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Abstract. Based on biologically inspired algorithms, a thermodynamic model to des-
cribe the vapor-liquid equilibrium of binary complex mixtures containing supercriti-
cal fluids and ionic liquids, is presented. The Peng-Robinson equation of state with
the Wong-Sandler mixing rules are used to evaluate the fugacity coefficient on the sys-
tems. Then, a hybrid particle swarm-ant colony optimization was used to minimize
the difference between calculated and experimental bubble pressure, and calculate the
binary interaction parameters for the excess Gibbs free energy of all systems used.
Simulations are carried out in nine systems with imidazolium-based ionic liquids. The
results show that the bubble pressures were correlated with low deviations between
experimental and calculated values. These deviations show that the proposed hybrid
algorithm is the preferable method to describe the phase equilibrium of these complex
mixtures, and can be used for other similar systems.
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1 Introduction

Phase equilibrium data of mixtures containing ionic liquids are necessary for further de-
velopment of some separation processes [1]. Blanchard et al. [2] described several poten-
tial applications of supercritical fluids with ionic liquids. The gas solubility data provides
important information for the characterization of solute-solvent interactions and so con-
tribute to understand the mechanisms of dissolution. From a practical point of view, gas
solubility can be useful in the calculation of vapor-liquid equilibrium [3].
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http://www.global-sci.com/ 107 c©2013 Global-Science Press
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One of the common approaches used in the literature to correlate and predict phase
equilibrium requires an equation of state that well relates the variables temperature, pres-
sure and volume and appropriate mixing rules to express the dependence of the equation
of state parameters on the concentration [1]. The existing methods to solve phase equi-
librium systems obtain only local solutions. It has been demonstrated that for cases of
systems containing supercritical fluids, the optimum values of the interaction parame-
ters depend on the searching interval and on the initial value of used interaction parame-
ters [4]. Then, the parameter optimization procedures are very important in engineering,
industrial, and chemical process for development of mathematical models, since design,
optimization and advanced control of bioprocesses depend on model parameter values
obtained from experimental data [1].

The aim of optimization is to determine the best-suited solution to a problem under a
given set of constraints. Mathematically, an optimization problem involves a fitness func-
tion describing the problem, under a set of constraints representing the solution space
for the problem. The optimization problem, now-a-days, is represented as an intelli-
gent search problem, where one or more agents are employed to determine the optimum
on a search landscape [5]. Modern optimization techniques have aroused great interest
among the scientific and technical community in a wide variety of fields recently, because
of their ability to solve problems with non-linear and non-convex dependence of design
parameters [6].

Thus, the use of heuristic optimization methods, such particle swarm optimization [7]
and ant colony optimization [8], for the parameter estimation is very promising [1]. These
biologically-deriver methods represent an excellent alternative to find a global optimum
for phase equilibrium calculations.

In this work, nine binary vapor-liquid phase systems containing supercritical fluids
and ionic liquids were evaluated using a hybrid algorithm based on particle swarm opti-
mization and ant colony optimization. The complete program was used to calculate the
binary interaction parameters of these complex mixtures by minimization of the differ-
ence between calculated and experimental data.

2 Thermodynamic model

As known, the phase equilibrium problem to be solved consists of the calculation of
some variables of the set T-P-x-y (temperature, pressure, liquid-phase concentration and
vapor-phase concentration, respectively), when some of them are known. For a vapor-
liquid mixture in thermodynamic equilibrium, the temperature and the pressure are the
same in both phases, and the remaining variables are defined by the material balance
and the ” f undamental equation o f phase equilibrium”. The application of this fundamen-
tal equation requires the use of thermodynamic models which normally include binary
interaction parameters [9].

The classical thermodynamic models commonly used in the literature to treat these
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mixtures at low pressure required a great amount of binary parameters to be determined
from experimental data [10]. These binary parameters must be determined using exper-
imental data for binary systems. Theoretically, once these binary parameters are known
one could predict the behavior of multicomponent mixtures using standard thermody-
namic relations and thermodynamics models [9].

The fundamental equation of vapor-liquid equilibrium can be expressed as the equal-
ity of fugacities of each component in the mixture in both phases [10]:

f
L

i = f
V

i , (2.1)

where the superscripts L and V represent liquid and vapor, respectively.
The fugacity of a component in the vapor phase is usually expressed through the

fugacity coefficient φ
V
i :

f
V

i =yiφ
V
i P. (2.2)

And the fugacity of a component in the liquid phase is expressed through either the

fugacity coefficient φ
L
i or the activity coefficient γi:

f
L

i = xiφ
L
i P, (2.3)

f
L

i = xiγi f 0
i . (2.4)

In these equations, yi is the mole fraction of component in the vapor phase, xi is the mole
fraction of component in the liquid phase, and P is the pressure. The fugacity is related
to the temperature, the pressure, the volume and the concentration though a standard
thermodynamic relation [5].

If the fugacity coefficient is used in both phases, the method of solution of the phase
equilibrium problem is known as ”the equation o f state method”. Then, equation of state
(EoS) and a set of mixing rules are needed, to express the fugacity coefficient as function
of the temperature, the pressure and the concentration [9]. Modern EoS methods include
an excess Gibbs free energy model (GE) in the mixing rules of the EoS, giving origin to
the so-called ”equation o f state + GE model” [10]. This means that an activity coefficient
model (γ) is used to describe the complex liquid phase, and the fugacity coefficient (φ) is
calculated using a simple equation of state. If the fugacity coefficient is used for the vapor
phase and the activity coefficient is used for the liquid phase the equilibrium problem is
known as ”the gamma-phi method” (γ-φ) [9]. This method has given acceptable results
for some systems [1, 5].

From the relation between the fugacity, the Gibbs free energy, and an EoS, the fugacity
in a vapor can be calculated as:

ln

[

f
V

i (T,P,yi)

yiP

]

= lnφi , (2.5)

lnφi=
1

RT

∫ V

V=∞

[

RT

V
−
(

∂P

∂Ni

)

T,V,Ni 6=j

]

∂V−lnZV , (2.6)
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where V is the total volume, and Z=PV(RT)−1 is the compressibility factor calculated
from as EoS, and V is the molar volume of the mixture [10].

The most common EoS used for the correlation of phase equilibria in mixtures at high
and low pressure are the cubic equations derived from van der Waals EoS [11]; among
these, the Peng-Robinson equation has proven to combine the simplicity and accuracy
required for the prediction and correlation of volumetric and thermodynamic properties
of fluids [12].

The Peng-Robinson EoS was expressed as follows [12]:

P=
RT

V−b
+

a

V(V+b)+b(V−b)
, (2.7)

with

a=0.457235
R2T2

c

Pc
α(Tr), (2.8)

b=0.077796
RTc

Pc
, (2.9)

α(Tr)= [1+κ(1−
√

Tr)]
2, (2.10)

κ=0.37646+1.54226ω−0.26992ω2 , (2.11)

where Tr = T/Tc is the reduced temperature. In this form, the Peng-Robinson EoS is
completely predictive once the constants (critical temperature Tc, critical pressure Pc, and
acentric factor ω) are given. Consequently, this equation is a two-parameter EoS (a and
b) that depends upon the three constants (Tc, Pc, and ω) [10].

For mixtures, the parameters a and b are expressed as functions of the concentration
of the different components in the mixture, through the so-called mixing rules [9]. Until
recent years, most of the applications of EoS to mixtures considered the use of the classical
van der Waals mixing rules, with the inclusion of an interaction parameter for the force
constant a and volume constant b. The Peng-Robinson EoS for a mixture is:

P=
RT

V−bm
+

am

V(V+bm)+bm(V−bm)
. (2.12)

The classical van der Waals mixing rules are:

am =∑
i

∑
j

xixjaij , (2.13)

bm =∑
i

∑
j

xixjbij , (2.14)

and the combining rules for aij and bij, with interaction parameters for the force and
volume constants, are:

aij =
√

aiaj(1−kij), (2.15)

bij=
bi+bj

2
(1−lij). (2.16)
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The parameters kij and lij in the above combining rules for the equation of state are usu-
ally calculated by regression analysis of experimental phase equilibrium data.

But, the modern equation of state includes an excess Gibbs free energy model in the
mixing rules of the EoS. Thus, the connection between equations of state + excess Gibbs
free energy, seem to be the most appropriate for modeling complex mixtures [1].

The Wong-Sandler mixing rule is an example of these types of mixing rules, and can
be summarized as follows [13]:

bm =
∑

N
i ∑

N
j xixj

(

b− a
RT

)

ij

1−∑
N
i

xiai
biRT +

AE
∞(x)

ΩRT

, (2.17)

(

b− a

RT

)

ij
=

1

2
(bi+bj)−

√
aiaj

RT
(1−kij), (2.18)

am =bm

(

N

∑
i

xiai

bi
+

AE
∞(x)

Ω

)

. (2.19)

In these equations am and bm are the equation of state constants with kij as adjustable

parameter, Ω= 0.34657 for the PR EoS, and AE
∞(x) is calculated assuming that AE

∞(x)≈
AE

0 (x)≈GE
0 (x).

For a binary mixture:

bm =
x2

1

(

b− a
RT

)

1
+2x1x2

(

b− a
RT

)

12
+x2

2

(

b− a
RT

)

2

1− x1a1
b1RT − x2a2

b2RT +
GE

0 (x)
ΩRT

, (2.20)

(

b− a

RT

)

12
=

1

2
(b1+b2)−

√
a1a2

RT
(1−k12), (2.21)

am =bm

(

x1a1

b1RT
+

x2a2

b2RT
+

AE
0 (x)

Ω

)

. (2.22)

The fugacity coefficient expression for species i in a mixture for the Wong-Sandler equa-
tions is [10]:

lnφi=

(

∂Nb

∂Ni

)

T,Ni 6=j

(Z−1)−ln(Z−B)

b

+
1

2
√

2bRT

[

1

N

(

∂N2a

∂Ni

)

T,Ni 6=j

− a

b

(

∂Nb

∂Ni

)

T,Ni 6=j

]

ln

[

Z+(1−
√

2B)

Z+(1+
√

2B)

]

. (2.23)

The partial derivative terms are:
(

∂Nb

∂Ni

)

T,Ni 6=j

=
1

1−D

(

1

N

∂N2Q

∂Ni

)

− Q

(1−D)2

[

1−
(

∂ND

∂Ni

)]

, (2.24)

1

N

(

∂N2a

∂Ni

)

=RTD

(

∂Nb

∂Ni

)

+RTb

(

∂ND

∂Ni

)

, (2.25)
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with

Q=∑
i

∑
j

xixj

(

b− a

RT

)

ij
, (2.26)

D=
GE

0 (xi)

ΩRT
+∑

i

xi
ai

biRT
, (2.27)

and
(

1

N

∂N2Q

∂Ni

)

=2∑
j

xj

(

b− a

RT

)

ij
, (2.28)

∂ND

∂Ni
=

ai

biRT
+

lnγi

Ω
, (2.29)

lnγi=
1

RT

(

∂NGE
0 (xi)

∂Ni

)

T,Ni 6=j

. (2.30)

The excess Gibbs free energy GE
0 (x) in the mixing rules is calculated using an appropriate

liquid-phase model. In this work, GE
0 (x) has been calculated using the van Laar model

that has been shown to perform well in high pressure phase equilibrium calculations [1].
The van Laar model for GE

0 (x) is described by the following equation [9]:

GE
0

RT
=∑

i

xi

∑j xj Aij

1−xj

[

1−
xi ∑j xj Aij

x−i∑j xj Aij+(1−xi)xi ∑j xj Aij

]2

. (2.31)

For a binary mixture, the model reduces to:

GE
0 =

A12RTx1x2

x1

(

A12
A21

)

+x2

. (2.32)

Thus, the problem is reduced here to determine the interaction parameters A12, A21, and
the k12 parameter included in the combining thermodynamic model (PR-WS-VL), using
available high pressure T-P-x data of vapor-liquid phase equilibrium of complex mix-
tures.

These optimal interaction parameters were determined by minimizing the following
objective function in data regression, using a hybrid algorithm based on particle swarm
optimization and ant colony optimization:

minF=
100

ND

ND

∑
i=1

∣

∣

∣

∣

Pcalc−Pexp

Pexp

∣

∣

∣

∣

i

, (2.33)

where ND is the number of points in the experimental data set and P is the pressure of
the ionic liquid in the vapor phase, the superscript denotes the experimental (exp) data
point and calculated (calc) values.
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3 Hybrid optimization technique

The hybrid algorithm was developed with particle swarm optimization and ant colony
optimization. Particle swarm optimization is one of the recent meta-heuristic techniques
proposed by Kennedy and Eberhart [7]. Ant colony optimization is an algorithm based
on the foraging behavior of ants, and has been first introduced by Dorigo [8].

3.1 Particle swarm optimization

Particle swarm optimization is a stochastic technique motivated by the behavior of a flock
of birds or the sociological behavior of a group of people [7].

The particle swarm algorithm is initialized with a population of random particles
and the algorithm searches for optima by updating generations [14]. In a particle swarm
system, each particle is ” f lown” through the multidimensional search space, adjusting its
position in search space according to its own experience and that of neighboring particles.
The particle therefore makes use of the best position encountered by itself and that of
its neighbors to position itself toward an optimal solution [4–6]. The performance of
each particle is evaluated using a predefined fitness function, which encapsulates the
characteristics of the optimization problem [15].

Let s and v denote a particle position and its corresponding velocity in a search space,
respectively [7]. Therefore, the λ-th particle is represented in the n-dimensional search
space as:

sλ =(sλ
1 ,sλ

2 ,··· ,sλ
n). (3.1)

And the current velocity of the λ-th particle is represented as:

vλ =(vλ
1 ,vλ

2 ,··· ,vλ
n). (3.2)

Let the current personal best position of the particle and F(s) be the target function which
will be minimized.

pλ =(pλ
1 ,pλ

2 ,··· ,pλ
n). (3.3)

Then the best position pλ is determined by:

pλ
t+1=

{

pλ
t , if F(sλ

t+1)≥F(pλ
t ),

sλ
t+1 , if F(sλ

t+1)≤F(pλ
t ).

(3.4)

Let t be a time instant. The new particle position is computed by adding the velocity
vector to the current position:

sλ
t+1= sλ

t +vλ
t+1 , (3.5)

where sλ
t+1 is the particle position at time instant t, and vλ

t+1 is the new velocity at time
t+1.
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The velocity update equation is given by:

vλ
t+1=wtv

λ
t +c1r1(pλ

t −sλ
t )+c2r2(p

g
t −sλ

t ), (3.6)

where w is the inertia weight, c1 and c2 are the acceleration constants, and r1, r2 are ele-
ment from two random sequences in the range (0,1). The current position of the particle
is determined by sλ

t ; pλ
t is the best one of the solutions that this particle has reached, is

the best one of the all solutions that the particles have reached [4–6].

The variable w is responsible for dynamically adjusting the velocity of the particles,
so it is responsible for balancing between local and global search, hence requiring fewer
iterations for the algorithm to converge [16]. A low value of inertia weight implies a
local search, while a high value leads to a global search. Applying a large inertia weight
at the start of the algorithm and making it decay to a small value through the particle
swarm optimization execution makes the algorithm search globally at the beginning of
the search, and search locally at the end of the execution [1]. The following weighting
function is used in Eq. (3.6):

w=wmax−
wmax−wmin

tmax
t , (3.7)

where the subscript min and max are the minimum and maximum values selected for
these parameters. Generally, the value of each component in v can be clamped to the
range [−vmax, vmax] to control the excessive roaming of particles outside the search space
[14, 15]. After calculating the velocity, the particle swarm algorithm performs repeated
applications of the update equations above until a specified number of iteration has been
exceeded, or until the velocity updates are close to zero [4–6]. The scheme of the particle
swarm algorithm is presented in detail in Table 1.

Table 1: Scheme of the particle swarm algorithm.

Step Description

01 Initialize algorithm. Set constants: tmax, vmax, w, c1, c2

02 Randomly initialize the swarm positions sλ
0 ∈R

n for λ=1,··· ,ρ
03 Randomly initialize particle velocities sλ

0 for λ=1,··· ,ρ
04 Set t=1

05 Evaluate function value Fλ
t using design space coordinates sλ

t :

If Fλ
t ≤Fλ

best then Fλ
best=Fλ

t , Fλ
t =Fλ

t

If F
g
t ≤F

g
best then F

g
best=Fλ

t , F
g
t =Fλ

t

06 If stopping condition is satisfied then stop algorithm

07 Update all particle positions vλ
t for λ=1,··· ,ρ

08 Update all particle positions sλ
t for λ=1,··· ,ρ

09 Otherwise set t= t+1 goes to step 05
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3.2 Ant colony optimization

The basic idea of ant colony optimization is to imitate the cooperative behavior of ant
colonies [8]. As soon as an ant finds a food source, it evaluates it and carries some food
back to the nest [17].

Ants are insects which live together. Since they are blind animals, they find the short-
est path from nest to food with the aid of pheromone. The pheromone is the chemical
material deposited by ants, which serves as critical communication media among ants,
thereby guiding the determination of the next movement. On the other hand, ants find
the shortest path based on intensity of pheromone deposited on different paths [18]. Gen-
erally, intensity of pheromone and the length of the path are used to simulate ant system.
In ant colony algorithm, the probability with which an ant λ chooses to go from city u to
city u′ is:

pλ
t =







[τuu′(t)]
γ2 [1/Lul]

γ1

∑l∈Nλ
u
[τul(t)]

γ2 [1/Lul]
γ1

, if u′∈Nλ
u ,

0, if otherwise,
(3.8)

where τuu′ and Luu′ are the intensity of pheromone and the length of the path between
cities u and u′ respectively. γ1 and γ2 are the control parameters for determining the
weight of the trail intensity and the length of the path, respectively. Nλ

u is the set of
neighbors of city u for the λ-th ant. After selecting the next path, the trail intensity of
pheromone is updated as:

τuu′(t+1)=(1−µ)τuu′(t)+∆τuu′(t), (3.9)

with

τuu′(t)=

{

1
Lm , if (uu′)∈ global-best-tour,

0, if otherwise.
(3.10)

In the above equation 0≤µ≤1, is the pheromone trial evaporation rate [19]. ∆τuu′ is the
amount of pheromone trail added to τuu′ by ants [17]. And Lm is the length of the global
best tour [18]. The scheme of the particle swarm algorithm is presented in detail in Table
2.

3.3 Particle swarm-ant colony optimization (PSO-ACO)

The hybrid algorithm is based on the common characteristics of particle swarm optimiza-
tion and ant colony optimization, like, survival as a swarm (colony) by coexistence and
cooperation, individual contribution to food searching by a particle (ant) by sharing in-
formation locally and globally in the swarm (colony) between particles (ants), etc. The
implementation of PSO-ACO algorithm consists of two stages. In the first stage, it applies
particle swarm optimization, while ant colony optimization is implemented in the sec-
ond stage. Ant colony works as a local search, wherein, ants apply pheromone-guided
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Table 2: Scheme of the ant colony algorithm.

Step Description

01 Initialize algorithm:
Assign to each λ ant an initial solution

02 Generate a pheromone trail

03 Set t=1

04 Evaluate function value Fλ
t :

Create the solution using pheromone trail
05 If stopping condition is satisfied then stop algorithm

06 Update pheromone trails according to solutions created
07 Otherwise set t= t+1 goes to step 04

mechanism to refine the positions found by particles in the particle swarm stage [20].
Thus, the particles update their positions and velocities as follows:

sλ
t+1= sλ

t +vλ
t+1 , (3.11)

vλ
t+1=wtv

λ
t +c1r1(pλ

t −sλ
t )+c2r2(p

g
t −sλ

t )+c3r3(Rλ
t −sλ

t ), (3.12)

where w is the inertia weight, c1 and c2 are the acceleration constants, c3 is the passive
congregation coefficient, and r1, r2, r3 are element from three random sequences in the
range (0,1). The current position of the particle is determined by sλ

t , and vλ
t+1 is the new

velocity at time t+1; pλ
t is the best one of the solutions that this particle has reached, p

g
t

is the best one of the all solutions that the particles have reached [21].
In PSO-ACO, a simple pheromone-guided mechanism of ant colony optimization is

proposed to apply as local search [22]. The ant colony algorithm handles ρ ants equal to
the number of particles in the swarm. Each ant λ generates a solution zλ

t around p
g
t the

global best-found position among all particles in the swarm up to iteration count t as:

zλ
t =N (p

g
t ,σ), (3.13)

where N (p
g
t ,σ) denotes a random number obtained by Gaussian function with mean

value p
g
t and variance σ defined as [21]:

σ=(Ymax−Ymin)·η, (3.14)

where η is used to control the step size. In the standard ant colony algorithms, the proba-
bility of selecting a path with more pheromone is greater than other paths [22]. Similarly,
in the Gaussian functions, the probability of selecting a solution in the neighborhood of
p

g
t is greater than the others [21].

In this hybrid algorithm, the objective function value F(zλ
t ) is computed and the cur-

rent position of ant λ, zλ
t is replaced with the position sλ

t , the current position of particle
λ in the swarm, if F(sλ

t )≥ F(zλ
t ) and current ant is in the feasible space [20]. This sim-

ple pheromone-guided mechanism considers, there is highest density of trails (single
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Table 3: Scheme of the hybrid PSO-ACO algorithm.

Step Description

01 Set t=0

02 Randomly initialize positions and velocities of all particles

03 FOR (each particle λ in the initial population)

04 WHILE (the constraints are violated)

05 Randomly re-generate the current particle sλ
t

06 END WHILE

07 END FOR

08 Set t=1

09 Generate local best: Set pλ
t = sλ

t

10 Generate global best: Find F(sλ
t ), p

g
t is set to the position of sλ

t

11 WHILE (the terminating criterion is not met)

12 FOR (each particle(ant) λ in the swarm(colony))

13 Generate the velocity and update the position of the current particle sλ
t

14 Constraint-handling:

Check whether the current particles violates the problem constraints or not.

If it does, reset it to the previous position sλ
t+1

15 Calculate the fitness value F(sλ
t ) of the current particle

16 Generate the position of the current ant zλ
t =N (p

g
t ,σ)

17 Constraint-handling:

Check whether the current ant violates the problem constraints or not.

If it does, reset it to the current particle sλ
t

18 Calculate the fitness value F(zλ
t ) of the current ant

19 Update current particle position:

Compare the fitness value of current ant with current particle.

If the F(zλ
t ) is better than fitness value of F(pλ

t ), set F(sλ
t )= F(zλ

t ) and sλ
t = zλ

t

20 Update local best: Compare the fitness value of F(pλ
t ), with F(sλ

t ).

If F(sλ
t ) is better than fitness value of F(pλ

t ), set pλ
t to the current position sλ

t

21 END FOR

22 Update global best: Find the global best position in the swarm.

If F(sλ
t ) is better than fitness value of F(p

g
t ),

p
g
t is set to the position of the current particle sλ

t

23 Set t= t+1

24 END WHILE

pheromone spot) at the global best solution p
g
t of the swarm at any iteration t+1 in each

stage of the ant colony algorithm implementation and all ants search for better solutions
in the neighborhood of the global best solution [21]. The pseudo-code for the PSO-ACO
algorithm is listed in Table 3. This algorithm was programmed in C++, and used to
calculate the binary interaction parameters for minimization of the difference between
calculated and experimental bubble pressure for each systems used. Fig. 1 shows a flow
diagram of the algorithm used for the phase equilibrium modeling.
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Specify the parameter for PSO-ACO.

Specify liquid mole fractions xi, yi and T.

Start

Generate initial population.
Possible values of the interaction parameters.

Guess bubble-point pressure P.

Guess set of K i= yi /xi for all components.

t = 1

yi = K i xi

Time-domain simulation.

Find the fitness of each particle
in the current population.

t > tmax?

Update PSO-ACO operators:
position and velocity.

The best particles are
found.

Stop
PSO-ACO

Optimum parameters
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Figure 1: Flow diagram of the total algorithm used for the phase equilibrium modeling.

4 Results and discussion

Nine binary vapor-liquid phase systems containing supercritical carbon dioxide
and imidazolium-based ionic liquids were considered in this study. The anions:
bis(trifluoro-methylsulfonyl)imide ([Tf2N]), hexafluorophosphate ([PF6]), and tetraflu-
oroborate ([BF4]) are the ones presenting the highest supercritical carbon dioxide sol-
ubility. Although both anion and cation influence the carbon dioxide solubility, the
anion has the strongest influence [1]. The most common 1-alkyl-3-methylimidazolium
cations were used, and included: 1-ethyl-3-methylimidazolium ([C2mim]), 1-butyl-
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Figure 2: Chemical structures of the series 1-alkyl-3-methylimidazolium cation in descending order: ethyl, butyl,
pentyl, hexyl, and octyl.

Figure 3: Chemical structures of the anion used: tetrafluoroborate ([BF4]), hexafluorophosphate ([PF6]), and
bis(trifluoromethylsulfonyl)imide ([Tf2N]).

3-methylimidazolium ([C4mim]), 1-pentyl-3-methylimidazolium ([C5mim]), 1-hexyl-3-
methylimidazolium ([C6mim]), and 1-octyl-3-methylimidazolium ([C8mim]). Fig. 2
shows the series 1-alkyl-3-methylimida-zolium cation (in descending order: ethyl, butyl,
pentyl, hexyl, and octyl). Fig. 3 shows the structure of the anions used.

Table 4 shows the thermodynamic properties of the substances involved in the study.
In this table, Tc is the critical temperature, Pc is the critical pressure, and ω is the acentric
factor. The data for the ionic liquids were taken from the literature [23, 24]. The data of
the carbon dioxide were taken from Daubert et al [25].

The details of the experimental vapor-liquid equilibrium data taken from references
[26–28] are presented in Table 5. As seen in the table, the temperature and pressure ranges
are narrow and go from 313K to 333K and from 1 to 13 MPa, respectively.
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Table 4: Thermodynamic properties of the substances involved in this study.

No. Substance Tc(K) Pc(MPa) ω

1 [C2mim][Tf2N] 1214.2 3.37 0.2818
2 [C4mim][Tf2N] 1265.0 2.76 0.2656

3 [C5mim][Tf2N] 1249.4 2.63 0.4123

4 [C6mim][Tf2N] 1287.3 2.39 0.3539
5 [C8mim][Tf2N] 1311.9 2.10 0.4453

6 [C4mim][PF6] 708.9 1.73 0.7553
7 [C8mim][PF6] 800.1 1.40 0.9069

8 [C4mim][BF4] 632.3 2.04 0.8489

9 [C8mim][BF4] 726.1 1.60 0.9954
10 CO2 304.2 7.38 0.2236

Table 5: Details on the phase equilibrium data of the nine systems used in this study (columns: 1 to 7), and
binary interaction parameters calculated with the proposed algorithm (columns: 8 to 10).

No. CO2 + Ref. T(K) ∆P(MPa) ∆x(CO2) ND k12 A12 A21

1 [C2mim][Tf2N] [26] 323 1–11 0.2–0.7 9 0.0096 –1.5396 4.8771

333 1–11 0.2–0.7 9 0.0059 –1.6351 4.3253
2 [C4mim][Tf2N] [27] 313 1–13 0.2–0.8 8 0.3386 –0.2101 –0.6716

333 1–13 0.2–0.7 8 0.2888 –1.0198 –0.4726
3 [C5mim][Tf2N] [26] 323 1–13 0.2–0.7 9 0.0353 –0.1315 2.0566

333 1–13 0.2–0.7 9 0.0149 –0.3224 1.9157

4 [C6mim][Tf2N] [27] 313 1–12 0.2–0.8 6 0.2799 –0.0030 –0.0160
333 1–11 0.2–0.7 8 0.1810 –0.5586 0.0241

5 [C8mim][Tf2N] [27] 313 1–12 0.2–0.8 8 0.3341 –0.2594 –0.6778

333 1–12 0.2–0.8 8 0.2966 –0.4801 –0.5588
6 [C4mim][PF6] [28] 313 1–10 0.2–0.7 8 0.2304 0.6102 4.2140

323 1–10 0.2–0.7 8 0.1629 0.4165 6.9724
333 1–10 0.2–0.7 8 0.2968 0.2352 5.5807

7 [C8mim][PF6] [28] 313 1–10 0.2–0.7 8 0.1934 0.7104 5.4292

323 1–10 0.2–0.7 8 0.1514 0.5301 6.3123
333 1–10 0.2–0.7 8 0.2680 0.3602 5.0220

8 [C4mim][BF4] [27] 313 1–10 0.1–0.6 8 0.2804 0.9204 2.4878
333 1–10 0.1–0.6 7 0.4016 0.4432 2.9091

9 [C8mim][PF4] [28] 313 1–10 0.2–0.7 8 0.1798 0.7443 5.8708

323 1–10 0.2–0.7 8 0.1465 0.5793 6.0336
333 1–10 0.2–0.7 8 0.2542 0.4224 5.7520

Among the many cubic EoS of van der Waals type nowadays available, the proposed
by Peng and Robinson (PR-EoS) is widely used because of its simplicity and flexibil-
ity [10]. This equation has proven to combine the simplicity and accuracy required for
the prediction and correlation of fluid properties, in particular of phase equilibria [4, 6].
The effect of the uncertainty of the critical properties in the phase equilibria calculations
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Figure 4: Deviations of the interaction parameters estimated by minimization of the objective function.

using PR-EoS has been investigated for several systems, but the general trend and cur-
vature of the phase equilibrium curve is not altered [29]. The interaction parameters
represent the functionality of the constants of the equation with the concentration. It
has been recognized that van der Waals mixing rules with one or two parameters don’t
give good results for systems complex [30]. But, the Wong-Sandler mixing rules have
shown to be successful in these applications. In other works to improve the predictions
in mixtures, a third interaction parameter has been introduced and has been shown that
these mixing rules allow a accurate representation that when the VdW mixing rules are
used [1,10,11]. The PR-WS-VL model and the PSO-ACO algorithm were used to calculate
k12, A12 and A21, and P by minimizing the Eq. (2.33), and considering the absolute de-
viations between experimental and calculated values of bubble point in the vapor-liquid
phase of the ionic liquids on the supercritical carbon dioxide. Fig. 4 shows the interaction
parameters determined with the hybrid optimization and based on the minimization of
the Eq. (2.33). The last three columns in Table 5 show the optimum values calculated
for the binary interaction parameters k12, A12 and A21 for each system considered in this
study. These results show that the pressures of the ionic liquids in the vapor phase were
correlated with low deviations between experimental and calculated values (deviations
were below than 10%).

Fig. 5 shows the variation of the binary interaction parameters as a function of the ab-
solute temperature. It can be observed the smooth behavior of the parameters included
in the PR-WS-VL model. The parameter A12 decreases with the temperature for all cases
studied, while the parameter A21 goes through a maximum for all the mixtures. This
smooth behavior of the parameters in the Wong-Sandler mixing rules indicates that the
model could be better generalized if more systems are studied. Fig. 6 shows an exam-
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Figure 5: Variation of the binary interaction parameters as a function of the temperature for all systems used.

Figure 6: Calculated (−−−) and experimental (symbols) pressures at 333K for CO2 with 1-alkyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide: (�) [C2mim], (•) [C4mim], (N) [C5mim], (�)[C6mim],
and (H)[C8mim].

ple of the accuracy of the proposed method to describe the phase equilibrium of binary
systems containing carbon dioxide with ionic liquid. This figure shows the pressure-
concentration values for all systems studied at 313K. As seen in the picture, the good
correlation, represented by the closeness between the experimental data and the corre-
lated values, is observed in all cases. These values calculated with proposed method are
believed to be accurate enough for engineering calculations, and for generalized correla-
tions, among other uses.

A comparison was made between of the results obtained with the PSO-ACO algo-
rithm and the results obtained with another two algorithms: genetic algorithm (GA) [31],
and Levenberg-Marquart algorithm (LMA) [32]. Note that, GA and LMA are commonly
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Table 6: Mean values of the variables of interest for PSO-ACO, GA and LMA.

Parameter PSO-ACO GA LMA

Iteration best solution (tmax) 750 350 950
CPU time (sec) 560 331 2074

Unique solution in the final population (%) 90 73 —

Accuracy of solution (%) 95.31 88.74 80.22
Minimum deviation (%) 0.31 1.52 6.03

Maximum deviation (%) 9.14 15.05 16.27
Average deviation (%) 1.42 5.92 10.33

used in these problems. Table 6 shows the mean values of the above variables of interest
for these three algorithms. In this table, the best variables were calculated as an aver-
age of the best solution found by the three algorithms for all problems (nine complex
mixtures), and to evaluate the quality of the entire set of solutions that each algorithm
provides. In general PSO-ACO performs better than GA and LMA, with accuracy of 95%
and average deviation below than 2%. Fig. 7 shows a comparison between the PSO-ACO
algorithm development in this work, with GA and LMA. This figure shows the average
pressure deviations found with the three algorithms for all the ionic liquids considered in
this study at 333K. As is observed in the figures, the best method to estimate the vapor-
liquid equilibrium of the systems used is the PSO-ACO algorithm.

Figure 7: Comparison between PSO-ACO (O), GA (△), and LMA (�) optimizations used on all systems of
this study at 333K. In this figure, the substances are listed as in Table 5.

Thus, the results show that the implementation of the thermodynamic model PR-
WS-VL was crucial, and that the hybrid PSO-ACO algorithm is the preferable method
to optimize the interaction parameters of the vapor-liquid equilibrium of binary systems
containing carbon dioxide with ionic liquids.
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5 Conclusion

In this work, nine binary vapor-liquid phase systems containing supercritical carbon
dioxide + 1-alkyl-3-methylimidazolium ionic liquids were evaluated using a hybrid PSO-
ACO algorithm. The Peng-Robinson equation of state was incorporated into the classical
equilibrium equation. The mixing rule proposed by Wong-Sandler was used, and the
van Laar model was included to evaluate the excess Gibbs free energy that appear in this
mixing rule. The PSO-ACO algorithm was used to minimize the difference between cal-
culated and experimental bubble pressure, and the optimal interaction parameters were
determined by data regression. Based on the results and discussion presented in this
study, the following main conclusions are obtained: i) the thermodynamic PR-WS-VL
model is appropriate for modeling the phase equilibrium of binary systems containing
supercritical fluid + ionic liquids; ii) the hybrid PSO-ACO algorithm is a good tool to
calculate the optimum values for the binary interaction parameters (k12, A12, A21), and
phase equilibrium were correlated with low deviations between experimental and calcu-
lated values; iii) The values calculated with proposed method are believed to be accurate
enough for engineering calculations, and for generalized correlations, among other uses.

Acknowledgments

The author thank the Direction of Research of the University of La Serena (DIULS), and
the Department of Physics of the University of La Serena (DFULS) for the special support
that made possible the preparation of this paper.

References
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[4] J. A. Lazzús, J. Eng. Thermophys. 18, 306 (2009).
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