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Abstract. This paper develops a high-order accurate gas-kinetic scheme in the frame-
work of the finite volume method for the one- and two-dimensional flow simulations,
which is an extension of the third-order accurate gas-kinetic scheme [Q.B. Li, K. Xu, and
S. Fu, J. Comput. Phys., 229(2010), 6715-6731] and the second-order accurate gas-kinetic
scheme [K. Xu, J. Comput. Phys., 171(2001), 289-335]. It is formed by two parts: quartic
polynomial reconstruction of the macroscopic variables and fourth-order accurate flux
evolution. The first part reconstructs a piecewise cell-center based quartic polynomial
and a cell-vertex based quartic polynomial according to the “initial” cell average ap-
proximation of macroscopic variables to recover locally the non-equilibrium and equi-
librium single particle velocity distribution functions around the cell interface. It is in
view of the fact that all macroscopic variables become moments of a single particle ve-
locity distribution function in the gas-kinetic theory. The generalized moment limiter
is employed there to suppress the possible numerical oscillation. In the second part,
the macroscopic flux at the cell interface is evolved in fourth-order accuracy by means
of the simple particle transport mechanism in the microscopic level, i.e. free transport
and the Bhatnagar-Gross-Krook (BGK) collisions. In other words, the fourth-order
flux evolution is based on the solution (i.e. the particle velocity distribution function)
of the BGK model for the Boltzmann equation. Several 1D and 2D test problems are
numerically solved by using the proposed high-order accurate gas-kinetic scheme. By
comparing with the exact solutions or the numerical solutions obtained the second-
order or third-order accurate gas-kinetic scheme, the computations demonstrate that
our scheme is effective and accurate for simulating invisid and viscous fluid flows,
and the accuracy of the high-order GKS depends on the choice of the (numerical) colli-
sion time.
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1 Introduction

Over the past three decades there have been many research activities in the design and
application of high order accurate numerical methods in computational fluid dynamics.
High order methods are especially desirable for simulating flows with complicated so-
lution structures. Up to now, based on the idea of Godunov method [3], many people
developed various schemes based on approximate Riemann solver and various high-
order accurate Godunov-type schemes and applied to some practical problems success-
fully. Some examples are MUSCL (monotone upstream-centered schemes for conser-
vation laws) scheme [28], the total variation diminishing scheme [6], the essential non-
oscillatory method scheme [7], the weighted essential non-oscillatory method scheme
[16], the discontinuous Galerkin method [2], the spectral difference (SD) method [17],
and spectral volume method (SV) [30] and so on. Upwind and high-resolution methods
are well-reviewed in [29] and the high-ordered WENO schemes are summed up in [19].
We also refer the readers to the books [2, 14, 27] and references therein.

The aim of this paper is to construct a high-order accurate gas-kinetic scheme for one-
and two-dimensional flow simulations from the viewpoint of gas-kinetic theory. The de-
velopment of the gas-kinetic schemes including the KFVS [18] and BGK-type scheme [34]
for compressible flow simulations has attracted much attention in the past two decade
years. The gas-kinetic BGK schemes is a class of finite volume schemes to evolve the
macroscopic variables and are constructed based on the solution of the Bhatnagar-Gross-
Krook (BGK) model of Boltzmann or collisionless Boltzmann equation. It turns out that
the gas-kinetic schemes have provided robust and accurate numerical solutions for var-
ious unsteady compressible flows, see [22–24] and references therein. Some theoretical
analysis has also been carried out for the gas-kinetic schemes, see e.g. [25, 26], etc. Re-
cently, a third order gas-kinetic Navier-Stokes solver with one dimensional flux evalua-
tion has been presented in [15].

The paper is organized as follows. Section 2 introduces the BGK model. Section 3
presents our high-order accurate gas-kinetic scheme including two quartic polynomial
reconstructions of the macroscopic variables and fourth-order accurate flux evolution.
The generalized moment limiter is also implemented detailedly. Several 1D and 2D test
problems are solved in Section 4 to demonstrate the effectiveness and accuracy of our
proposed scheme in simulating invisid and viscous fluid flows. Conclusion is given in
Section 5.

2 The BGK model

In physics, specifically non-equilibrium statistical mechanics, the Boltzmann equation or
Boltzmann transport equation describes the statistical behaviour of a fluid not in thermo-
dynamic equilibrium, i.e. when there are temperature gradients in space causing heat to
flow from hotter regions to colder ones, by the random (and biased) transport of parti-
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cles. The starting point of the gas-kinetic schemes [15,33,34] is the the BGK model (2.1) of
the Boltzmann equation as well as its analytic solution. Assume that there is no any force
field acting on the particles in the fluid. The one-dimensional Bhatnagar-Gross-Krook
(BGK) model can be written as [10]

ft+u fx =
g− f

τ
, (2.1)

where f is the particle velocity distribution function and g is corresponding equilibrium
distribution. Both f and g are functions of space x, time t, the particle velocity u in x-
direction, and the internal variables ξ =(ξ1,ξ2,··· ,ξK), which has K degrees of freedom.
The total number of degree of freedom K is related to the ratio of specific heats γ by
K = 2/(γ−1)−d, where d denotes the spatial dimension. For example, for a diatomic
gas with γ = 7/5 in 2D space, K is equal to 3 to account for the particle motion in the
z-direction and two rotational degrees of freedom. The equilibrium distribution function
g is the Maxwellian

g=ρ

(
λ

π

) K+1
2

e−λ((u−U)2+ξ2), (2.2)

where ρ is the fluid density, U is the fluid velocity, λ is equal to m/2kT, here m is the
fluid molecular mass, k is the Boltzmann constant, and T is the fluid temperature. In the
equilibrium state, the internal variable ξ2 is equal to ξ2 = ξ2

1+ξ2
2+ . . .+ξ2

K. The particle
collision time τ is related to the fluid viscosity by τ = µ/P, where µ is the dynamical
viscosity and P is the fluid pressure.

The analytic solution of the BGK model (2.1) may be derived as follows

f (x,t,u,ξ)=
1

τ

∫ t

0
g(x′,t′,u,ξ)e−(t−t′)/τdt′+e−t/τ f0(x−ut,u,ξ), (2.3)

where x′=x−u(t−t′) is the particle trajectory, and f0 is the initial particle velocity distri-
bution function, i.e. f (x,0,u,ξ)= f0(x,u,ξ).

In the gas-kinetic representation, all macroscopic flow variables become moments of
a single particle velocity distribution function. In other words, the macroscopic variables,
such as the density ρ, the momentum ρU and the total energy E may relate to the velocity
distribution function f by means of the following moments

W :=




ρ
ρU
E


=

∫

RK+1
Ψ f dudξ, (2.4)

where Ψ is the moment vector

Ψ=

(
1,u,

1

2
(u2+ξ2)

)T

,
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and dξ = dξ1dξ2 ···dξK . During the particle collisions, f and g satisfy the conservation
constraints ∫

RK+1
Ψ(g− f ) dudξ=0, (2.5)

at any point in space and time, which imply the mass, momentum, and energy conserva-
tions.

The macroscopic equations governing the fluid flows may be derived from the Boltz-
mann equation or the BGK model by using the Chapman-Enskog expansion. For exam-
ple, for a local equilibrium state with f =g, the Euler equations can be obtained by taking
the moments of (2.1) 


ρ

ρU
E




t

+




ρU
ρU2+P
(E+P)U




x

=0, (2.6)

where E = 1
2 ρ(U2+ K+d

2λ ) and P = ρ/2λ. To the first order of τ, the Chapman-Enskog
expansion gives

f = g−τ(gt+ugx)=: g
(
1−τ(A+au)

)
. (2.7)

Substituting this expansion of f to the BGK equation (2.1), and taking its Ψ moments
derive the Navier-Stokes equations




ρ
ρU
E




t

+




ρu
ρU2+P
(E+P)U




x

=




0
2K

K+1 µUx

K+3
4 µ( 1

λ )x+
2K

K+1 µUUx




x

, (2.8)

with µ=τp. The full derivation of the Navier-Stokes equations for a monatomic gas from
the BGK model in 3D case may be similarly derived.

3 The numerical scheme

This section will introduce our high-order accurate gas-kinetic scheme, which is an ex-
tension of the existing gas-kinetic schemes, see e.g. [15, 34].

For the sake of simplicity, the computational domain Ω is divided into a mesh {Ij =
(xj− 1

2
,xj+ 1

2
)⊂Ω, j∈Z}, the length of the cell Ij is denoted by hj := xj+ 1

2
−xj− 1

2
. The time

domain [0,T] is also divided into a (non-uniform) mesh {tn+1=tn+∆tn, t0=0, n≥0} with
the time step size ∆tn determined by

∆tn =
Chj

maxj{|U j|+ c̄j}
, (3.1)

where the constant C denotes the CFL number, U j and c̄j denote corresponding cell av-

erage approximations of the velocity U and the speed of sound c=
√
(∂p/∂ρ)S over the
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cell Ij. Here (∂p/∂ρ)S denotes the partial derivative of the pressure with respect to the
density taken adiabatically, that is, at constant entropy per particle.

Taking the moments of the BGK equation (2.1) and integrating them over Ij×[tn,tn+1),
i.e. ∫ tn+1

tn

∫

Ij

∫

RK+1
Ψ

(
ft+u fx−

1

τ
(g− f )

)
dudξdxdt=0.

With the help of the conservation constraints (2.5), one has

∫

Ij

∫

RK+1
Ψ f (x,tn+1,u,ξ) dudξdx

=
∫

Ij

∫

RK+1
Ψ f (x,tn,u,ξ) dudξdx−

∫ tn+1

tn

∫

RK+1
Ψu
(

f (xj+ 1
2
,t,u,ξ)− f (xj− 1

2
,t,u,ξ)

)
dudξdt.

From that, one may derive the 1D gas-kinetic scheme in the following conservative form

W
n+1
j =W

n
j −

∆tn

hj

(
F̂

n
j+ 1

2
− F̂

n
j− 1

2

)
, (3.2)

where W
n
j is the cell-average approximation of the solution vector W(x,tn) as follows

W
n
j ≈

1

hj

∫

Ij

W(x,tn) dx,

and

F̂
n
j+ 1

2
:=

1

∆tn

∫

RK+1
Ψu
∫ tn+1

tn

f̂ (xj+ 1
2
,t,u,ξ) dtdudξ. (3.3)

Here, f̂ (xj+ 1
2
,t,u,ξ) approximates f (xj+ 1

2
,t,u,ξ) given in (2.3).

The remaining task of finishing the gas-kinetic scheme is to suitably give f̂ (xj+ 1
2
,t,u,ξ)

by means of the initial reconstruction of the macroscopic variables W .

3.1 Initial data reconstruction

From the given “initial data” {W
n
j }, we first reconstruct a cell-center based piecewise

quartic polynomial

W
n
h(x)=

4

∑
ℓ=0

W
n,(ℓ)
j φ(ℓ)(x−xj)=:W

n
j (x), x∈ Ij, (3.4)
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where xj represents the cell centroid coordinate and

φ(0)(x̃)=1,

φ(1)(x̃)=x̃,

φ(2)(x̃)=
1

2!
x̃2− 1

4!
h2

j ,

φ(3)(x̃)=
1

3!
x̃3− 1

4!
h2

j x̃,

φ(4)(x̃)=
1

4!
x̃4− 1

2×4!
h2

j x̃2+
7

24×6!
h4

j .

The cell-averaged derivatives W
n,(ℓ)
j , ℓ=0,1,2,3,4, are obtained by the requirement of the

mass, momentum, and energy conservations over the neighboring cells as follows

4

∑
ℓ=0

W
n,(ℓ)
j

∫

Im

φ(ℓ)(x−xj) dx=
∫

Im

W
n
j (x) dx=hmW

n
m, m= j, j±1, j±2. (3.5)

For example, if the mesh is uniform, i.e. hj = h for each cell Ij, then the solutions of the
linear algebraic system (3.5) are

W
n,(0)
j =W

n
j ,

W
n,(1)
j =

1

12h

(
W

n
j−2−8W

n
j−1+8W

n
j+1−W

n
j+2

)
,

W
n,(2)
j =

1

12h2

(
−W

n
j−2+16W

n
j−1−30W

n
j +16W

n
j+1−W

n
j+2

)
,

W
n,(3)
j =

1

2h3

(
−W

n
j−2+2W

n
j−1−2W

n
j+1+W

n
j+2

)
,

W
n,(4)
j =

1

h4

(
W

n
j−2−4W

n
j−1+6W

n
j −4W

n
j+1+W

n
j+2

)
.

The above reconstruction (3.4) will generate significant oscillations and even non-
linear instability when the solutions W contain large gradient or discontinuity. To avoid
such difficulties, we have to borrow a technique of a slope limiter to limit the cell-averaged
derivatives of W

n
h(x) in (3.4). Such limiting procedure must be designed to control spu-

rious oscillations and at the same time maintain accuracy in smooth regions in a robust
way. Here we adopt the generalized moment limiter [1,11,35], in which the cell-averaged

derivatives {W
n,(ℓ)
j ,1≤ℓ≤4} are hierarchically limited in two stages. The first stage of the

present generalized moment limiter is to identify whether the cell-averaged derivatives

{W
n,(ℓ)
j ,1≤ ℓ≤ 4} is necessarily limited in a componentwise way. For this purpose, we

introduce a new variables P
(ℓ)
j with the initial value of 1 to mark whether or not W

n,(ℓ)
j is
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necessarily limited, ℓ≥1. The detailed implementation of this stage is as follows

do j=1,2,··· , J
do ℓ=4,3,2,1

W̃
n,(ℓ)
j :=m


W

n,(ℓ)
j ,β

W
n,(ℓ−1)
j+1 −W

n,(ℓ−1)
j

1
2(hj+hj+1)

,β
W

n,(ℓ−1)
j −W

n,(ℓ−1)
j−1

1
2(hj+hj−1)




if W̃
n,(ℓ)
j =W

n,(ℓ)
j

do m= ℓ−1,··· ,1
W̃

n,(m)
j =W

n,(m)
j

enddo

goto 100

else

P
(ℓ)
j =0

endif

enddo

100 continue

enddo

where J denotes the total number of cells, m(a,b,c) denotes the minmod function, defined
by

m(a,b,c)=

{
s·min{|a|,|b|,|c|}, if sign(a)=sign(a)=sign(c)=: s,

0, otherwise,

which is applied to each component of the vector W , even though we write them in a
vector form. The value of β is taken as 1.5 in our computations.

The second stage of the present generalized moment limiter starts to limit the cell-

averaged derivatives {W
n,(ℓ)
j ,1≤ ℓ≤4} component-wisely according to the value of P

(ℓ)
j .

It is implemented as follows

do ℓ=1,2,3

do j=1,2,··· , J
if P

(ℓ)
j−1P

(ℓ)
j P

(ℓ)
j+1=0

W̃
n,(ℓ+1)
j :=m


W

n,(ℓ+1)
j ,β

W̃
n,(ℓ)
j+1 −W̃

n,(ℓ)
j

1
2 (hj+hj+1)

,β
W̃

n,(ℓ)
j −W̃

n,(ℓ)
j−1

1
2(hj+hj−1)



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if W̃
n,(ℓ+1)
j 6=W

n,(ℓ+1)
j , then P

(ℓ+1)
j =0

endif

enddo

enddo

After using the above limiting procedure for the cell-averaged derivatives {W
n,(ℓ)
j ,0≤

ℓ≤4}, the reconstructed polynomials W
n
j (x) in (3.4) are replaced with

W̃
n
j (x)=W

n
j +W̃

n,(1)
j (x−xj)+

1

2
W̃

n,(2)
j

(
(x−xj)

2− 1

12
h2

j

)
+

1

6
W̃

n,(3)
j

(
(x−xj)

3

− 1

4
h2

j (x−xj)
)
+

1

24
W̃

n,(4)
j

(
(x−xj)

4− 1

2
h2

j (x−xj)
2+

7

720
h4

j

)
, x∈ Ij. (3.6)

3.2 Fourth-order accurate flux evolution

This section is to give the numerical flux F̂
n
j+ 1

2
in the gas-kinetic scheme (3.2), equivalently,

to calculate f̂ (xj+ 1
2
,t,u,ξ) in (3.3) by using W̃

n
j (x) and the solution of the BGK model, i.e.

f̂ (xj+ 1
2
,t,u,ξ)=

1

τ

∫ t

0
gh(x′,t′,u,ξ)e−(t−t′)/τdt′+e−t/τ fh,0(xj+ 1

2
−ut,u,ξ), (3.7)

where x′= xj+ 1
2
−u(t−t′) is the particle trajectory past the point (xj+ 1

2
,t), and fh,0(xj+ 1

2
−

ut,u,ξ) and gh(x′,t′,u,ξ) are corresponding (approximate) the initial velocity distribution
and equilibrium velocity distribution functions, which are presented in Sections 3.2.1 and
3.2.2, respectively.

For the cell interface xj+ 1
2
, we have the following limiting values of Wh(x,tn) or its ℓth

order derivative with respect to x

W
n
j+ 1

2 ,L
:=Wh(xj+ 1

2
−0,tn)≡W̃

n
j (xj+ 1

2
),

W
n
j+ 1

2 ,R
:=Wh(xj+ 1

2
+0,tn)≡W̃

n
j+1(xj+ 1

2
),

W
n,(ℓ)

j+ 1
2 ,L

:=
dℓW h

dxℓ
(xj+ 1

2
−0,tn)≡

dℓW̃
n
j

dxℓ
(xj+ 1

2
),

W
n,(ℓ)

j+ 1
2 ,R

:=
dℓWh

dxℓ
(xj+ 1

2
+0,tn)≡

dℓW̃
n
j+1

dxℓ
(xj+ 1

2
). (3.8)

By using W
n
j+ 1

2 ,L
and W

n
j+ 1

2 ,R
in (3.8), we define the left and right Maxwellian distribution
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functions according to (2.2)

gL :=ρn
j+ 1

2 ,L

(
λn

j+ 1
2 ,L

π

) K+1
2

e
−λ

(
(u−Un

j+1
2 ,L

)2+ξ2

)

,

gR =ρn
j+ 1

2 ,R

(
λn

j+ 1
2 ,R

π

) K+1
2

e
−λ

(
(u−Un

j+1
2 ,R

)2+ξ2

)

, (3.9)

and the macroscopic variables W at the cell interface xj+ 1
2

by

W
n
j+ 1

2
:=
∫

u>0

∫

RK
ΨgL dudξ+

∫

u<0

∫

RK
ΨgR dudξ, (3.10)

from which, according to (2.2), the Maxwellian distribution function is defined at cell
interface xj+ 1

2
and t= tn may be defined by

g0 :=ρn
j+ 1

2

(
λn

j+ 1
2

π

) K+1
2

e
−λ

(
(u−Un

j+ 1
2

)2+ξ2

)

.

In the following, we will derive the initial velocity distribution function fh,0(x,u,ξ)
and the equilibrium velocity distribution gh(x,t,u,ξ), separately.

3.2.1 Initial velocity distribution function fh,0

This section will borrow the first-order Chapman-Enskog expansion (2.7), i.e.

f (x,t,u,ξ)= g(x,t,u,ξ)
(

1−τ
(
a(x,t,u,ξ)u+A(x,t,u,ξ)

))
, (3.11)

to give the initial velocity distribution function fh,0. Here we always assume that f and g
are sufficiently smooth. Due to the conservation constraints (2.5), the Chapman-Enskog
expansion (3.11) implies

∫

RK+1
Ψ(au+A)g dudξ=

∫

RK+1
Ψ(gt+ugx)dudξ≡ 1

τ

∫

RK+1
Ψ(g− f )dudξ =0, (3.12)
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and
∫

RK+1
Ψ(C+aA+(b+a2)u)g dudξ=

∫

RK+1
Ψ(gxt+ugxx) dudξ=0,

∫

RK+1
Ψ(A2+B+(Aa+C)u)g dudξ=

∫

RK+1
Ψ(gtt+ugxt) dudξ=0,

∫

RK+1
Ψ(D+2aC+Ab+Aa2+(a3+3ab+d)u)g dudξ=

∫

RK+1
Ψ(gxxt+ugxxx) dudξ=0,

∫

RK+1
Ψ(A3+3AB+ B̃+(A2a+Ba+2AC+B)u)g dudξ=

∫

RK+1
Ψ(gttt+ugxtt) dudξ=0,

∫

RK+1
Ψ(B+2AC+aB+aA2+(Aa2+Ab+2aC+D)u)g dudξ

=
∫

RK+1
Ψ(gxtt+ugxxt) dudξ=0, (3.13)

and so on, where b=∂a/∂x, C=∂A/∂x, D=∂C/∂x, d=∂b/∂x, B=∂A/∂t, B=∂B/∂x, and
B̃=∂B/∂t.

Using (3.11) and Taylor’s expansion of any sufficiently smooth function w(x) at xj+ 1
2

w(x)=w(xj+ 1
2
)+

∂w

∂x
(xj+ 1

2
)x̃+

1

2

∂2w

∂x2
(xj+ 1

2
)x̃2+

1

6

∂3w

∂x3
(xj+ 1

2
)x̃3+··· ,

where x̃= x−xj+ 1
2
, we give the approximate initial velocity distribution function fh,0 :=

fh,0(x,u,ξ) around the cell interface xj+ 1
2

as follows

fh,0=





gL

[
1−τ(aLu+AL)+aL x̃−τ(CL+ALaL)x̃

+(bL+a2
L)(

1
2 x̃2−τux̃)− 1

2 x̃2τ(DL+2CLaL+ALbL+ALa2
L)

+(dL+3aLbL+a3
L)(

1
6 x̃3− 1

2 x̃2τu)
]
, x̃<0,

gR

[
1−τ(aRu+AR)+aR x̃−τ(CR+ARaR)x̃

+(bR+a2
R)(

1
2 x̃2−τux̃)− 1

2 x̃2τ(DR+2CRaR+ARbR+ARa2
R)

+(dR+3aRbR+a3
R)(

1
6 x̃3− 1

2 x̃2τu)
]
, x̃>0,

(3.14)

where gL and gR are given in (3.9), and (aL,AL,CL,bL,DL,dL) and (aR,AR,CR,bR,DR,dR)
denote the left and right limits of (a,A,C,b,D,d) at the cell interface xj+ 1

2
, respectively,

and they are of the following form

wL =wL,1+wL,2u+wL,3
1

2
(u2+ξ2), w= a,A,C,b,D, or d.

Using the conservation constraints (3.12) at t= tn and the relationships between the
velocity distribution function and the macroscopic variables:

dℓ

dxℓ

∫

RK+1
Ψ fh,0(x)dudξ=

dℓ

dxℓ
W̃

n
j (x), ℓ=1,2,3,
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we may derive the linear systems for aL,bL,dL and aR,bR,dR

< aL >=W
n,(1)

j+ 1
2 ,L

, < aR >=W
n,(1)

j+ 1
2 ,R

,

< a2
L+bL >=W

n,(2)

j+ 1
2 ,L

, < a2
R+bR >=W

n,(1)

j+ 1
2 ,R

,

< a3
L+3aLbL+dL >=W

n,(3)

j+ 1
2 ,L

, < a3
R+3aRbR+dR >=W

n,(3)

j+ 1
2 ,R

, (3.15)

where

< ãL >=
∫

RK+1
ãLgLΨ dudξ, < ãR >=

∫

RK+1
ãRgRΨ dudξ,

for ã = a, a2+b, a3+3ab+d. The first and second linear systems for aL and aR in (3.15)
have the following form

Mw=b, w= aL or aR, (3.16)

with the coefficient matrix M given by

M=
∫

RK+1
Ψ

T
Ψg dudξ/ρ=




1 U 1
2U2+ K+1

4λ

U U2+ 1
2λ

1
2U3+ (K+3)U

4λ
1
2U2+ K+1

4λ
1
2 U3+ (K+3)U

4λ
1
4U4+ (K+3)U2

4λ + K2+4K+3
16λ2


.

Such linear system does also appear in the original BGK schemes, see [33,34]. By solving
the first two linear systems in (3.15) to give aL and aR, and then substituting them into the
third and fourth linear systems in (3.15), one may get the linear systems for systems for bL

and bR with the coefficient matrix M. After that, substituting aL,bL,aR,bR into the last two
systems in (3.15) gives the linear systems for systems for dL and dR with the coefficient
matrix M.

Substituting (aL,bL,aR,bR,dL,dR) into the conservation constraints (3.12) and (3.13)
gives the linear systems for AL, AR, CL, CR, DL and DR as follows

<AL+aLu>=0, <AR+aRu>=0,

<CL+aL AL+(a2
L+bL)u>=0, <CR+aR AR+(a2

R+bR)u>=0,

<DL+2aLCL+ALbL+ALa2
L+(a3

L+3aLbL+dL)u>=0,

<DR+2aRCR+ARbR+ARa2
R+(a3

R+3aRbR+dR)u>=0.

They are similar to the systems in (3.15) so that they may be solved in turn by using the
same method or subroutine.

3.2.2 Equilibrium velocity distribution gh

This section is to derive gh(x,t,u,ξ). First, using the “initial” cell average approximations
of macroscopic variables {W m,m = j−1, j, j+1, j+2} as well as W

n
j+ 1

2

=: W0 defined by
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(3.10), we reconstruct a cell-vertex based quartic polynomial around the cell interface
xj+ 1

2
as follows

W0(x)=W0+W
(1)
0 x̃+

1

2
W

(2)
0 x̃2+

1

6
W

(3)
0 x̃3+

1

24
W

(4)
0 x̃4, (3.17)

where coefficients W
(ℓ)
0 , ℓ=1,2,3,4, are obtained by solving the algebraic system

∫

Im

W0(x) dx=hmW m, m= j−1, j, j+1, j+2.

For example, if the mesh is uniform, i.e. hj = h for each cell Ij, then coefficients W
(ℓ)
0 ,

ℓ=1,2,3,4, are

W
(1)
0 =

W j−1−15W j+15W j+1−W j+2

12h
,

W
(2)
0 =

−W j−1+31W j+31W j+1−W j+2−60W0

8h2
,

W
(3)
0 =

−W j−1+3W j−3W j+1+W j+2

h3
,

W
(4)
0 =

5(W j−1−7W j−7W j+1+W j+2+12W0)

2h4
.

Then, borrowing Taylor’s expansion of any sufficiently smooth function w(x,t) at (xj+ 1
2
,tn)

w(x,t)=w(xj+ 1
2
,tn)+

∂w

∂x
(xj+ 1

2
,tn)x̃+

∂w

∂t
(xj+ 1

2
,tn)t̃+

1

2

∂2w

∂x2
(xj+ 1

2
,tn)x̃2

+
1

2

∂2w

∂t2
(xj+ 1

2
,tn)t̃

2+
∂2w

∂x∂t
(xj+ 1

2
,tn)x̃t̃+

1

6

∂3w

∂x3
(xj+ 1

2
,tn)x̃3+

1

2

∂3w

∂x2∂t
(xj+ 1

2
,tn)x̃2 t̃

+
1

2

∂3w

∂x∂t2
(xj+ 1

2
,tn)x̃t̃2+

1

6

∂3w

∂t3
(xj+ 1

2
,tn)t̃

3+··· ,

where x̃= x−xj+ 1
2
, t̃= t−tn, the equilibrium velocity distribution gh(x,t,u,ξ) in the small

neighborhood of (xj+ 1
2
,tn) can be constructed as follows

gh(x,t,u,ξ)=g0

[
1+a0 x̃+A0 t̃+

1

2
(b0+a2

0)x̃2+
1

2
(B0+A2

0)t̃
2+(C0+A0a0)x̃t̃

+
1

6
(d0+3a0b0+a3

0)x̃3+
1

2
(D0+2C0a0+A0b0+A0a2

0)x̃2 t̃

+
1

2
(B0+B0a0+2A0C0+A2

0a0)x̃t̃2+
1

6
(B̃0+3A0B0+A3

0)t̃
3
]
, (3.18)

where (a0,b0,d0,A0,C0,D0,B0,B0,B̃0) are the values of (a,b,d,A,C,D,B,B,B̃) at the point
(xj+ 1

2
,tn).
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By using the relationships between the velocity distribution function and the macro-
scopic variables

(
dℓ

dxℓ

∫

RK+1
Ψgh(x,tn,u,ξ)dudξ

)

x=x
j+ 1

2

=

(
dℓ

dxℓ
W0(x)

)

x=x
j+ 1

2

≡W
(ℓ)
0 , ℓ=1,2,3,

we may get the linear systems for a0, b0 and d0 as follows

< a0 >=W
(1)
0 ,

< a2
0+b0>=W

(2)
0 ,

< a3
0+3a0b0+d0>=W

(3)
0 , (3.19)

which are similar to the systems in (3.15) and may be solved in turn by using the same
method or subroutine.

Substituting (a0,b0,d0) into the conservation constraints (3.12) and (3.13) gives the
linear systems for A0, C0, D0, B0, B0, and B̃0 as follows

<A0+a0u>=0,

<A0a0+C0+(a2
0+b0)u>=0,

<A2
0+B0+(A0a0+C0)u>=0,

<D0+2a0C0+A0b0+A0a2
0+(a3

0+3a0b0+d0)u>=0,

<B0+2A0C0+a0B0+a0 A2
0+(A0a2

0+A0b0+2a0C0+D0)u>=0,

<A3
0+3A0B0+ B̃0+(A2

0a0+B0a0+2A0C0+B0)u>=0.

They are also similar to the systems in (3.15) so that they may be solved in turn by using
the same method or subroutine. Until now, we complete the derivation of gh(x,t,u,ξ) in
(3.18).

Next, substituting fh,0 in (3.14) and gh in (3.18) into (3.7) gives the numerical velocity
distribution function f̂ (xj+ 1

2
,t,u,ξ) at the cell interface x= xj+ 1

2
as follows

f̂ (xj+ 1
2
,t,u,ξ)

=g0

[
1+A0 t̃+

1

2
(B0+A2

0)t̃
2+

1

6
(B̃0+3A0B0+A3

0)t̃
3

]

+e−t̃/τ

{
fh,0(xj+ 1

2
−ut̃)−g0

[
1−a0ut̃+

1

2
(a2

0+b0)u
2 t̃2− 1

6
(a3

0+3a0b0+d0)u
3 t̃3

]}

+(−τ+τe−t̃/τ)(A0+a0u)g0− t̃τe−t̃/τ
[
A0a0+C0+(a2

0+b0)u
]
ug0

− t̃τ
[

A2
0+B0+(A0a0+C0)u

]
g0

+
1

2
τt̃2e−t̃/τ

[
D0+2a0C0+A0b0+A0a2

0+(a3
0+3a0b0+d0)u

]
u2g0

− 1

2
τt̃2
[

A3
0+3A0B0+ B̃0+(A2

0a0+B0a0+2A0C0+B0)u
]

g0.
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It means that the numerical flux F̂n
j+ 1

2

may be obtained by inserting it into (3.3).

4 Numerical experiments

This section will solve several problems of the one- and two-dimensional fluid flow to
demonstrate the accuracy and effectiveness of the gas-kinetic scheme proposed in the
last section, compared with the schemes given in [15,34]. For the sake of convenience, we
will use abbreviations “GKS2”, “GKS3”, and “GKS4” to denote the second-order accurate
gas-kinetic scheme [34], the third-order accurate gas-kinetic scheme [15], and the present
high-order accurate gas-kinetic schemes, respectively, and all physical quantities will be
transformed as corresponding dimensionless variables by using the scaling parameters
such as the characteristic length, the reference density, velocity, temperature and viscosity
coefficient etc. Unless specifically stated, the specific heat ratio γ is taken as 1.4 in all the
cases, and the collision time τ at the cell interface is given by

τ=τm+C2△tα
n

|PL−PR|
|PL+PR|

, (4.1)

with τm = µ/P for the viscous flow and τm = C1△tα
n for the inviscid flow, C1, C2,and

α are constants, PL, PR are the left and right limit of the pressure at the cell interface,
respectively. Unless specifically stated, we take C1 =0.1, C2 =1 and α=1 in this section.
In the literature, the parameter α is always equal to 1, see e.g. [15, 34] etc. Moreover,
a Prandtl number fix will be adopted by modifying the energy flux [34] in the case of
viscous flows if the Prandtl number is not equal to 1, because the BGK model is only
recovering the Navier-Stokes equations with the Prandtl number of 1.

4.1 1D case

Three examples are considered here. The first one is to check the accuracy of the scheme
and the followings are to validate the performance of GKS4 for strong shock structures.
The time stepsize ∆tn is determined by the CFL condition (3.1) with the CFL number of
0.2.

Example 4.1 (Accuracy test). This example is used to check the accuracy of GKS4 for
smooth solutions. The initial conditions are taken as

ρ(x,0)=1+0.2sin(πx), U(x,0)=0.7, P(x,0)=1.

The exact solution for this case is known

ρ(x,t)=1+0.2sin
(
π(x−0.7t)

)
, U(x,t)=0.7, P(x,t)=1,

which describes a sine wave propagating periodically in the domain Ω=[0,2].
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Table 1: Example 4.1: Numerical errors (in l1 norm) and convergence rates at t=0.1 for GKS4 as well as GKS3
with τ=0.

N GKS3 GKS4

l1 error order l1 error order

10 1.57E-3 —- 2.85E-4 —

20 1.54E-4 3.35 1.34E-6 7.73

40 2.03E-5 2.92 4.24E-8 4.98

80 2.63E-6 2.95 1.33E-9 4.99

160 3.17E-7 3.05 4.21E-11 4.98

320 3.85E-8 3.04 1.31E-12 5.01

640 4.65E-9 3.05 4.11E-14 4.99

Table 2: Example 4.1: Numerical errors (in l1 norm) and convergence rates at t= 0.1 for GKS4 with α= 4 as
well as GKS3 with α=3.

N GKS3 GKS4

δ1
N R1

N δ1
N R1

N

10 7.56E-4 —- 3.98E-5 —

20 7.66E-5 3.30 1.30E-6 4.94

40 1.00E-5 2.94 4.10E-8 4.99

80 1.30E-6 2.94 1.29E-9 4.99

160 1.56E-7 3.06 4.07E-11 4.99

320 1.89E-8 3.05 1.27E-12 5.00

640 2.29E-9 3.04 3.98E-14 5.00

The domain Ω is divided into N uniform cells and the periodic boundary conditions
are specified at the end points x = 0 and 2. Table 1 gives the l1-errors at t = 0.1 and
corresponding convergence rates for GKS4 as well as GKS3 with τ=0. It is found that the
convergence rate of 5 order may be obtained for GKS4. Table 2 gives the l1-errors at t=0.1
and corresponding convergence rates for GKS4 with α=4 as well as GKS3 with α=3, where
C1 =C2 = 1. It shows that the convergence rates of GKS4 and GKS3 is still about 5 and 3,
respectively. Tables 3 and 4 further presents corresponding data for GKS4 (or GKS3) with
C1=C2=1 and α=3 (or 2) and 2 (or 1), respectively. Those results show that the accuracy
of the high-order GKS depends on the (numerical) collision time τ.

Example 4.2 (Shock and sine wave interaction). The example is first introduced by Shu
and Osher in [20] for inviscid flow, which describes the interaction of a Mach 3 right-
moving shock wave with a sine wave in density. It has widely been used to test the
ability of the shock-capturing schemes in resolving small-scale flow features and may
give a good indication of the numerical (artificial) viscosity of the scheme. The initial
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Table 3: Example 4.1: Numerical errors (in l1 norm) and convergence rates at t= 0.1 for GKS4 with α= 3 as
well as GKS3 with α=2.

N GKS3 GKS4

δ1
N R1

N δ1
N R1

N

10 7.57E-4 —- 3.98E-5 —

20 7.71E-5 3.30 1.30E-6 4.94

40 1.01E-5 2.93 4.13E-8 4.98

80 1.33E-6 2.92 1.33E-9 4.96

160 1.64E-7 3.02 4.54E-11 4.87

320 2.11E-8 2.96 2.12E-12 4.42

640 2.94E-9 2.84 1.73E-13 3.62

Table 4: Example 4.1: Numerical errors (in l1 norm) and convergence rates at t= 0.1 for GKS4 with α= 2 as
well as GKS3 with α=1.

N GKS3 GKS4

δ1
N R1

N δ1
N R1

N

10 7.65E-4 —- 1.12E-4 —

20 1.16E-4 2.72 1.55E-6 6.18

40 3.59E-5 1.69 1.42E-7 3.45

80 1.71E-5 1.07 3.00E-8 2.24

160 8.71E-6 0.97 7.44E-9 2.01

320 4.45E-6 0.97 1.87E-9 1.99

640 2.26E-6 0.98 4.69E-10 2.00

data are taken as

(ρ,U,P)(x,0)=

{
(3.857134, 2.629369, 10.33333), x<−4,
(1+0.2sin(5x), 0, 1), x>−4,

which show that a Mach 3 shock wave is right-moving into a sinusoidal density field.
Fig. 1 plots the densities at t= 1.8 in the computational domain Ω= [−5,5] and the

interval [0,2.5] obtained by using GKS3 (“◦”) and GKS4 (“∆”) with 300 uniform cells. Those
are compared the reference solution (“solid line”) obtained by using GKS2 with a finer
mesh of 10000 uniform cells. It is seen that when the shock wave interacts with the
sine wave, some complex but smooth structures are generated at the left hand side of
the shock wave, and GKS4 is obviously better than GKS3 in resolving are those complex
structures as well as the shock wave.

Example 4.3 (Blast wave problem). The blast wave problem, originally proposed by
Woodward and Colella [32], is simulated to evaluate the performance of the high-order
scheme GKS4 for the flow with strong discontinuities. The computational domain Ω is



N. Liu and H. Z. Tang / Commun. Comput. Phys., 15 (2014), pp. 911-943 927

X

ρ

-4 -2 0 2 4

1

2

3

4

5

X

ρ

0 0.5 1 1.5 2 2.5

1

2

3

4

5

Figure 1: Example 4.2: The densities at t=1.8 obtained by GKS3 (“◦”) and GKS4 (“∆”) with 300 uniform cells.
The right plot is close-up of the left within the interval [0,2.5].
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Figure 2: Example 4.3: The densities at t= 0.038 obtained by GKS3 (“◦”) and GKS4 (“∆”) with 600 uniform
cells. The right plot is the close-up of the left within the interval [0.6,0.8].

[0,1] with reflecting boundary condition on both sides. The initial flow field is stationary
with an unity density and the pressure is 1000 for 0< x<0.1, 100 for 0.9< x<1, and 0.01
between them.

The densities at t=0.038 shown in Fig. 2 are obtained by GKS3 and GKS4 with 600 uni-
form cells and compared with the reference solution (“solid line”) obtained by GKS2 with
a finer mesh of 10000 uniform cells. We see that with fewer grids the high order scheme
GKS4 can get the same fine solution as the GKS2, and GKS4 performs better resolution in
the inner structure of the blast wave.
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4.2 2D case

Several 2D problems are considered here to test the present gas-kinetic scheme (GKS4),
which is implemented by using the simple first-order accurate dimensional splitting tech-
nique (so-called Lie splitting). The first problem is for accuracy test. The followings are
six inviscid problems (Riemann problems, the problem of the shock wave and bubble in-
teraction, and the double mach reflection problem) and four viscous problems (the Cou-
ette flow, the flow near an oscillating plate, the laminar boundary layer, and the shock
boundary layer problem). Unless specifically stated, the time stepsize ∆tn is determined
by the CFL condition (3.1) with the CFL number of 0.12.

Example 4.4 (Accuracy test). This example is used to check the accuracy of GKS4. It
describes a sine wave propagating periodically at an angle of 45◦ relative to the x-axis
in the domain Ω=[0,2]×[0,2]. The initial data are

ρ(x,y,0)=1+0.2sin
(
π(x+y)

)
, U(x,y,0)=0.7, V(x,y,0)=0.5, P(x,y,0)=1,

and corresponding exact solutions are given by

ρ(x,y,t)=1+0.2sin
(
π(x+y−Ut−Vt)

)
, U(x,y,t)=0.7, V(x,y,t)=0.5, P(x,y,t)=1.

The domain Ω is divided into N×N uniform cells and the periodic boundary condi-
tions are specified on four boundaries. We take ∆t≈∆x4 in order to realize high order in
time in the present case and set the collision time τ as zero. Table 5 gives the numerical er-
rors δ

p
N in lp-norm at t=0.1 and corresponding convergence rates R

p
N for GKS4, p=1,2,∞.

For comparison, Table 6 presents corresponding errors and convergence rates for GKS3.
The results show that the convergence rate of 5 order may be obtained for GKS4, but the
convergence rate of GKS3 is about 3. Tables 7 and 8 further give the numerical errors and
corresponding convergence rates for GKS4 with α= 4 and GKS3 with α= 3, respectively.
They show the same conclusion as the 1D case.

Table 5: Example 4.4: Numerical errors in lp norm and convergence rates at t = 0.1 for GKS4 with τ = 0,
p=1,2,∞.

N×N l1 norm l2 norm l∞ norm

δ1
N R1

N δ2
N R2

N δ∞
N R∞

N

10×10 7.20E-5 —- 7.99E-5 —- 9.39E-5 —-

20×20 2.31E-6 4.96 2.54E-6 4.98 3.04E-6 4.95

40×40 7.24E-8 4.99 8.00E-8 4.99 9.51E-8 4.99

80×80 2.28E-9 4.99 2.50E-9 5.00 2.96E-9 5.01

160×160 7.20E-11 4.98 7.82E-11 4.99 9.26E-11 4.99

Example 4.5 (Riemann problem I). In the following we will solve several Riemann prob-
lems of the 2D Euler equations, see [13], in which the initial data consist of four constant
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Table 6: Example 4.4: Numerical errors in lp norm and convergence rates at t = 0.1 for GKS3 with τ = 0,
p=1,2,∞.

N×N l1 norm l2 norm l∞ norm

δ1
N R1

N δ2
N R2

N δ∞
N R∞

N

10×10 1.12E-3 — 1.23E-3 — 1.54E-3 —

20×20 1.30E-4 3.10 1.41E-4 3.12 1.66E-4 3.21

40×40 1.75E-5 2.89 1.83E-5 2.95 2.15E-5 2.95

80×80 2.18E-6 3.01 2.42E-6 2.92 5.81E-6 1.88

160×160 2.74E-7 2.99 3.12E-7 2.96 9.70E-7 2.58

Table 7: Example 4.4: Numerical errors in lp norm and convergence rates at t = 0.1 for GKS4 with α = 4,
p=1,2,∞.

N×N l1 norm l2 norm l∞ norm

δ1
N R1

N δ2
N R2

N δ∞
N R∞

N

10×10 7.03E-5 —- 7.96E-5 —- 9.29E-5 —-

20×20 2.34E-6 4.91 2.58E-6 4.95 3.09E-6 4.91

40×40 7.35E-8 4.99 8.11E-8 4.99 9.67E-8 5.00

80×80 2.31E-9 4.99 2.54E-9 5.00 3.02E-9 5.00

160×160 7.24E-11 5.00 7.92E-11 5.00 9.43E-11 5.00

Table 8: Example 4.4: Numerical errors in lp norm and convergence rates at t = 0.1 for GKS3 with α = 3,
p=1,2,∞.

N×N l1 norm l2 norm l∞ norm

δ1
N R1

N δ2
N R2

N δ∞
N R∞

N

10×10 1.03E-3 — 1.15E-3 — 1.54E-3 —

20×20 1.24E-4 3.05 1.32E-4 3.12 1.52E-4 3.34

40×40 1.65E-5 2.91 1.72E-5 2.94 2.04E-5 2.90

80×80 2.05E-6 3.01 2.29E-6 2.91 5.80E-6 1.81

160×160 2.56E-7 3.00 2.97E-7 2.95 9.59E-7 2.60

states in each of the four quadrants. The computational domain Ω is taken as [0,1]×[0,1].
The initial data of the first Riemann problem are

(ρ,U,V,P)(x,y,0)=





(1.1,0,0,1.1), x>0.5,y>0.5,

(0.5065,0.8939,0,0.35), x<0.5,y>0.5,

(1.1,0.8939,0.8939,1.1), x<0.5,y<0.5,

(0.5065,0,0.8939,0.35), x>0.5,y<0.5,

which correspond to the case of a slow left-moving shock wave (S−
12), a fast upper-moving
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Figure 3: Example 4.5: The density ρ at t=0.2 with 20 equally spaced contour lines ranging from 0.6 to 1.9 by
GKS3 (left) and GKS4 (right) with 400×400 uniform cells.

shock wave (S+
23), a fast right-moving shock wave (S+

34), and a slow lower-moving shock
wave(S−

14).
Fig. 3 gives the density contours with 20 equally spaced contour lines at t= 0.2 ob-

tained by GKS3 (left) and GKS4 (right) with 400×400 uniform cells. It is found that the
density is symmetric with respect to the line x = y, and GKS4 resolve the shock waves
better than GKS3.

Example 4.6 (Riemann problem II). The initial data of the second Riemann problem are

(ρ,U,V,P)(x,y,0)=





(1.5,0,0,1.5), x>0.5,y>0.5,

(0.5323,1.206,0,0.3), x<0.5,y>0.5,

(0.138,1.206,1.206,0.029), x<0.5,y<0.5,

(0.5323,0,1.206,0.3), x>0.5,y<0.5,

which correspond to the case of a fast left-moving shock wave (S−
12), a slow lower-moving

shock wave (S−
23), a slow left-moving shock wave (S−

34), and a fast lower-moving shock
wave (S−

14). It means that each of them has negative speed.
The density contours at t= 0.3 shown in Fig. 4 are obtained by GKS4 and GKS3 with

200×200 uniform cells. Four initial shock waves interact each other and result in a more
complicated pattern, which is symmetric with respect to the line x= y. The initial shock
wave S−

23 bifurcates at the trip point into a reflected shock wave, a Mach stem and a slip
line. The reflected shock wave matches (interacts with) the shock wave S−

12 to produce a
new shock. It is found from Fig. 4 that GKS4 may present a better solution.

Example 4.7 (Riemann problem III). This Riemann problem is about the interaction of
pure vortex sheets (contact discontinuities). Contact discontinuities are discontinuous
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Figure 4: Example 4.6: The density contours at t= 0.3 with 20 equally spaced contour lines ranging from 0.2
to 1.7 by GKS3 (left) and GKS4 (right) with 200×200 uniform cells.

surfaces on which the flow is in the pressure equilibrium, no flow moving across them.
We can describe them as the surfaces across which the pressure and the normal velocity
component keep continuous but the density and tangential velocity component undergo
(non-zero) jump. The initial data are taken as

(ρ,U,V,P)(x,y,0)=





(1,0.75,−0.5,1), x>0.5,y>0.5,

(2,0.75,0.5,1), x<0.5,y>0.5,

(1,−0.75,0.5,1), x<0.5,y<0.5,

(3,−0.75,−0.5,1), x>0.5,y<0.5,

which correspond to four vortex sheets with the same sign, because the vorticity ω =
∂xV(x,y,0)−∂yU(x,y,0) is less than zero across each initial discontinuity.

The densities at t = 0.23 are plotted with 20 equally spaced contour lines in Fig. 5,
obtained by GKS4 and GKS3 with 200×200 cells. It is found that initial contact disconti-
nuities interact each other and a spiral is formed with the low density in the center of
the domain. Both schemes can capture the important features in the interaction of four
contact discontinuities, but GKS4 presents a sharper solution.

Example 4.8 (Riemann problem IV). This example is about the interaction of pure vortex
sheets with different signs and totally different from Example 4.7. Specially, infinite vor-
tices may be observed in this case when the fine mesh and high-order accurate scheme
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Figure 5: Example 4.7: The densities at t= 0.23 with 20 contours ranging from 0.4 to 2.86 are obtained by
GKS3 (left) and GKS4 (right) with 200×200 uniform cells.
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Figure 6: Example 4.8: The densities at t=0.2 with 25 equally space contour lines ranging from 1.2 to 3.8 are
obtained by GKS3 (left) and GKS4 (right) with 200×200 uniform cells.

are used, see [5]. The initial data are taken as

(ρ,U,V,P)(x,y,0)=





(1,−0.75,−0.5,1), x>0.5,y>0.5,

(3,0.75,−0.5,1), x>0.5,y<0.5,

(1,0.75,0.5,1), x<0.5,y<0.5,

(2,−0.75,0.5,1), x<0.5,y>0.5.

The densities are plotted at t= 0.2 with 25 equally space contour lines in Fig. 6, ob-
tained by GKS4 and GKS3 with 200×200 cells. It is found that contact discontinuities are
better resolved by GKS4 than GKS3.
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Example 4.9 (Double mach reflection). This problem was extensively studied in Wood-
ward and Colella [31] and later by many others, see e.g. [8, 21]. We use exactly the same
setup as in [21]. Initially a right-moving Mach 10 shock wave is positioned at the point
(x,y) = (1/6,0) and makes a 60◦ angle with the x-axis. More precisely, the initial data
within the domain Ω=[0,4]×[0,1] are

W(x,y,0)=

{
WL, y>h(x,0),

WR, y<h(x,0),

where W L and W R are the left and right states of the right-moving Mach 10 shock wave,
given by

W L=(8,57.1597,−33.0012,563.544)T , W R =(1.4,0,0,2.5)T ,

and y=h(x,t)=
√

3(x− 1
6)−20t is the position of the shock wave at time t.

A reflecting wall is placed at the x> 1/6 part of the bottom boundary. and the state
on the remainder bottom boundary, i.e., the x<1/6 part of the bottom boundary are set
to the exact post-shock state W L. Other boundary conditions are specified as

W(0,y,t)=W L, W(4,y,t)=W R, 0≤y≤1;

W(x,1,t)=

{
W L, 0≤ x< xs,

W R, xs < x≤4,

where xs is the solution of the equation h(x,t)=1.
Fig. 7 displays close-up of the density contours with 30 equally spaced contour lines

obtained by GKS3 and GKS4 with 1280×320 uniform cells. It is found that GKS3 and GKS4

resolve sharply shock wave, but GKS4 captures the fine details of the complicated struc-
ture around the double-Mach region much better than GKS3.
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Figure 7: Example 4.9: Close-up of the density contours at t=0.2 with 30 equally spaced contour lines ranging
from 2 to 22 are obtained by GKS3 (left) and GKS4 (right) with 1280×320 uniform cells.
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Example 4.10 (Shock-bubble interaction). The example is to simulate the interaction be-
tween a planar shock wave and a bubble [9, 12]. The domain Ω is taken as [−0.1,1.5]×
[−0.5,0.5] with reflective boundaries on the top and bottom boundaries, the inflow bound-
ary on the left and outflow boundary at the right. Initially, the gas is at rest and has unit
density and pressure. There is a bubble centered at (0.3,0) with a radius of 0.2. The
density inside the bubble is 0.1 while the velocities and pressure have the same values
as outside. The incoming shock wave located at x= 0 and propagates in the positive x-
direction. The pressure behind the shock wave is 10, the other variables can be known by
using the Rankine-Hugoniot jump condition.

Figs. 8-9 present the schlieren images of the density at t=0.1,0.2,0.3,0.4, and the clear
interaction process between the shock wave and the bubble, obtained by GKS2, GKS3,
GKS4 respectively. At the beginning, the shock wave propagates in the positive direction
and the bubble stay still. Then the bubble is deformed when the shock wave captures
it. The shock wave penetrates the bubble and a reflected smooth wave is formed. The
penetrating shock wave is speeded up inside the bubble due to the higher sound speed
inside the low density region. When it hits the bubble wall, it reflects. Then two rotating
vortices are formed. As time going on, more complex pattern like secondary vortices are
formed. From those images in Figs. 8-9, we can see that the higher order scheme can
better capture the complicate pattens appeared in the interaction process between the
shock wave and the bubble.

Example 4.11 (Couette flow). Couette flow is the laminar flow of a viscous fluid in the
space between two parallel plates, one of which is moving relative to the other. The flow
is driven by virtue of viscous drag force acting on the fluid and the applied pressure
gradient parallel to the plates. Here we assume that two infinite, parallel plates are sep-
arated by a distance H. The top plate translates with a constant velocity U0 in its own
plane. The temperatures of the lower and upper plate are given by T0 and T1, respectively.
Both viscosity µ and heat conduction coefficient k are constant.

Neglecting pressure gradients, one may simplify the Navier-Stokes equations as

d2U

dy2
=0, U(0)=0, U(H)=U0,

d2T

dy2
+

µ

k

U2
0

H2
=0, T(0)=T0, T(H)=T1.

and get their analytic solutions

U(y)=
U0

H
y, 0≤y≤H,

T−T0

T1−T0
=

y

H
+

U2
0µ

2k(T1−T0)

y

H

(
1− y

H

)
. (4.2)

In the present study, we take H=1, ρ=1, U0=1, µ=5×10−3, T0=100/1.4, T1=1.0002T0

and k=µ/
(
14.4(T1−T0)

)
.
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Figure 8: Example 4.10: The schlieren images of the density ρ at t=0.1 (left) and 0.2 (right) obtained by GKS2
(top), GKS3 (middle), GKS4 (bottom) respectively with 320×200 cells.

Fig. 10 plots the temperature and the velocity obtained by GKS4, where the solid line
denotes the analytic solution given in (4.2), the symbols ’◦’ and ’△’ denote the solutions
obtained with 5 and 10 cells, respectively. We see that numerical solutions obtained by
GKS4 with only a few cells are well comparable with the analytic ones. Fig. 11 gives a
comparison of the temperatures obtained by using GKS4 and GKS3 with 5 cells.

Example 4.12 (Flow near an oscillating plate). This example is to consider an oscillating
plate in a viscous fluid at rest with the oscillation direction(s) parallel to the plate. Har-
monic motion, parallel to a plane rigid plate, will result in the fluid near the plate being
dragged with the plate and forming the Stokes boundary layer (or oscillatory boundary
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Figure 9: Same as Fig. 8 except for at t=0.3 (left) and 0.4 (right).

layer) close to the plate, due to the viscous shear stresses.

Suppose the motion of the plate, located horizontally in the plane y=0, is

Uplate(t)=U0cos(ωt), (4.3)

where U0 denotes the velocity amplitude of the plate motion and ω is the angular fre-
quency of the motion. The plate forces the viscous fluid adjacent to have the same veloc-
ity U(y,t) resulting in the no-slip condition at y=0: U(0,t)=Uplate(t). Far away from the

plate, for y→∞, the velocity U(y,t) approaches zero. Since the pressure gradient is only
a function of time t and not of y, it is zero at infinity and has to be zero everywhere. Thus
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Figure 10: Example 4.11: The temperature and velocity are obtained by GKS4 with 5 cells (’◦’) and 10 cells
(’△’), respectively. The solid lines represent the exact solutions.
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Figure 11: Example 4.11: The temperatures are obtained by GKS4 (’△’) and GKS3 (’◦’) schemes with 5 cells,
respectively.

parallel flow above the plate is governed by the equation

∂U

∂t
=ν

∂2U

∂y2
,

whose solution is
U(y,t)=U0exp(−ky)cos(ωt−ky), (4.4)

with k=
√

ω/(2ν). Here, k is a kind of wavenumber in the y-direction, associated with
a length δ=2π/k=2π

√
2ν/ω, which is called the Stokes boundary-layer thickness. At a

distance δ from the plate, the velocity amplitude has been reduced to e−2π ≈0.002 times
its value U0 at the plate surface. Further, as can be seen from the phase changes ωt−ky
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Figure 12: Example 4.12: The velocities in the interval [0,1] at t= 22.4 and 24 by GKS4 with 30 and 60 cells
respectively are compared with the analytical one (’solid line’).

in the solution U(y,t), the velocity oscillations propagate as a damped wave away from
the wall, with wavelength δ and phase speed ω/k.

In our computations, we take ρ= 1, P= 1/(γMa2), Ma= 0.1, U0 = 1, ν=µ/ρ= 0.01,
ω=8π2ν and γ=5/3. The computational domainΩ is chosen as [0,3] and the velocity at
the right boundary y=3 is specified as the analytic solution (4.4).

Fig. 12 shows the velocities in the interval [0,1] at t= 22.4 and 24 calculated by GKS4

with 30 cells (‘+’) and 60 cells (‘∆’) respectively. Fig. 13 gives a comparison of the veloci-
ties at t=22.4 and 24 obtained by using GKS4 and GKS3 with 30 cells in the interval [0,1].
We see that good mesh convergence is achieved for GKS4, and GKS4 is well comparable
with GKS3.

Example 4.13 (Laminar boundary layer). We now use GKS4 to test the 2D incompressible
flow of constant viscosity past a flat plate of length L located horizontally. The key of such
flow is the thin layer of fluid in the immediate vicinity of the plate where the effects of
viscosity are significant. It is well-known that there exists the similarity solution (i.e. the
so-called Blasius solution) near an attached flat plate held in an oncoming unidirectional
flow.

In our computations, we take L=100, ν=10−3, and the macroscopic variables for the
free stream

ρ∞ =1, U∞=1, V∞=0, P∞=1/γMa2,

where Ma= 0.15. The computational domain Ω= [−48.7,100]×[0,82.73] is divided into
a nonuniform rectangular mesh with 120×30 nonuniform cells, see Fig. 14, in which
the smallest edge lengths in x- and y-directions are 0.1 and 0.07, respectively. The plate
{y= 0,x≥ 0} is assumed to be adiabatic and the fluid flow is non-slip on the plate. The
symmetry condition is imposed at the bottom boundary {y=0,x<0}. The outflow bound-
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Figure 13: Example 4.12: The vertical velocities at t=22.4 (left) and 24 (right) are obtained by GKS3 (’⋆’) and
GKS4 (‘∆’) with 30 cells. The solid line denotes the analytical solution (4.4).
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Figure 14: Example 4.13: The computational mesh with nonuniform cells.

ary condition applies to the right boundary. The other boundaries are non-reflecting and
numerically treated with the Riemann invariants.

Fig. 15 displays close-up of the scaled streamwise and transverse velocities U∗ and
V∗ at the location xO = 56.988 in the interval [0,8] of y∗, obtained respectively by GKS4

(’△’) and GKS3 (’◦’), where U∗=U/U∞, V∗=V/
√

νU∞/xO, and y∗= y/
√

νxO/U∞. The
exact Blasius solutions are also plotted there in the solid line. The results show that the
numerical velocities predicted by GKS4 fit the exact solutions very well.

Example 4.14 (Shock boundary layer interaction). This is about the interaction of an
oblique shock at an angle 32.6◦ with a boundary layer on the flat plate located at {y =
0,x≥0}. The oblique shock intersects the plate at the point (10,0). The Mach number of
the shock wave is 2, the Reynolds number for the upstream flow is 2.96×105, the Prandtl
number is 0.72, and the dynamical viscosity µ used here satisfies the Sutherland law.
The computational domain Ω=[−1.32,16.1]×[0,7.78] is divided into a rectangular mesh
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Figure 15: Example 4.13: Close-up of the streamwise and transverse velocities at xO= 56.988 in the interval
[0,8] of y∗ are obtained by GKS4 (’△’) and GKS3 (’◦’) with 120×30 nonuniform cells.
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Figure 16: Example 4.14: Computational mesh with 110×60 cells and the pressure contours t= 200 obtained
by GKS2, GKS3, and GKS4, respectively. Both coordinate axes are scaled as x/xs and y/xs, where xs =10.

mesh with 110×60 nonuniform cells, see the fist plot in Fig. 16. The plate {y=0,x≥0} is
assumed to be adiabatic and the fluid flow is non-slip on the plate.

Fig. 16 also shows the pressure contours at t=200 obtained by GKS2, GKS3, and GKS4

respectively in the whole computational domain. The skin friction and pressure distri-
butions on the plate are shown in Fig. 17, where the data ’�’ is the experimental data
from [4]. We see that the boundary layer and the shock wave as well as their interaction
are well resolved by GKS4.
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Figure 17: Example 4.14: The skin frictions (left) and the pressures (right) at t= 200 along the flat plate are
obtained by GKS2 (’dotted line’), GKS3 (‘dash line’), and GKS4 (’solid line’) with 110×60 cells, and from the
experimental data (’�’), respectively.

5 Conclusions

This paper developed a high-order accurate gas-kinetic scheme in the framework of the
finite volume method for simulating the one- and two-dimensional fluid flows, which is
an extension of the second- and third-order accurate gas-kinetic scheme. It was formed
by two parts: quartic polynomial reconstruction of the macroscopic variables and fourth-
order accurate flux evolution. The first part reconstructed a piecewise cell-center based
quartic polynomial and a cell-vertex based quartic polynomial according to the “ini-
tial” cell average approximation of macroscopic variables to recover locally the non-
equilibrium and equilibrium single particle velocity distribution functions around the
cell interface. The generalized moment limiter was employed there to suppress the pos-
sible numerical oscillation. The second part evolved the macroscopic flux at the cell in-
terface in fourth-order accuracy by means of the simple particle transport mechanism in
the microscopic level, i.e. free transport and the Bhatnagar-Gross-Krook (BGK) collisions.
In other words, the fourth-order flux evolution is based on the solution (i.e. the particle
velocity distribution function) of the BGK model for the Boltzmann equation.

Several 1D and 2D test problems were numerically solved using the proposed high-
order accurate gas-kinetic scheme, which was also compared with the exact solutions
or the numerical solutions obtained the second-order or third-order accurate gas-kinetic
scheme. The computations demonstrated that our scheme was effective and accurate for
simulating invisid and viscous fluid flows.
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