm and z is an arbitrary vector in R
2n. Issues can happen

when yT
mxm<0. In that case we modify ym component-wise such that yT

mxm>0 is satisfied.

Step 3: The solution of the subproblem (4.3) yields a new step:

d(m+1)=d(m)+αx. (4.7)

The step length α ∈ (0,1) can be determined by an appropriate defined merit function.
Here we use the following L1 merit function:

ϕ(ε)=σ(ε)+
4n

∑
j

µjmax(0,hj(ε)) (4.8)

for sufficiently large µj.

We are now ready to state the minimization algorithm:

1. Given the convergence tolerance ǫ>0, the initial value d(0) and H0 = I, where I is the identity

matrix, and m=0.

2. Repeat, until ‖x‖<ǫ

• Evaluate g(d(m)), Hm;

• Solve (4.3) to obtain x;

• Set d(m+1)=d(m)+αx,

where α is determined by the merit function (4.8).
End

Note that the solution obtained by this way is by no means the global minimum. What
we expect is only local minimum. Depending on different applications, we either expect
there is a good initial value available or try different initial values in the admissible set
and choose the most ”optimal” one after running the optimization.
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5 Direct solver for the forward scattering problem

Numerical solution of the electromagnetic scattering from a cavity has been known as a
challenging problem for decades [13], especially when the size of the cavity is big or the
wavenumber is large. Here we choose the finite difference algorithm developed in [4]
as the direct solver. The general idea of the algorithm is presented in this section with
details referred to [4].

Assume the domain Ω is uniformly partitioned by {xi,yj}M+1,N+1
i,j

with xj+1−xj =

hx,yj+1−yj =hy. Let uij denote the numerical approximation at (xi,yj). The second order
finite difference scheme to the Helmholtz equation (2.11) is given by:

ui+1,j−2ui,j+ui−1,j

h2
x

− ui,j+1−2ui,j+ui,j+1

h2
y

+k2(yj)ui,j=0,

i=1,2,··· ,M; j=1,2,··· ,N. (5.1)

By Green’s function method, the transparent boundary operator can be reformulated as:

I(u)=− k0

2j
=
∫

Γ

1

|x−x′ |H
(1)
1 (k0|x−x′|)u(x′,0)dx′, (5.2)

where =
∫
·dx denotes the Hadamard principal value (or finite part) integral and H

(1)
1 (·) is

the first order Hankel’s function of the first kind. After the reformulation, we apply the
first order numerical approximation for the transparent boundary condition:

ui,N+1−ui,N

hy
=

M

∑
i=1

wiui,N+1+g(xi), i=1,2,··· ,M, (5.3)

where the weights wi for the hypersingular integral (5.2) can be evaluated efficiently
through the method proposed by Sun et al. in [18]. The idea of the algorithm in [4] is
to use the discrete sine transform in the horizontal direction and a Gaussian elimination
in the vertical direction. The resulting system becomes an M×M linear system, which is
much smaller than the original one. It then can be solved by any linear solver with an
appropriate preconditioner. Since the algorithm highly utilizes the special structure of the
cavity problem, it is extremely fast and efficient, which fits exactly into the requirement
for a computation engine of the optimization method.

6 Numerical experiments

In this section, we apply our algorithm to the RAM design through three numerical ex-
amples. The goal is to show that RCS can be reduced with appropriate coating material
inside the cavity. Throughout, we assume the dimension of cavity is 1m in width and
0.3m in depth. The cavity is uniformly partitioned by a 512×512 mesh. The thickness
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of the coating material for each layer is 0.6mm, up to 8 layers. For each layer, the initial
value of the relative permittivity is set to be 5+5i, and assume it can be continuously
changing between 1+0i and 100+100i. The artificial material is used only for illustration
purpose. All the computation is carried out on a laptop with Intel dual core 2.1Ghz and
memory 4GB. For physical interest, the RCS is expressed in terms of decibel(dB), which
is

RCS: =10log10 σdB.

Example 6.1. Consider the scattering from the cavity by the incidence of a plane wave
with wavenumber k0 = 16π. Fig. 3(a) gives the result for the optimization at normal
incidence. RCS are reduced by more than 20dB at θ = π/2. However, the reduction
immediately disappears after θ = π/2 and starts to oscillate. The overall effect of the
coating material is very limited. Fig. 3(b) shows the result for RCS optimization at θ =
3π/5. The deep well in the graph shows a large amount of reduction at θ=3π/5. Unlike
the optimization at θ=π/2, the RCS reduction is not only confined around θ=3π/5. It
also extends to the other angular sector with an average reduction around 10dB, which
can be considered as a large improvement. Similar effect has been shown in Fig. 3(c),
which gives the RCS when the optimization is conducted at θ = 5π/6. As expected,
large amount of reduction appears at θ=5π/6. Meanwhile, the RCS at the other angular
sector also gets reduced. The resulted relative permittivities are listed in Table 2 with the
corresponding number of iterations and CPU time.
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Figure 3: RCS reduction for k0 =16π. (a) Optimized at θ=π/2. (b) Optimized at θ=3π/5. (c) Optimized
at θ=5π/6.

Example 6.2. Consider the incidence of a plane wave with wavenumber k0 = 32π on
the cavity. The optimization are performed at θ =π/2, 3π/5, 5π/6 as the last example.
Fig. 4(a) gives the result for the optimization at normal incidence. RCS are reduced by
more than 25dB at θ=π/2. However, similar to Example 6.1, the reduction appears only
in a small interval around θ = π/2 and tend to disappear beyond θ = 5π/9. Fig. 4(b)
shows the result for RCS optimization at θ = 3π/5. The deep well in the graph shows
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Table 2: Relative permittivities after the optimization, number of iterations and CPU time for all the three
examples.

Example 6.1 Example 6.2 Example 6.3

k0 16π 16π 16π 32π 32π 32π 16π 32π

θ π
2

3π
5

5π
6

π
2

3π
5

5π
6

3π
5 , 5π

6
3π
5 , 5π

6

1st(Re) 7.833 11.573 11.516 1 10.588 10.542 35.945 13.985

1st(Im) 0 6.264 6.251 0 6.431 6.283 14.955 40.326

2nd(Re) 1 13.212 12.987 1 9.329 9.162 100 59.028

2nd(Im) 0 9.486 9.432 0 10.143 9.563 32.156 100

3rd(Re) 1 12.980 12.488 1 4.457 4.169 100 1

3rd(Im) 0 4.379 4.242 0 5.722 4.461 13.013 0

4th(Re) 1 22.289 21.434 1 7.485 7.133 100 1

4th(Im) 0 6.270 5.966 0 8.257 6.088 0 0

5th(Re) 1 28.256 26.953 1 5.863 5.653 92.566 1

5th(Im) 0 5.011 4.363 0 7.032 3.844 0 0

6th(Re) 1 43.940 42.115 1 12.887 13.136 1 1

6th(Im) 0 5.473 4.147 0 5.986 1.784 0 0

7th(Re) 31.709 49.497 47.164 1 9.514 10.602 1 1

7th(Im) 0 5.570 2.994 0 1.904 0 0 0

8th(Re) 93.465 62.494 59.890 37.788 13.725 15.910 1 37.949

8th(Im) 0 9.834 4.880 0 1.800 0 0 0

Iter. 115 34 28 107 15 13 198 177

CPU 366.8s 113.2s 150.3s 299.4s 59.3s 59.7s 2065s 1816s

a large amount of reduction at θ = 3π/5. The RCS reduction is not only limited around
θ = 3π/5. It also extends to the other angular sector with an average reduction around
10dB. Fig. 4(c) gives the optimized RCS when the optimization is conducted at θ=5π/6.
As expected, a large amount of reduction appears at θ = 5π/6. Meanwhile, the RCS at
the other angular sector also gets reduced. Table 2 shows all the optimization tests are
finished in 400s, which implies the efficiency of the algorithm.

The different performances between the optimization at the normal and the other
angles are caused by the geometry of the cavity and the way the coating material takes
effect. Mathematical analysis for such differences is rather involved, so we only give a
possible explanation based on the ray tracing theory [12]. Because of the thin thickness,
the absorbing effect of the coating material is not significant. The main reason that RCS
gets reduced is because the propagating directions of the reflected rays get changed by
the coating material. While the change may not result in reduction for all incident angles,
there exist some unchanged angles or even enhanced angles. Therefore, the optimized
coating for normal angle may not work for some oblique angles and vice versa. Based
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Figure 4: RCS reduction for k0 =32π. (a) Optimized at θ=π/2. (b) Optimized at θ=3π/5. (c) Optimized
at θ=5π/6.

on the observation in the two examples, we conclude wider reduction can be achieved
through optimization at the oblique incidence compared to the normal incidence.

Example 6.3. In this example, we try to define the objective function as a combination of
RCS at θ=3π/5 and 5π/6. The formula is given in (2.13) with equal weights for the two
angles. Results are shown in Fig. 5 for both k0=16π and k0=32π and the corresponding
CPU time are given in Table 2. The combination of these two angles provides a smoother
reduction instead of a sharp decrease at some particular angle. Consequently, it may have
more practical applications. Note that it takes much longer time for the method to con-
verge compared to the previous two examples. One obvious reason comes from the fact
that the evaluation for the forward problem and the adjoint problem has been doubled.
Another reason is because the region around the optimal point is not concave, which
slows down the convergence. As we see from Fig. 6, the first few iterations give most
of the reduction, while the rest iterations gives very little improvement. Hence, the op-
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Figure 5: RCS reduction by the combination of θ = 3π/5 and θ = 5π/6. (a) Optimized for k0 = 16π. (b)
Optimized for k0 =32π.



G. Bao and J. Lai / Commun. Comput. Phys., 15 (2014), pp. 895-910 909

0 50 100 150 200
−15

−10

−5

0

5

10

15

Iteration

R
C

S
(d

B
)

0 50 100 150 200
−4

−2

0

2

4

6

8

10

12

Iteration

R
C

S
(d

B
)

(a) (b)

Figure 6: Convergence of the optimization for RCS reduction by the combination of θ= 3π/5 and θ= 5π/6.
The solid diamond denotes the sum of RCS at the two angles in each iteration. (a) k0 =16π. (b) k0=32π.

timization can be accelerated by stopping the iteration earlier if no significant reduction
appears any more.

7 Conclusions

In this paper, the design of a multilayered RAM for reducing RCS of a cavity is formu-
lated as a minimization problem. The descent direction for the cost function is evaluated
through the adjoint state method. Subsequently, SQP is integrated with the gradient
to obtain the optimal absorbing materials for the cavity. The algorithm is implemented
with a fast and accurate direct solver for the scattering problem. Numerical results show
that RCS is reduced significantly with RAM coated at the bottom of the cavity. It is also
observed that the optimization at oblique incidence results in a wider RCS reduction
compared to the optimization at normal incidence.
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