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Abstract. In this paper we propose stochastic multi-symplectic conservation law for
stochastic Hamiltonian partial differential equations, and develop a stochastic multi-
symplectic method for numerically solving a kind of stochastic nonlinear Schrödinger
equations. It is shown that the stochastic multi-symplectic method preserves the multi-
symplectic structure, the discrete charge conservation law, and deduces the recurrence
relation of the discrete energy. Numerical experiments are performed to verify the
good behaviors of the stochastic multi-symplectic method in cases of both solitary
wave and collision.
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1 Introduction

As is well known, for deterministic Hamiltonian systems, the symplectic integrators for
ODEs (see [7,11]), and multi-symplectic integrators for PDEs ( [6,8,14]) have been investi-
gated in the last decades, including lots of analysis on accuracy, efficiency, and long-time
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behavior, besides the character of preserving the symplectic or multi-symplectic geomet-
ric structure. For stochastic Hamiltonian systems, [15] established the theory about the
stochastic symplectic methods which preserve the symplectic structure of the stochas-
tic ODEs. To our knowledge, however, there is no reference about the multi-symplectic
structure of stochastic PDEs till now. This motivates us to investigate stochastic PDEs
with such structure, and find stochastic multi-symplectic integrators for this kind of
stochastic PDEs. We take the stochastic nonlinear Schrödinger equations as the keystone
mainly because they describe many physical phenomena and play an important role in
fluid dynamics, nonlinear optics, plasma physics, etc [9, 17]. The noise sources usually
represent the effect of the neglected terms yields to nonlinear Schrödinger equation in
the modelison. A lot of qualitative characteristic for such small noises are presented in
several chapters of references [13], including nonlinear-Schrödinger, Korteweg-de Vries,
Sine-Gordon equations, etc. The stochastic nonlinear Schrödinger equation can be con-
sidered as a generalization of the deterministic nonlinear Schrödinger equation, or from
another point of view a perturbation of them. In [5], a perturbed inverse scattering trans-
form technique is used to study nonlinear Schrödinger equation with random terms. If
the noise is a space independent case, a transformation can be used to convert the stochas-
tic equation into corresponding deterministic case. Suppose some smooth conditions, the
stochastic nonlinear Schrödinger equation has a unique global solution for some cases.
For multiplicative noise, [1,16] studied and described some theoretical analysis. For more
details about the theoretical aspects of stochastic nonlinear Schrödinger equations refer
to [2] and references therein.

This paper is organized as follows. In the next section, we define the stochastic multi-
symplectic PDEs, with proof of their preservation of the stochastic multi-symplectic con-
servation law, and finally give the definition of the stochastic multi-symplectic integrators
which preserve the discrete stochastic multi-symplectic conservation law. The stochas-
tic multi-symplectic form for the stochastic nonlinear Schrödinger equation with multi-
plicative noise is presented, which possesses the charge conservation law. The midpoint
method is then used to construct the stochastic multi-symplectic integrator, the concrete
form of which for the given Schrödinger equation is obtained by introducing the exact
mathematical definition of the space-time noise. Section 3 is contributed to the theo-
retical analysis of the conservation properties of the obtained stochastic multi-symplectic
scheme, including the discrete multi-symplectic conservation law, and the discrete charge
conservation law. Furthermore, the recursion formula of a specific energy conservation
law is presented. In section 4, numerical experiments are performed to testify the effec-
tiveness of the stochastic multi-symplectic scheme listed in the previous section, for the
case of both solitary wave and the collision of solitons. Section 5 is a conclusion.

2 Stochastic NLS equation and multi-symplectic integrator

In this paper, we consider a stochastic nonlinear Schrödinger equation with multiplica-
tive noise:
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iϕt= ϕxx+2|ϕ|2σ ϕ+εϕ◦χ̇, t>0, ε>0, x∈R, (2.1)

where ϕ= ϕ(x,t) is a complex-valued function, and ◦ denotes Stratonovich product.

This equation is usually proposed as a model of energy transfer in a monolayer molec-
ular aggregate in the presence of thermal fluctuations, and the noise here arises as a real
valued potential, so that χ̇ is defined as a real-valued white noise which is delta correlated
in time and either smooth or delta correlated in space.

If the last term at the right hand side of Eq. (2.1), i.e., the noise term, is eliminated, we
reattain the famous deterministic nonlinear Schrödinger equation

iϕt= ϕxx+2|ϕ|2σ ϕ, (2.2)

to which plenty of literatures have been contributed [17]. It is well known the solitary
wave exhibits stable for subcritical nonlinearity (σ<2), and unstable for critical (σ=2) or
supercritical (σ>2) nonlinearity in this deterministic case. In fact, it is a multi-symplectic
Hamiltonian system [9, 12], which possesses the charge conservation law:

Q(t)=
∫

R
|ϕ(x,t)|2dx=

∫

R
|ϕ(x,t0)|2dx=Q0, (2.3)

where |ϕ|2 stands for spatial probability density.

Moreover, it preserves the energy conservation law:

H(t)=
∫

R
|ϕx(x,t)|2− 1

σ+1
|ϕ(x,t)|2(σ+1)dx=H(t0). (2.4)

The equalities (2.3) and (2.4) have been two important criteria of measuring whether a
numerical simulation is good or not.

It is noted that the stochastic nonlinear Schrödinger equation (2.1) can be considered
as a white noise random perturbation of the deterministic equation (2.2), and the size of
the noise is described by the real-value parameter ε > 0. As ε → 0, the solution is con-
verges to the unique solution trajectory of the deterministic equation. Then, we can say
that the stochastic model would be more realistic, and can be observed similar evolution
phenomena about the solution as the deterministic case. We can prove that, under the
Stratonovich product, the charge conservation law (2.3) is conserved by the solution of
(2.1). This is stated in the following theorem.

Theorem 2.1. The stochastic nonlinear Schrödinger equation (2.1) possesses the charge conser-
vation law

Q(t)=
∫

R
|ϕ(x,t)|2dx=

∫

R
|ϕ(x,t0)|2dx=Q0.

Based on the fact that χ̇ is real-valued, the assertion of the theorem can be proved
easily by multiplying both sides of Eq. (2.1) by ϕ̄, which is the conjugate of ϕ, and then
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taking the imaginary part and integrating it over the whole space domain. The proof is
analogous to that of the deterministic case, so we ignore it here.

If we set ϕ= p+iq, where p, q are real-valued functions, we can separate (2.1) into the
following form

{

pt =qxx+2(p2+q2)σq+εq◦χ̇,

−qt = pxx+2(p2+q2)σ p+εp◦χ̇.

By introducing two additional new variables, v= px,w=qx, and defining a state vari-
able z=(p,q,v,w)T , the equation above can be transformed to the compact form

Mzt+Kzx =∇S1(z)+∇S2(z)◦χ̇, (2.5)

where

M=









0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









, K=









0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0









,

and

S1(z)=
1

2
v2+

1

2
w2+

1

(σ+1)
(p2+q2)σ+1, S2(z)=

1

2
ε(p2+q2).

If we ignore the noise term, a corresponding deterministic PDE is obtained. According
to [6] and references therein, a deterministic partial differential equation system is called
a multi-symplectic Hamiltonian system if it can be written in the form

Mzt+Kzx =∇S(z), z∈Rd, (2.6)

where M,K are skew-symmetric matrices, and S is a smooth function of the state variable
z. Eq. (2.6) has the multi-symplectic conservation law

∂tω+∂xκ=0, (2.7)

with ω,κ being the two forms, i.e., ω= 1
2 dz∧Mdz, κ= 1

2 dz∧Kdz.

The multi-symplectic conservation law (2.7) means that symplecticity changes locally
and synchronously both in time and in space directions.

Then spontaneously, we have the problem of how to extend the multi-symplectic the-
ory of the deterministic Hamiltonian partial differential equations to the stochastic sys-
tems?

Similarly, we define the stochastic multi-symplectic Hamiltonian system to have the
form (2.5), where, M,K are skew-symmetric matrices, and χ̇ is a real-valued white noise
which is delta correlated in time, and either smooth or delta correlated in space. The
gradients of S1 and S2 are with respect to the inner product < ·,·> on Rd.



S. Jiang, L. Wang and J. Hong / Commun. Comput. Phys., 14 (2013), pp. 393-411 397

Now we give the precise mathematical definition of the noise χ̇. To this end, firstly,
a probability space (Ω,F ,P) is given together with a filtration (Ft)t>0. Then, we de-
fine the cylindrical Wiener process W(t,x,̟) on L2(R,R), the space of square integrable
functions of R, associated to the stochastic basis (Ω,F ,P ,(Ft)), as

W(t,x,̟)= ∑
i∈N

βi(t,̟)ei(x), t≥0, x∈R, ̟∈Ω. (2.8)

Here, ei,i∈N is any orthonormal basis of L2(R,R), and (βi)i∈N is a sequence of indepen-
dent real Brownian motions on (Ω,F ,P ,(Ft)). Obviously, βi(t) = (W(t,x,̟),ei), i ∈ N,
t ≥ 0. Then, the space-time noise χ̇ is the time distributional derivative of cylindrical
Wiener process, i.e., χ̇dt=dtW.

According to the precise mathematical definition of the noise, the stochastic multi-
symplectic Hamiltonian system (2.5) can be rewritten into the form:

Mdtz+Kzxdt=∇S1(z)dt+∇S2(z)◦dtW, z∈Rd. (2.9)

We have the following theorem.

Theorem 2.2. The stochastic multi-symplectic Hamiltonian system (2.9) preserves the stochastic
multi-symplectic conservation law locally

dtω(t,x)+∂xκ(t,x)dt=0, (2.10a)

i.e.,

∫ x1

x0

ω(t1,x)dx+
∫ t1

t0

κ(t,x1)dt=
∫ x1

x0

ω(t0,x)dx+
∫ t1

t0

κ(t,x0)dt, (2.10b)

where ω(t,x) = 1
2 dz∧Mdz, κ(t,x) = 1

2 dz∧Kdz are the differential 2-forms associated with the
two skew-symmetric matrices M and K, respectively, and (x0,x1)×(t0,t1) is the local definition
domain of z(x,t).

Proof. Let dz1,x,i, dz0,x,i, dzt,0,i, dz0,0,i, dz1,1,i, and dz1,0,i, i= 1,··· ,d be the i-th components
of the differential forms dz(t1,x), dz(t0,x), dz(t,x1), dz(t,x0), dz(t0,x0), dz(t1,x1), and
dz(t1,x0), respectively, and Mij,Kij, i, j=1,··· ,d be the elements of the matrices M,K.

We have
∫ x1

x0

ω(t1,x)dx−
∫ x1

x0

ω(t0,x)dx

=
1

2

∫ x1

x0

[ d

∑
i=1

dz1,x,i∧
d

∑
j=1

Mijdz1,x,j−
d

∑
i=1

dz0,x,i∧
d

∑
j=1

Mijdz0,x,j

]

dx

=
1

2

∫ x1

x0

d

∑
i=1

d

∑
j=1

Mij(dz1,x,i∧dz1,x,j−dz0,x,i∧dz0,x,j)dx.
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Using the formula of changing variables in differential forms, the above can be rewritten
as

∫ x1

x0

d

∑
i=1

d

∑
j=1

Mij(dz1,x,i∧dz1,x,j−dz0,x,i∧dz0,x,j)dx

=
∫ x1

x0

d

∑
i=1

d

∑
j=1

Mij

[

( d

∑
l=1

∂z1,x,i

∂z0,0,l
dz0,0,l

)

∧
( d

∑
k=1

∂z1,x,j

∂z0,0,k
dz0,0,k

)

−
( d

∑
l=1

∂z0,x,i

∂z0,0,l
dz0,0,l

)

∧
( d

∑
k=1

∂z0,x,j

∂z0,0,k
dz0,0,k

)

]

dx

=
d

∑
l=1

d

∑
k=1

[ d

∑
i=1

d

∑
j=1

Mij

∫ x1

x0

(∂z1,x,i

∂z0,0,l

∂z1,x,j

∂z0,0,k
− ∂z0,x,i

∂z0,0,l

∂z0,x,j

∂z0,0,k

)

dx

]

dz0,0,l∧dz0,0,k. (2.11)

Similarly, we can obtain

∫ t1

t0

κ(t,x1)dt−
∫ t1

t0

κ(t,x0)dt

=
1

2

∫ t1

t0

d

∑
i=1

d

∑
j=1

Kij(dzt,1,i∧dzt,1,j−dzt,0,i∧dzt,0,j)dt

=
1

2

d

∑
l=1

d

∑
k=1

[ d

∑
i=1

d

∑
j=1

Kij

∫ t1

t0

( ∂zt,1,i

∂z0,0,l

∂zt,1,j

∂z0,0,k
− ∂zt,0,i

∂z0,0,l

∂zt,0,j

∂z0,0,k

)

dt

]

dz0,0,l∧dz0,0,k. (2.12)

Define

al,k(t1,x1)=
d

∑
i=1

d

∑
j=1

Mij

∫ x1

x0

(∂z1,x,i

∂z0,0,l

∂z1,x,j

∂z0,0,k
− ∂z0,x,i

∂z0,0,l

∂z0,x,j

∂z0,0,k

)

dx, (2.13)

bl,k(t1,x1)=
d

∑
i=1

d

∑
j=1

Kij

∫ t1

t0

( ∂zt,1,i

∂z0,0,l

∂zt,1,j

∂z0,0,k
− ∂zt,0,i

∂z0,0,l

∂zt,0,j

∂z0,0,k

)

dt. (2.14)

Combining Eqs. (2.11) and (2.12), we get

∫ x1

x0

ω(t1,x)dx+
∫ t1

t0

κ(t,x1)dt−
∫ x1

x0

ω(t0,x)dx−
∫ t1

t0

κ(t,x0)dt

=
1

2

d

∑
l=1

d

∑
k=1

[al,k(t1,x1)+bl,k(t1,x1)]dz0,0,l∧dz0,0,k.

Then, the equality (2.10) is fulfilled if and only if

d

∑
l=1

d

∑
k=1

[al,k(t1,x1)+bl,k(t1,x1)]dz0,0,l∧dz0,0,k =0. (2.15)
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Set t0,x0 fixed, and change the variables t1,x1. It’s not difficult to check that, if t1 is
taken as the initial time t0, we have al,k(t1,x1)≡ 0, l,k= 1,··· ,d, and bl,k(t1,x1)≡ 0, l,k=
1,··· ,d, because the upper and lower integral limits become the same.

So the condition (2.15) holds, if the differential of al,k(t1,x1)+bl,k(t1,x1) with respect
to t1 can be proved to be zero, i.e.,

dt1
al,k(t1,x1)+dt1

bl,k(t1,x1)=0, l,k=1,··· ,d. (2.16)

Consider the i-th component equation of the stochastic Hamiltonian system (2.9)

d

∑
j=1

Mijdt1
z1,x,j+

d

∑
j=1

Kij
∂

∂x
z1,x,jdt=

∂S1(z)

∂z1,x,i
dt+

∂S2(z)

∂z1,x,i
◦dt1

W.

Taking partial derivatives with respect to z0,0,k and z0,0,l on both sides of the equation
above yields

d

∑
j=1

Mijdt1

( ∂z1,x,j

∂z0,0,k

)

=−
d

∑
j=1

Kij
∂

∂x

( ∂z1,x,j

∂z0,0,k

)

dt+
d

∑
j=1

∂2S1(z)

∂z1,x,i∂z1,x,j

( ∂z1,x,j

∂z0,0,k

)

dt

+
d

∑
j=1

∂2S2(z)

∂z1,x,i∂z1,x,j

( ∂z1,x,j

∂z0,0,k

)

◦dt1
W, (2.17)

and

d

∑
i=1

Mijdt1

(∂z1,x,i

∂z0,0,l

)

=−
d

∑
i=1

Mjidt1

(∂z1,x,i

∂z0,0,l

)

=
d

∑
i=1

Kji
∂

∂x

(∂z1,x,i

∂z0,0,l

)

dt−
d

∑
i=1

∂2S1(z)

∂z1,x,j∂z1,x,i

(∂z1,x,i

∂z0,0,l

)

dt−
d

∑
i=1

∂2S2(z)

∂z1,x,j∂z1,x,i

(∂z1,x,i

∂z0,0,l

)

◦dt1
W, (2.18)

respectively. Due to (2.13), we get

dt1
al,k(t1,x1)=

d

∑
i=1

∫ x1

x0

∂z1,x,i

∂z0,0,l

d

∑
j=1

Mijdt1

( ∂z1,x,j

∂z0,0,k

)

dx

+
d

∑
j=1

∫ x1

x0

∂z1,x,j

∂z0,0,k

d

∑
i=1

Mijdt1

(∂z1,x,i

∂z0,0,l

)

dx. (2.19)

Substituting (2.17), (2.18) into (2.19), and noticing that

∂2Sθ(z)

∂z1,x,j∂z1,x,i
=

∂2Sθ(z)

∂z1,x,i∂z1,x,j
, θ=1,2,



400 S. Jiang, L. Wang and J. Hong / Commun. Comput. Phys., 14 (2013), pp. 393-411

we obtain

dt1
al,k(t1,x1)=−

d

∑
i=1

d

∑
j=1

Kij

[

∫ x1

x0

∂

∂x

(∂z1,x,i

∂z0,0,l
· ∂z1,x,j

∂z0,0,k

)

dx

]

dt1

=−
d

∑
i=1

d

∑
j=1

Kij

(∂z1,1,i

∂z0,0,l
· ∂z1,1,j

∂z0,0,k
− ∂z1,0,i

∂z0,0,l
· ∂z1,0,j

∂z0,0,k

)

dt1. (2.20)

On the other hand, according to (2.14), we have

dt1
bl,k(t1,x1)=

d

∑
i=1

d

∑
j=1

Kij

(∂z1,1,i

∂z0,0,l
· ∂z1,1,j

∂z0,0,k
− ∂z1,0,i

∂z0,0,l
· ∂z1,0,j

∂z0,0,k

)

dt1. (2.21)

Then, the equality (2.16) results from adding (2.20) and (2.21).
This completes the proof.

Then we get the conclusion that, stochastic nonlinear Schrödinger equation (2.1) pos-
sesses the stochastic multi-symplectic conservation law (2.10), and thus is the stochas-
tic multi-symplectic Hamiltonian system. Now, the question is, what kind of numer-
ical methods have the ability of preserving the discrete form of the stochastic multi-
symplectic conservation law when they are applied to the stochastic multi-symplectic
Hamiltonian system, i.e., stochastic multi-symplectic integrators?

To construct stochastic multi-symplectic integrators, we apply the midpoint rule to
Eq. (2.5), both in temporal and spatial directions, and get the following full-discrete form

M

(zn+1
j+ 1

2

−zn
j+ 1

2

∆t

)

+K

(z
n+ 1

2
j+1 −z

n+ 1
2

j

∆x

)

=∇S1(z
n+ 1

2

j+ 1
2

)+∇S2(z
n+ 1

2

j+ 1
2

)χ̇
n+ 1

2

j+ 1
2

, (2.22)

with z
n+ 1

2
j = 1

2(z
n+1
j +zn

j ), zn
j+ 1

2

= 1
2(z

n
j+1+zn

j ) and z
n+ 1

2

j+ 1
2

= 1
4(z

n
j +zn

j+1+zn+1
j +zn+1

j+1 ).

We would like to mention that, for deterministic nonlinear Schrödinger equations,
the midpoint rule is a representative method of constructing multi-symplectic integrator,
see [8] and references therein. In the case of stochastic ODEs, midpoint rule is also an
important symplectic method, see e.g. [10] and [15].

For the full-discrete method (2.22), we have the following result.

Theorem 2.3. The discretization (2.22) is a stochastic multi-symplectic integrator, i.e., it satisfies
the discrete stochastic multi-symplectic conservation law:

(ωn+1
j+ 1

2

−ωn
j+ 1

2
)∆x+(κ

n+ 1
2

j+1 −κ
n+ 1

2
j )∆t=0, (2.23)

where ωn
j+ 1

2

= 1
2 dzn

j+ 1
2

∧Mdzn
j+ 1

2

, κn
j =

1
2 dz

n+ 1
2

j ∧Kdz
n+ 1

2
j .
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Proof. Taking differential in the phase space on both sides of (2.22), we obtain

∆xM(dzn+1
j+ 1

2

−dzn
j+ 1

2
)+∆tK(dz

n+ 1
2

j+1 −dz
n+ 1

2
j )

=∆t∆x
[

∇2S1(z
n+ 1

2

j+ 1
2

)dz
n+ 1

2

j+ 1
2

+∇2S2(z
n+ 1

2

j+ 1
2

)dz
n+ 1

2

j+ 1
2

χ̇
n+ 1

2

j+ 1
2

]

,

Then, using

dz
n+ 1

2

j+ 1
2

:=
1

2
(dzn+1

j+ 1
2

+dzn
j+ 1

2
)=

1

2
(dz

n+ 1
2

j+1 +dz
n+ 1

2
j )

to perform wedge product with the above equation yields

∆x
(

dzn+1
j+ 1

2

∧Mdzn+1
j+ 1

2

−dzn
j+ 1

2
∧Mdzn

j+ 1
2

)

+∆t
(

dz
n+ 1

2
j+1 ∧Kdz

n+ 1
2

j+1 −dz
n+ 1

2
j ∧Kdz

n+ 1
2

j

)

=0,

where the equality is due to the symmetry of ∇2S1(z) and ∇2S2(z).
This completes the proof.

In the analysis above, we just need that χ̇ is a real-valued function. Now we give its
concrete discrete form.

For convenience, denote

δ+x zj :=
zj+1−zj

∆x
, δ+t zn :=

zn+1−zn

∆t
, δ+x δ−x zj :=

zj+1−2zj+zj−1

∆x2
,

(u,v)=∆x∑
j

ujvj, ‖z‖2=
√

(z,z),

and rewrite the numerical scheme (2.22), corresponding to the continuous equation (2.5),
into
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.

Recalling that ϕ= p+iq, and eliminating the additionally introduced variables v and w,
we get the equation of ϕ:

i(δ+t ϕn
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2
+δ+t ϕn

j− 1
2
)=2δ+x δ−x ϕ
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2
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2
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2
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2

. (2.24)
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Set the space domain to be [xL,xR], and compute the numerical solution at the points

x0,x1,··· ,xJ , J=(xR−xL)/∆x. χ̇
n+ 1

2

j+ 1
2

can be regarded as an approximation of integral

1

∆x∆t

∫ (j+1)∆x

j∆x

∫ tn+1

tn

χ̇ dsdx, j∈N

in the local box (xL+ j∆x,xL+(j+1)∆x)×(tn,tn+1).
According to the precise mathematical definition of the cylindrical Wiener process

(2.8) and the space-time noise, it follows

χ̇
n+ 1

2

j+ 1
2

=
1

∆x∆t

∫ (j+1)∆x

j∆x

∫ tn+1

tn

∑
i∈N

ei(x)dβi(s)dx

=
1

∆x∆t ∑
i∈N

(

∫ (j+1)∆x

j∆x
ei(x) dx

)

(βi(tn+1)−βi(tn)). (2.25)

As an orthonormal basis of L2(R), ei,i∈N can be chosen as

ej =
1√
∆x

1[xL+(j−1/2)∆x,xL+(j+1/2)∆x), j=1,2,··· , J−1.

e0=
1√

∆x/2
1[xL ,xL+1/2∆x), eJ =

1√
∆x/2

1[xR−1/2∆x,xR).

It is not difficult to verify that
∫ xL+(j+1/2)∆x

xL+(j−1/2)∆x
ei(x)dx=0, if i 6= j, j=0,1,··· , J, i∈N.

Inserting this expression into (2.25), we have
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∆t are independent random variables with N (0,1) distri-

bution, we can select (χ
n+ 1

2
j )n≥0, j=0,1,··· , J as a sequence of independent random vari-

ables with normal law N (0,1), and produce a new vector (χ
n+ 1

2
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increment. Furthermore, (2.24) can be written as
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The following discussions are all based on the full-discretized stochastic multi-symplectic
scheme (2.26). The implicit full-discreted scheme can be solved by use of the fixed point
algorithm starting from initial values ϕ0

j , j=1,2,··· , J.

3 Conservative properties of the stochastic multi-symplectic

integrator

This section investigates the global conservative properties of the stochastic multi-
symplectic scheme (2.26).

Theorem 3.1. Under the periodic boundary conditions, the stochastic multi-symplectic scheme
(2.26) satisfies the discrete charge conservation law, i.e.,

∆x∑
j

|ϕn+1
j+ 1

2

|2=∆x∑
j

|ϕn
j+ 1

2
|2. (3.1)

Proof. Multiply Eq. (2.26) by ϕ
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2
j , i.e., the conjugate of ϕ

n+ 1
2

j , sum over all spatial grid

points j, and take the imaginary part. Then, under the periodic boundary conditions, the
left-side becomes
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).

The first term of right-side is a real-valued function, so is the second term.
It follows from the last term
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j+1 ).

The term on the right-side of the equality is real-valued, since χ
n+ 1

2
j is real-valued. Then,

by taking the imaginary part, we obtain the discrete charge conservation law (3.1).
This completes the proof.

The result of this theorem is evidently consistent with the charge conservation law
(2.3), which means that the charge conservation law can be exactly preserved by the pro-
posed stochastic multi-symplectic integrator. For deterministic multi-symplectic Hamil-
tonian PDEs, multi-symplectic methods have the stability in the sense of the charge con-
servation law (see [9]). We see that this is also the case for stochastic context.

The next two results concern the error estimation of the discrete global energy of the
stochastic nonlinear Schrödinger equation. Due to the noise term in the equation, the
energy of system is not constant any more. However, the transits of the discrete global
energy can be derived by using the stochastic multi-symplectic integrators.
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Theorem 3.2. Under the periodic boundary conditions, the stochastic multi-symplectic scheme
(2.26) satisfies the following recursion of discrete global energy conservation law, i.e.,

Hn+1−Hn =−2∆x∑
j

|ϕn+ 1
2
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2

|2σ(|ϕn+1
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Here, the discrete global energy of the scheme (2.26) at time tn is defined as

Hn =−∆x∑
j

|δ+x ϕn
j |2+

2
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j
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2
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Proof. Multiplying Eq. (2.26) by ∆tδ+t ϕn
j , summing up for j over the spatial domain, and

taking the real part, we can obtain the results as follows.

The left-side reads
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Thus the real part of the expression above is zero.

Similarly, for the first term of right-side of (2.26) it holds
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The last but one equality results from taking the real part, while the last one follows from
the periodic boundary conditions.

For the second term,
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as we take the real part in the last equality.
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It follows from the last term that

∆x∑
j

[ ε

2
√

∆t∆x
ϕ

n+ 1
2

j+ 1
2

(χ
n+ 1

2
j +χ

n+ 1
2

j+1 )+
ε

2
√

∆t∆x
ϕ

n+ 1
2

j− 1
2

(̇χ
n+ 1

2
j +χ

n+ 1
2

j−1 )
]

(∆tδ+t ϕn
j )

=∆x∑
j

ε

2
√

∆t∆x
ϕ

n+ 1
2

j+ 1
2

(ϕn+1
j −ϕn

j +ϕn+1
j+1 −ϕn

j+1)(χ
n+ 1

2
j +χ

n+ 1
2

j+1 )

=
ε

2
√

∆t∆x
∆x∑

j

(|ϕn+1
j+ 1

2

|2−|ϕn
j+ 1

2
|2)(χn+ 1

2
j +χ

n+ 1
2

j+1 ).

The last equality is deduced for taking the real part.
Through the calculations above and the definition of discrete global energy, we then

have the transformation of the global energy (3.2).

For the integrable case σ=1, we have the following remark.

Remark 3.1. If σ=1, the discrete global energy conservation law of the stochastic multi-
symplectic scheme (2.26) satisfies

Hn+1−Hn =
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4 Numerical experiments

The main purpose of this section is to show the good numerical behavior of the stochastic
multi-symplectic integrator. We take σ=1, which means that the deterministic equation
is integrable as the subcritical physics case. It is possible to obtain qualitative information
on the influence of the noise with small amplitude ε→0.

When we take no account of the noise term, we come back to the deterministic non-
linear Schrödinger equation. Choosing the initial value as

ϕ|t=0=
1√
2

sec
( 1√

2
(x−25)

)

∗exp
(

−i
x

20

)

, (4.1)

then the exact single-soliton solution is

ϕ(x,t)=
1√
2

sec
( 1√

2

(

x− t

10
−25

))

∗exp
(

−i
( x

20
+

199

400
t
))

.

The solitary wave solutions play an important role for understanding these physical
problems, which possess special form in space, propagating at a finite constant velocity,
and keeping the same shape as time goes on. In deterministic dynamics, this solution is
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Figure 1: The profile of numerical solution |ϕ(x,t)| for one trajectory as ε=0.01 (left), and ε=0.05 (right).
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Figure 2: Evolution of the charge conservation law (left), and the global errors of charge conservation law
(right), as ε=0.01, ε=0.02, ε=0.05.

stable, so we wish to investigate the situation of its stochastic counterpart. In our numer-
ical calculations, the periodic boundary conditions are considered, i.e., ϕ|x=xL

= ϕ|x=xR
.

Here, the numerical spatial domain [xL,xR] is [−20,60], and the initial value is given by
(4.1).

In the following experiments, we take the temporal step-size △t = 0.02, the spatial
meshgrid-size △x=0.1, and the longest time interval [0,80]. We choose various sizes of
noise, such as ε = 0.01, ε = 0.02, and ε = 0.05. From Fig. 1, the profile of the amplitude
|ϕ(x,t)| for one trajectory, we see that the solitary wave is weakly perturbed by the noise.
But the noise can neither prevent the propagation, nor destroy the solitary. However,
as the size of the noise grows, the noise amplitude is higher and indeed influences the
velocity of solitary wave.

Fig. 2 shows the evolution of the discrete charge conservation law. As was proved
in Theorem 3.1, the multi-symplectic methods preserve the discrete charge conservation
law exactly. Although different sizes of noise are chosen, the figures of the charge conser-
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vation law remain to be straight horizontal lines approximately, and the global residuals
of the discrete charge conservation law, i.e., (Etq)n :=Qn−Q0, all reach the magnitude of
10−12 for various ε. Here, Qn denotes the discrete charge at time-step tn.

As was stated in [2, 15], a Stratonovich equation is always equivalent to its Itô form
in which the drift is a modified through the addition of a correction term. Based on
this, it is not difficult to get the following conclusion about the energy conservation law,
though it can not be preserved exactly any more in the presence of noise in the nonlinear
Schrödinger equation (2.1).

Remark 4.1. [3] The average energy E(H(ϕ(t))) of the stochastic Schrödinger equation
(2.1) satisfies the following equality:

E(H(ϕ(t)))=E(H(ϕ0))+
ε2

2

∫ t

0

∫

R
|ϕ(t,x)|2 ∑

l∈N

∣

∣

∣

∂

∂x
Φel(x)

∣

∣

∣

2
dx, (4.2)

where Φ is a linear operator, which is taken to be the identity Id in this paper.

It can be easily observed from (4.2) that, the average energy conservation law
E(H(ϕ(t))) follows a linear evolution with growth rate 1

2‖ϕ0‖2
L2 ∑l∈N | ∂

∂x Φel(x)|2, if the

noise is homogeneous, i.e., ∑l∈N | ∂
∂x Φel(x)|2 does not depend on x. This phenomena is

reflected in Fig. 3, where the evolution of the average discrete energy obeys nearly linear
growth over 100 trajectories, and so is the discrete energy just over one trajectory with
various ε.

In order to investigate the transformation of the discrete energy, we assume it to have
the form

E(Hn)=E(H0)+ε2 A(tn,ϕ)(tn−t0), (4.3)

where A(tn,ϕ) represents the growing rate. We exhibit the discrete average energy over
100 trajectories with various ε in Fig. 4. As was mentioned, they all increase linearly. Use
En

te(ε) :=E(Hn)−E(H0) to denote the global errors of the discrete average energy, then if
tn is fixed, this variable would be only related to ε2. Thus, for different ε, we can define a
ratio

Ratio(ε1 ,ε2) :=
En

te(ε1)

En
te(ε2)

∼= ε1
2

ε2
2

. (4.4)

The reason for ∼= is that, the numerical solution ϕ would be a little different for noises of
different sizes caused by various ε. Check the ratio in Fig. 4, we find that, the ratio for
ε= 0.02 and ε= 0.01, i.e. Ratio(ε1 = 0.02, ε2 = 0.01) is about 4, and that for ε= 0.05 and
ε=0.01, i.e. Ratio(ε1=0.05, ε2=0.01) is about 25, which inversely verifies our assumption
(4.3) that the discrete average energy increases linearly over long time.

Fig. 5 shows the evolution of the L∞ norm of one trajectory, and the average L∞ norm
over 100 trajectories with various ε. It can be seen that, the L∞ norm decreases evidently
in all cases. This phenomena is due to the damping effect on the amplitude of the solitary
wave caused by the multiplicative noise.
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Figure 3: Evolution of average discrete energy over 100 trajectories and discrete energy over one trajectory as
ε=0.01 (left), ε=0.02 (middle) and ε=0.05 (right).
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Figure 4: Evolution of global average energy over 100 trajectories as ε=0.01, ε=0.02, ε=0.05 (left), and the
ratios of average energy transformation for ε=0.02, ε=0.05 with ε=0.01, respectively (right).
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Figure 5: Evolution of L∞ norm for one trajectory and average L∞ norm for 100 trajectories as ε=0.01 (left),
ε=0.02 (middle) and ε=0.05 (right).

Another interesting case is the collision of two solitons. For the deterministic
Schrödinger equation, we consider interacting solitons with initial value

ϕt=0=sec(x+20)∗exp(−i(2x−20))+sec(x−20)∗exp(i(2x+20)). (4.5)

In this case, the solution includes two solitary waves, which move in the opposite direc-
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tions. According to the theoretical analysis, the two solitary waves would emerge from
their interaction, with shapes and velocities unchanged. For the corresponding stochas-
tic Schrödinger equation (2.1), we take the same initial value (4.5), and also choose the
zero boundary condition. The time interval is [0,10], and the space domain is [−40,40],
in order to make the boundary condition reasonable.

Fig. 6 shows the profile of the amplitude |ϕ(x,t)| in the case of collision for one tra-
jectory. Similar to the case of solitary wave, two solitary waves are weakly perturbed by
the noise. As the size of the noise ε is larger, the noise amplitude becomes higher. Any-
way, the numerical solution indicates that, the two solitons propagate in the opposite
direction, emerge from interaction, and propagate in their original direction again after
collision, which coincides with the theoretical analysis.

Fig. 7 illustrates the evolution of the discrete charge conservation law for soliton colli-
sion. It shows that the figures of the charge conservation law remain to be nearly straight
horizontal lines for different sizes of noise, and the errors of the charge conservation
law all reach the magnitude of 10−10 for various ε. All these indicate that, the stochastic
multi-symplectic scheme preserves the discrete charge conservation law exactly, also for
the soliton-collision.

The linear growth property related to the average energy conservation law for soliton-
collision is illustrated in Fig. 8, from which it can be seen that the noise dose not destroy
the solitons. And as analysed in soliton case, the growth of discrete average energy is
proportion to ε2.

Up to now, little progress has been made towards error analysis of the numerical
methods for stochastic partial differential equations. A semi-discrete version of the
scheme of strong order 1

2 for the stochastic nonlinear Schrödinger equation has been

studied in [4]. In [18], the Euler scheme is of weak order 1
2 in the full discretization of

a parabolic stochastic equation. For the multi-symplectic scheme (2.26), which is a space-
time discretization of the stochastic nonlinear Schrödinger equation, we presume that it
is of order 1

2 , according to its numerical behavior in the simulation of stochastic Hamilto-
nian ODEs. This certainly needs to be further investigated in the near future.

5 Conclusions

In this paper, we present the multi-symplecticity of the stochastic Hamiltonian PDEs via
revealing their preservation of the stochastic multi-symplectic conservation law, which
expands the scope of the multi-symplecticity of Hamiltonian PDEs from deterministic
to stochastic context. The stochastic nonlinear Schrödinger equation is found to be a
stochastic Hamiltonian PDE. For such stochastic Hamiltonian PDEs, the superiority of
the newly derived stochastic multi-symplectic numerical methods, preserving the multi-
symplecticity, lie not only in the capability of long-time scale computation, but also in the
preservation of the charge conservation law and the ratio of the enhanced global energy.
Numerical experiments are performed including both the soliton case and the case of
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Figure 6: The profile of numerical solution |ϕ(x,t)| for one trajectory as ε=0.01 (left), and ε=0.05 (right) in
the case of collision.
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Figure 7: Evolution of the charge conservation law (left), and the global errors of discrete charge conservation
law (right), as ε=0.01, ε=0.02, ε=0.05 in the case of collision.
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Figure 8: Evolution of global average energy over 100 trajectories with various ε and the ratios of average energy
transformation, in the case of collision.

the collision of solitons. It is maybe worthwhile to note that the numerical analysis of
stochastic Hamiltonian PDEs is a recently arising subject, and the present paper is just
the beginning of the related exploration.
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