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Abstract. This paper presents a parallel Newton-Krylov-Schwarz method for the nu-
merical simulation of unsteady flows at high Reynolds number around a high-speed
train under crosswind. With a realistic train geometry, a realistic Reynolds number,
and a realistic wind speed, this is a very challenging computational problem. Be-
cause of the limited parallel scalability, commercial CFD software is not suitable for
supercomputers with a large number of processors. We develop a Newton-Krylov-
Schwarz based fully implicit method, and the corresponding parallel software, for the
3D unsteady incompressible Navier-Stokes equations discretized with a stabilized fi-
nite element method on very fine unstructured meshes. We test the algorithm and
software for flows passing a train modeled after China’s high-speed train CRH380B,
and we also compare our results with results obtained from commercial CFD software.
Our algorithm shows very good parallel scalability on a supercomputer with over one
thousand processors.
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1 Introduction

In recent years, high-speed trains with characteristics of high-speed, high-efficiency and
low-energy consumption have been rapidly developed. When the wind is strong, trains
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experience certain aerodynamic phenomena such as increased drag and lift, reduced sta-
bility and raised level of acoustic noise. Unfortunately, the increase of speed often en-
hances these negative effects, and some of which may result in accidents if they are not
controlled correctly. Several train accidents caused by crosswind were reported in [6,22].
Crosswind is one of the main threats that impact passenger’s comfort and/or vehicle’s
safety in high-speed train transportation. Therefore, it is both important and necessary
to carefully study the aerodynamic performance of trains under crosswind conditions.

Experimental techniques and commercial software based numerical simulations are
the two main tools in the train industry since analytical techniques are only applicable
for a few limited cases. Experimental investigations are usually expensive and subject
to the restrictions of design cycle, special boundary conditions and Reynolds numbers,
and sometimes become not applicable or even impossible for high-speed trains. Numer-
ical simulations are used more often and now become an important engineering tool,
especially in the early design stages.

Historically, numerical simulations of crosswind around a train are inherited from a
simple model, the Ahmed body [1], which includes most of the flow features in a real ve-
hicle. Khier et al. [16] first use Reynolds averaged Navier-Stokes (RANS) equations com-
bined with the k−ǫ turbulence model to study the flow structures around a simplified
train under crosswind. In recent years, researchers have applied other techniques in solv-
ing this problem numerically. The majority of these simulations are to apply some kind of
statistical techniques to reduce the computational cost. RANS [9], large eddy simulation
(LES) [10, 11] and detached eddy simulation (DES) [7, 17] are the three main approaches.
All of these approaches can successfully obtain the flow structures relatively accurately.
However, with the speed of trains increasing, certain design problems neglected at low
speed are raised, more detailed computations are needed for the operational safety of a
high-speed train. In this paper, we solve the full Navier-Stokes equations numerically
without any further simplifications, on a very fine mesh of size 10−3m in order to capture
the subtle features and obtain sufficiently accurate solutions. Due to the limitation of
computer memory and processing speed, this method is usually considered as a research
tool rather than an engineering tool. In the past few years, the full Navier-Stokes equa-
tions have been successfully used to the low Reynolds number cases, but high Reynolds
number flows implies a wide instantaneous range of scales, and high computing cost.
Thanks to the recent development of large scale parallel computers with a large num-
ber of processors, the computational capability is improved significantly. This makes it
possible to use full Navier-Stokes for engineering problems like the aerodynamics of a
high-speed train. Correspondingly, the parallel scalability becomes an important indica-
tor of a good numerical algorithm.

In this work, we present a scalable parallel Newton-Krylov-Schwarz (NKS) method
for the full unsteady incompressible Navier-Stokes equations describing the flows around
high-speed train under crosswind. Generally speaking, the NKS method is suitable for
solving large, sparse nonlinear systems and has been widely applied in various prob-
lems [4, 5, 13, 14, 20]. In our algorithm, a fully implicit backward difference scheme is
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adopted for the temporal discretization and a stabilized finite element method for the
spatial discretization on an unstructured tetrahedral mesh. The nonlinear systems are
solved by using an inexact Newton method in which the Jacobian system is solved ap-
proximately rather than exactly at each time step. In each Newton step, a Krylov sub-
space method (GMRES) is used as a linear solver which is accelerated by an overlapping
Schwarz preconditioner [19]. In addition, the pressure and velocity variables are not sep-
arated but coupled at each mesh point in the process of finite element analysis. The aim of
this operation is to make it possible to construct point-block incomplete LU factorization
which is more stable than the classical pointwise ILU.

We study our algorithm and software for a realistic train geometry with high Reynolds
number. We also compare our methods with the commercial CFD software package AN-
SYS CFX. The numerical results show that our simulations provide more detailed infor-
mation of the flow structures and our algorithm shows a good parallel scalability.

The paper is organized as follows. The high-speed train model and the computa-
tional domain are presented in Section 2. The governing equations, the finite element
discretization and the Newton-Krylov-Schwarz algorithm are described in Section 3. In
Section 4, some computational results are reported. The paper ends with some remarks
in Section 5.

2 Physical models

In this section, we first describe the vehicle model and then discuss the computational
domain and the gust model.

The train model is derived from China’s new generation of high-speed train shown
in Fig. 1, namely CRH380B, which is designed for passenger transportation. The opera-
tion speed is 300km/h and the maximum speed is up to 380km/h [21]. The geometry is
symmetric and consists of four sets of wheels, a locomotive and a container. To simulate
an actual train, we use the full scale parameters. The length of locomotive and container
are 24.75m and 24.01m, respectively, which make the total length of the model L=48.76m.
The height of the platform from the ground is 0.915m. The width and height of the train
are W=3.26m and H=3.39m, respectively.

The computational domain for the high-speed train subject to crosswind is shown in
Fig. 1. This domain is chosen as in [16] and it is large enough to avoid the influence of
the boundaries. The wind-inlet boundary (face ABFE) and the outflow boundary (face
DCGH ) are set to 10H and 13.3H far from the train, respectively. The distance between
the inlet boundary (face ABCD) and the nose of the train is 13.3H, the distance between
the outflow boundary (face FGHE) and the end of the train is 26.6H. The height of the
computational domain (ground face BCGF to top face ADHE) is set to 10H.

We assume that the direction of the crosswind is perpendicular to the direction that
the train travels. The impact of the crosswind is the result of the velocity of the wind
and the train, so the effect of the crosswind can be strong even if the crosswind’s velocity
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Figure 1: Dimensions of the model train and the computational domain.

Figure 2: Effective crosswind.

is low. The yaw angle describes the direction between the effective crosswind and the
direction at which the train travels, as Fig. 2 shows.

In practice, the wind velocity is stochastic and is usually influenced by the weather
condition and the topography of the nature environment, therefore in this particular ex-
periment, we set a few functions that vary in both time and space to describe the veloci-
ties of the wind and the train,

Vwind=−Vmax
wind

4(y−a)(y−b)

(b−a)2
t, (2.1)

where a=−44m, b=136m are the minimum and maximum y values of the computational
domain.

Vtrain=−Vmax
train

4(x−c)(x−d)

(d−c)2
t, (2.2)

where c=−34.63m, d=45.63m are the minimum and maximum x values of the compu-
tational domain. In our simulation, the flows around the train are initialized with zero
velocity and pressure everywhere.
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3 Numerical methods

In this paper, the full 3D unsteady incompressible Navier-Stokes equations are used to
describe the flows in the spatial domain Ω⊂R3,

∇·u=0 in Ω, (3.1)

ρ

(

∂u

∂t
+u·∇u

)

=−∇p+f+µ∇2u in Ω, (3.2)

where u is the velocity representing the three components in the Cartesian coordinates x,
y and z. ρ, p and µ are the density, pressure, dynamic viscosity, respectively. f is the body
force. The governing equations (3.1) and (3.2) are equipped with boundary conditions on
∂Ω=Γinlet∪Γoutlet∪Γwall

u=g on Γinlet, (3.3a)

u=0 on Γwall, (3.3b)

µ
∂u

∂n
−pn=0 on Γoutlet, (3.3c)

and the initial condition
u=u0 in Ω at t=0. (3.4)

Here g represents the effective crosswind velocity.
To solve the set of governing equations, we first employ a P1-P1 stabilized finite el-

ement method introduced in [8] for the spatial discretization on the unstructured tetra-
hedral mesh and an implicit backward Euler finite difference formula for the temporal
discretization. Because of the page limit, we don’t discuss the details of the finite element
discretization in this paper. Then, the governing equations are turned into the following
system of nonlinear algebraic equations,

xn−xn−1

∆t
=S(xn), (3.5)

where ∆t is the time step size and S(xn) represents the system after the spatial discretiza-
tion without the temporal term at the nth time step. A large, sparse, nonlinear system

Fn(xn)=0, (3.6)

needs to be solved at each time step. In addition, when defining the unknowns vector xn

of nodal values, the pressure and the velocity variables, are not ordered field-by-field like
most approaches but element-by-element. The aim is to avoid the saddle point problem
when solving the Jacobian system arising from the field-by-field ordering [12] because the
saddle point problem significantly affects the convergence and the parallel performance.

In this work, we solve the nonlinear system (3.6) by a Newton-Krylov-Schwarz (NKS)
algorithm. Roughly speaking, the NKS algorithm consists of three components, a nonlin-
ear solver, a linear solver at each Newton step and an accelerator. The basic steps of the
algorithm are listed below,
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Step (a): Get an initial guess xn
0 using the solution of previous time step xn−1,

xn
0 =xn−1. (3.7)

Step (b): Obtain the Newton direction sn
k by solving the following preconditioned Jacobian system

inexactly with GMRES.

Jn
k (Mn

k )
−1Mn

k sn
k =−Fn(xn

k ), (3.8)

where Jn
k is the Jacobian of Fn at xn

k , (Mn
k )

−1 is an additive Schwarz preconditioner.

Step (c): Find a step length λn
k using a cubic line search to update the approximation as follow,

xn
k+1=xn

k +λn
k sn

k , (3.9)

where xn
k and xn

k+1 are the current and new approximation of xn, respectively.

In Step (b), we solve the Jacobian system (3.8) inexactly by satisfying the condition

‖F(xn
k )+ Jn

k sn
k‖≤ηk‖F(xn

k )‖, (3.10)

where ηk is the forcing term used to control the accuracy of the solution.

Without preconditioning, GMRES in Step (b) usually converges slowly or even doesn’t
converge. In our algorithm, an overlapping restricted additive Schwarz (RAS) method [3]
is employed as the preconditioner to accelerate the convergence. We first partition the
computational domain Ω into np non-overlapping subdomains Ωi, i=1,2,··· ,np where np

is the number of processors. Then we get the overlapping subdomains Ωδ
i by extending

δ layers of mesh elements from the adjacent subdomains. Then each overlapping sub-
domain Ωδ

i has its local Jacobian matrix Ji and the global-to-local restriction operator Rδ
i

is defined to return all of the degree of freedom (DOF) belonging to Ωδ
i from the global

vector of unknowns. We define R0
i as the restriction operator for the non-overlapping

subdomain Ωi similar as Rδ
i . Then, the RAS preconditioner is defined as

MRAS =
np

∑
i=1

(R0
i )

TB−1
i Rδ

i , (3.11)

where B−1
i is the local preconditioner. In this paper, The linear system corresponding to

B−1
i is solved by a point-block incomplete LU [18] with some levels of fill-in, which is

more economical than LU as the local preconditioner.

4 Numerical experiments and discussions

In this section, a test case with Vwind = 20m/s and Vtrain = 100m/s is studied. The fluid
material we adopt is air at 25◦C with density ρ=1.185kg/m3 and dynamic viscosity µ=
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1.831×10−5kg/ms. The yaw angle β≈20.27◦ and the Reynolds number Re=2.238×107

is defined as

Re=
ρu∞D

µ
, (4.1)

where u∞ is the freestream velocity which equals to the effective crosswind velocity, D is
the characteristic length of the train and D=H=3.39m.

The computational domain is meshed by ANSYS ICEMCFD, a proprietary software
package used for mesh generation. A mesh with about 14 million tetrahedral cells is gen-
erated for our test and the minimum volume of the mesh element is up to 3.9×10−7m3.
The mesh is finer in the leeward side and near the train body where the flow field is of
greater interest, as shown in Fig. 3.

Figure 3: A view of the inside of the meshed domain.

ParMETIS [15] is used to partition the computational meshes into np subdomains for
parallel computing. Fig. 4 is a schematic view of the partition with 12 subdomains. Note
that the number of elements in the subdomains is more or less the same for the purpose of
load balancing, but the size of subdomains can be very different. Our algorithm described
in Section 3 is implemented using PETSc [2] of Argonne National laboratory.

Figure 4: Schematic view of the partition of the computational mesh.

In this paper, the numerical tests are carried out on a DAWNING NEBULAE super-
computer with 640 nodes. Each node has a dual six-core Intel Xeon X5650@2.76GHz
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processor and 24GB of memory. The numerical results obtained by our algorithm and
ANSYS CFX are used for comparative analysis at first. Then, the parallel performance of
our algorithm is investigated for solving these large-scale computational problems.

4.1 Comparative assessment of numerical results obtained by our algorithm
and ANSYS CFX

We compare the NKS method and RANS with k−ǫ closure model by ANSYS CFX. The
same geometry, computational mesh and boundary conditions are applied for these two
simulations. Using an element-based finite volume approach, CFX applies the standard
k−ǫ model to describe the turbulence behavior. A second-order backward Euler scheme
is used for the transient term. The residual target of root mean square (RMS) conver-
gence criteria is set to 1.0×10−6. In the NKS algorithm, the computational domain is
divided into subdomains and the number of subdomains is equal to the number of pro-
cessors. The relative tolerances of linear and nonlinear convergence are set to 1.0×10−4

and 1.0×10−6, respectively. For these two simulations, a constant time step ∆t is set to
4.0×10−3s throughout the entire simulation, the solutions obtained at t=1s are used for
the comparison.

In order to present the results clearly, we create five cross sections at the location
of y = 3m (y/L = 0.06), 15m (y/L = 0.31), 27m (y/L = 0.55), 39m (y/L = 0.80) and 51m
(y/L=1.05) as shown in Fig. 5.

Figure 5: A view of the cross sections located on the y-axis.

We first compare the velocity contours computed by CFX and our algorithm. As
presented in Fig. 6, the velocity distribution is more or less the same, the higher value is
located at the higher leeward edge of the leading nose, lower velocity is developed in the
low leeward areas as well as the areas near the wheels. The contours also show that the
distribution of the velocity field and the dominant vortices are similar. However, there
are noticeable differences in smaller vortices and their locations. In Fig. 7, the dominant
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(a) y/L=0.06

(b) y/L=0.31

(c) y/L=0.55

(d) y/L=0.80

(e) y/L=1.05

Figure 6: Velocity contours at different locations on the y-axis, t=1s, β≈20.27◦ . Left: CFX; Right: NKS.
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(a) y/L=0.06

(b) y/L=0.31

(c) y/L=0.55

(d) y/L=0.80

(e) y/L=1.05

Figure 7: 2D streamlines at different locations on the y-axis, t=1s, β≈20.27◦. Left: CFX; Right: NKS.
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vortices Va, Vb, Vc and Vd obtained by CFX can be found clearly in the numerical results
of our algorithm, V

′

a, V
′

b, V
′

c and V
′

d. Besides these main vortices, others, for example, V
′

e ,

V
′

f , V
′

g and some small-scale vortices can be found in our results.

The differences of the flow structure can also be found by observing the surface
streamline patterns on the leeward side of the train given in Fig. 8. The surface stream-
lines obtained by our algorithm are more turbulent than results from CFX. This is mainly
due to the loss of flow information when the instantaneous quantity is decomposed in
time-averaged and fluctuating quantities in the approach that CFX uses. The compar-
isons show that our simulation provides more details of the flows around the high-speed
train under crosswind.

Figure 8: Surface streamline patterns on the leeward side for the train. Upper: CFX; Lower: NKS.

4.2 Parallel performance

In this subsection, we report the parallel performance of our algorithm. Two different
meshes, one with about 7.2×106 elements (5.3×106 DOF) and the other with about 1.4×
107 elements (1.0×107 DOF) are employed for the scalability test. A fixed time step ∆t=
4.0×10−3s, a relative tolerance for the linear solver 1.0×10−4 and a relative tolerance for
the nonlinear solver 1.0×10−12 are applied for all of the tests. Based on the first 20 time
steps, Newton, GMRES and Time denote the average number of nonlinear iterations,
GMRES iterations and the average walltime (in seconds) per time step, respectively.

Table 1 and Fig. 9 show the scalability of the computation with several different num-
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Table 1: Parallel performance of the NKS algorithm. Here the level of ILU fill-ins ℓ=1, the overlapping size for
RAS δ=4.

np
DOF=5.3×106 DOF=1.0×107

Newton GMRES Time Newton GMRES Time

128 3.691 94.039 137.915 - - -

256 3.691 92.263 74.811 3.762 122.949 171.827

512 3.762 94.797 46.722 3.524 120.743 93.644

1024 3.143 87.182 32.701 3.619 123.092 62.427

128 256 512 1024
32.701

46.772

62.427

74.811

93.644

137.915

171.827

Number of processors

C
o

m
p

u
te

 t
im

e

DOF=5.3 × 106

DOF=1.0 × 107

128 256 512 1024
1

2

4

8

Number of processors

S
p

ee
d

u
p

DOF=5.3 × 106

DOF=1.0 × 107

Ideal

Figure 9: The average compute time per time step and the speedup (log-log scaled). Here the level of ILU
fill-ins ℓ=1, the overlapping size for RAS δ=4.

ber of processors. We see that the number of nonlinear iterations per time step is quite
small since the solution of the previous time step is used as the initial guess. The parallel
results including the number of linear iterations and the total compute time show that
our algorithm and software implementation are quite scalable.

In subdomain solvers, the level of fill-ins of ILU affects the performance of the NKS
algorithm. Tables 2 and 3 show the comparison with different level of fill-ins ℓ. We see
that larger ℓ helps in reducing the number of GMRES iterations but fewer level of ILU
fill-ins ℓ=1 provides better compute time.

We next present a comparison of additive Schwarz method with overlap δ changing
from 0 to 4 using 1024 cores. Generally speaking, in the additive Schwarz method, the
more overlap between subdomains, the faster the convergence is. However, the sub-
problems as well as the amount of communication become larger at the same time and
result in the computing time increase. So, finding a good trade-off between the number
of iterations and the computing time is important. The results shown in Table 4 verify
this view. From this table, we observe that the number of GMRES iterations is decreased
when large overlaps are used, but smaller overlap, δ=2, offers the best timing results.
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Table 2: Performance of NKS with respect to the level of ILU fill-ins ℓ. Here the overlapping size for RAS δ=4,
DOF=5.3×106.

np
Newton GMRES Time

ILU(0) ILU(1) ILU(2) ILU(0) ILU(1) ILU(2) ILU(0) ILU(1) ILU(2)

128 3.810 3.691 3.476 172.750 94.039 57.233 151.039 137.915 170.280

256 3.857 3.619 3.190 168.605 92.263 55.015 84.147 74.811 82.465

512 3.875 3.762 3.286 166.988 94.797 57.203 52.792 46.772 50.091

1024 3.714 3.143 3.667 167.885 87.182 61.169 45.439 32.701 40.292

Table 3: Performance of NKS with respect to the level of ILU fill-ins ℓ. Here the overlapping size for RAS δ=4,
DOF=1.0×107.

np
Newton GMRES Time

ILU(0) ILU(1) ILU(2) ILU(0) ILU(1) ILU(2) ILU(0) ILU(1) ILU(2)

256 3.810 3.762 3.714 254.600 122.949 84.603 373.825 171.827 223.134

512 3.810 3.524 3.810 250.512 120.743 86.838 366.144 93.644 124.798

1024 3.762 3.619 3.492 256.937 123.092 84.569 149.742 62.427 80.702

Table 4: Performance of NKS with respect to the overlapping size δ. Here the level of ILU fill-ins ℓ=2.

RAS overlap δ
DOF=5.3×106 DOF=1.0×107

Newton GMRES Time Newton GMRES Time

0 3.810 113.950 67.721 3.810 148.600 120.346

1 3.810 81.975 39.643 3.810 114.550 93.001

2 3.476 66.740 34.336 3.714 99.346 77.354

3 3.667 64.649 39.588 3.667 93.104 78.375

4 3.667 61.169 40.292 3.429 84.569 80.702

4.3 Influence of Reynolds number

When solving fluid dynamic problems like the external flows around the high-speed train
under crosswind, the Reynolds number has a major impact on the complexity of the flows
and the difficulty of the discrete system of equations. In this test, we consider Reynolds

Table 5: The robustness of the algorithm with respect to various values of Reynolds numbers. Here DOF
=1.0×107, np =1024.

Wind velocity Train velocity Reynolds number Newton GMRES Time

0 1 2.194×105 2.857 78.517 65.100

0 5 1.097×106 2.857 78.233 70.583

0 10 2.194×106 2.905 78.672 61.992

10 20 4.906×106 2.905 78.656 70.277

30 100 2.291×107 3.476 85.616 82.522
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numbers from 2.194×105 to 2.291×107 depending on the velocity of the crosswind and
the speed of the train. The numerical results shown in Table 5 indicate the NKS algorithm
works well for this range of Reynolds number.

5 Conclusions

Accurate simulation of external flows around a high-speed train under crosswind is a
challenging computational problem. Finding a robust and scalable algorithm is a key
issue for obtaining meaningful results in a timely matter for actual engineering applica-
tions. In this paper, we developed a parallel Newton-Krylov-Schwarz algorithm for the
fully implicit solution of the full 3D unsteady incompressible Navier-Stokes equations.
After the discretization, the nonlinear algebraic systems are solved by using an inex-
act Newton method in each time step. The GMRES method accelerated by an overlap-
ping Schwarz preconditioner is used as the linear solver in each Newton step. We tested
the algorithm for flows passing a high-speed train with realistic geometry and different
Reynolds numbers. Based on the numerical results, we concluded that the algorithm and
our software implementation are robust with a wide range of Reynolds numbers up to
2.291×107 and exhibit a good scalability with up to 1024 processors.
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