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Abstract. In this paper, we propose a space-time rescaling scheme for computing the
long time evolution of multiple precipitates in an elastically stressed medium. The
algorithm is second order accurate in time, spectrally accurate in space and enables
one to simulate the evolution of precipitates in a fraction of the time normally used
by fixed-frame algorithms. In particular, we extend the algorithm recently developed
for single particle by Li et al. (Li, Lowengrub and Leo, J. Comput. Phys., 335 (2007),
554) to the multiple particle case, which involves key differences in the method. Our
results show that without elasticity there are successive tip splitting phenomena ac-
companied by the formation of narrow channels between the precipitates. In presence
of applied elastic field, the precipitates form dendrite-like structures with the primary
arms aligned in the principal directions of the elastic field. We demonstrate that when
the far-field flux decreases with the effective radius of the system, tip-splitting and den-
drite formation can be suppressed, as in the one particle case. Depending on the initial
position of the precipitates, we further observe that some precipitates grow while oth-
ers may shrink, even when a positive far field flux is applied.

AMS subject classifications: 74N25, 74B15
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1 Introduction

The growth of precipitates in an elastic matrix is an important problem in the metal
industry. One example is the production of alloys (e.g. [Al-Ni]) by solid/solid phase
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transformations, in which the metal mixture is suddenly driven out of its initial equilib-
rium state by lowering the temperature. As a consequence, precipitates nucleate within
the bulk material and forms a new dispersed (precipitate) phase with different mate-
rial properties. The precipitates undergo diffusional growth until a new thermodynamic
equilibrium state between the precipitates and matrix is reached.

Since the features of the microscopic precipitates determine the macroscopic proper-
ties of the material (e.g., stiffness, strength and toughness), there have been many com-
putational investigations of phase transformations in metallic alloys (e.g., [1,2,6,15,17,18,
21,27,30,33,38,39,41–43,46,48]). Under appropriate assumptions, the diffusional growth
system can be posed as a moving boundary problem. From an analytical perspective,
Mullins and Sekerka proposed a linear stability theory to address the evolution of a sin-
gle, slightly perturbed spherical precipitate [32], which was later generalized to consider
elastic stresses [15, 20, 22]. As perturbations grow, nonlinearity becomes important and
the precipitate develops complex dendritic, or ramified, morphologies. Computer simu-
lations have then been used to study this nonlinear phenomenon.

Boundary integral methods are one of the most accurate numerical techniques for
simulating free boundary problems. Such methods can be made very efficient through
the use of fast solvers, such as the fast multipole method (e.g., [8, 13, 19, 49]) or tree algo-
rithms (e.g., [10,28,35,47]) among others and the fact that the dimension of the problem is
reduced by one. Other methods for simulating microstructure dynamics include level-set
and phase-field methods, which have their own advantages and disadvantages. See for
example the reviews [5, 16, 18, 23, 34, 37, 43].

Following S. Mikhlin’s approach [31], Greenbaum et al. developed an efficient bound-
ary integral method for solving the quasi-steady diffusion problem in a multiply con-
nected domain and evaluated the Dirichlet Neumann mapping [11]. This approach was
later used in [4, 14] and [15, 21] to perform simulations of precipitate dynamics with and
without elastic stresses in two dimensions, respectively. Other boundary integral meth-
ods have also been used to study two dimensional precipitate evolution, see e.g., [1, 38–
42,44,45] among others. Three dimensional boundary integral simulations of precipitate
dynamics can be found in [9, 27].

There are numerous difficulties associated with simulating the long-time evolution of
single and multiple precipitates. First, the morphologies tend to be complex. Second, the
precipitates grow in size, which together with the complex morphologies, increases the
range of scales that need to be resolved. Third, although the precipitates are growing,
their rate of growth slows as time increases. This makes long-time simulations of pre-
cipitate growth expensive. We address these issues by extending a space-time rescaling
scheme, originally developed for single particles [3, 26] to the multiple particle case. The
extension involves key differences in the algorithm. The idea is to rescale time and space
such that the precipitate evolves exponentially fast in the rescaled frame and does not
change size in the rescaled frame. We demonstrate that the algorithm, which is second
order accurate in time and spectrally accurate in space, is able to simulate the evolu-
tion of precipitates in a fraction of the time normally used by fixed-frame algorithms.
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We present long-time simulations of microstructures containing multiple particles under
different growth conditions with and without elastic stresses.

This paper is organized as follows. In Section 2, we present the mathematical for-
mulation. In Section 3, we describe the boundary integral formulation. In Section 4,
we describe the rescaling scheme for multiple precipitates. In Section 5, we discuss the
numerical results. In Section 6, we give concluding remarks and discuss future work.

2 Mathematical formulation

2.1 The diffusion problem

We assume the matrix and precipitates occupy regions in a two-dimensional plane. The
precipitate phase ΩP consists of p precipitates occupying separate bounded regions ΩP

i .
The matrix phase ΩM is an unbounded region exterior to the precipitates. The boundary
between the ith precipitate and the matrix phase is Γi. The total interface Γ=∪p

i=1Γi sep-
arates the matrix and precipitate phase. A circular far-field boundary Γ∞ at R∞ encloses
all precipitates and appears in the problem in a limiting sense R∞ → ∞, see Fig. 1 and
Eq. (2.1c) below.

2
3

2
3

1

Figure 1: Schematic diagram of a two phase domain. Three precipitates occupy regions ΩP
1 , ΩP

2 and ΩP
3 . They

are surrounded by matrix of infinite extent ΩM. The interface separating the two phases is Γ=∪iΓi. A limiting
far-field boundary Γ∞ encloses all the precipitates.

Following [15], we assume that diffusion only occurs in the matrix phase and we
nondimensionalize the system using the initial precipitate radius to be the length scale
and the diffusion time to be the time scale. Let U be the concentration of the diffusing
species in the matrix phase, then under a quasi-static assumption U satisfies the Laplace
equation,

∇2U=0 in ΩM ⊂R2, (2.1a)

U=κ on Γ=∪n
i=1Γi, (2.1b)

lim
R∞→∞

1

2π

∫

Γ∞

∇U ·n ds=−J, (2.1c)
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together with the mass balance equation across Γi:

V i=
∂U

∂n
on Γi. (2.2)

In the above equations, κ is the curvature of the interface, n is the normal, J is the total
applied mass flux and V i is the normal velocity of the interface between the ith precipitate
and matrix. A positive J indicates mass enters the system. Since U is harmonic, we have
an alternative expression of Eq. (2.1c),

0=
∫

ΩM
∇2UdΩ=

∫

Γ
∇U ·nds+ lim

R→∞

∫

Γ=∂B[0;R]
∇U ·nds=

∫

∪p
i=1Γi

V ids−2π J. (2.3)

If the evolution takes place in presence of the elasticity, then the boundary condition
Eq. (2.1b) becomes

U=κ+ZGel, (2.4)

where Gel is the elastic energy density and the parameter Z characterizes the relative
contribution of stress. The computation of Gel requires one to solve the elasticity problem
in both phases [15, 20].

2.2 The elasticity problem

Following [15, 22], Gel is calculated by

Gel =
1

2
σP

ij (ǫ
P
ij−ǫT

ij)−
1

2
σM

ij ǫM
ij +σM

ij (ǫ
M
ij −ǫP

ij), (2.5)

where ǫij and σij are the strain and stress tensors in the matrix phase (superscript M) and
precipitate phase (superscript P), respectively. The superscript T denotes the transforma-
tion (misfit) strain of the precipitate due to the mismatch of the crystal lattice between
the precipitate and the matrix phase. For simplicity, we assume both precipitate and the
matrix phase are elastically linear and isotropic (the formulation can be extended to in-
corporate anisotropic elasticity [21]). The Poisson ratio and shear modulus of the phases
are denoted respectively by µχ and νχ, where χ can be either ”M” or ”P”.

In the absence of body forces, the elasticity problem is posed as,

σ
χ
ij,j =0 in Ωχ, (2.6a)

uP
i =uM

i on Γ, (2.6b)

σP
ij nj=σM

ij nj on Γ, (2.6c)

lim
r→∞

ǫM
ij =ǫ0

ij. (2.6d)

Eq. (2.6a) describes force balance equations. Eqs. (2.6b) and (2.6c) describe the continuity
of displacement and traction across the interface Γ, respectively (coherent boundary con-
ditions). Eq. (2.6d) is the applied far-field boundary condition. We have used the Einstein
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summation convention in the above equations (and in the remainder of the paper) with
indices i and j running from 1 to 2. Considering the misfit strain, the constitutive laws
for the precipitates and the matrix are given by

σP
ij =CP

ijkl(ǫ
P
kl−ǫT

kl), σM
ij =CM

ijklǫ
M
kl , (2.7)

where the isotropic stiffness tensor

C
χ
ijkl =2µχ

[

νχ

1−2νχ
δklδij+δikδjl

]

(2.8)

and δij is the Kronecker delta. Once the equations of elasticity are solved, one can com-
pute the elastic energy density Gel using Eq. (2.5).

3 Boundary integral formulation

3.1 The diffusion problem

Using the complex variable z= x1+ix2 to denote computational points on the interface,
we write boundary integral equations for the diffusion problem in terms of an unknown
dipole density function φ defined on Γ and unknown p source terms B1,B2,··· ,Bp, corre-
sponding to the p precipitates [11, 15, 31]:

(

− 1

2
I+K

)

[φ]+
p

∑
k=1

Bk log|z(s,t)−Sk |=κ+ZGel , (3.1a)

p

∑
k=1

Bk= J, (3.1b)

∫

r j

φ(s
′
,t)ds

′
=0, j=1,··· ,p−1, (3.1c)

where Sk= x1k+ix2k is a point inside the closed interface Γk and the integral operator

K[φ](s,t)=
1

2π

∫

Γ
φ(s

′
,t)

[

∂

∂n(s′ ,t)
log|z(s′ ,t)−z(s,t)|+1

]

ds
′
. (3.2)

3.2 The elasticity problem

The fundamental solutions in terms of the displacement and traction are given by the
Kelvin function,

Ujk(z,z
′
)=

1

8πµ(1−ν)

[

(3−4ν)ln
(1

r

)

δjk+r,j
′ r,k

′

]

, (3.3a)

Tjk(z,z
′
)=

−1

4π(1−ν)r

[

∂r

∂n
′ ((1−2ν)δjk+2r,j

′ r,k
′ )+(1−2ν)(n

′
jr,k

′ −n
′
kr,j

′ )

]

, (3.3b)
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where r= |z′−z|, r,k′ = ∂r/∂x
′
k and n

′
k is the kth component of the normal at point z

′
. An

outline of the derivation for these fundamental solutions can be found in [7, 15].

Using the fundamental solutions as a test function, we multiply σP
kj,j = 0 by Ujk and

integrate over ΩP
i . Then we perform integration by parts twice and apply the divergence

theorem. Taking the interfacial limit, we write the solution to the elasticity problem as a
set of coupled boundary integral equations for the precipitate and matrix phases. For the
precipitate phases, we have

1

2
uP

j +
∫

Γi

uP
k TP

jkds
′−

∫

Γi

tP
k UP

jkds
′
=

∫

Γi

tT
k UP

jkds
′
, j=1,2, (3.4)

where uP
j denotes the unknown displacement vector and tP

j denotes the unknown trac-

tion vector of a point on the interface Γi. The quantity tT
j =σT

jknk is a given traction due to

the misfit strain [15]. The boundary integral equation for the matrix phase, with uM
j and

tM
j as unknowns, is

1

2
uM

j −
∫

Γ
uM

k TM
jk ds

′
+
∫

Γ
tM
k UM

jk ds
′
=

1

2
u0

j −
∫

Γ
u0

kTM
jk ds

′
+
∫

Γ
t0
kUM

jk ds
′
, (3.5)

where u0
k = ǫ0

kjxj is the kth component of the displacement due to the applied strain and

t0
k is the corresponding traction. Note that in Eq. (3.5), the integration is over the entire

interface Γ separating the precipitate and matrix phases.

Since the traction and the displacement are continuous across the interface, uP
j = uM

j

and tP
j =tM

j , we drop the superscripts and simply write these quantities as uj and tj. Then

Eqs. (3.4) and (3.5) become

1

2
uj+

∫

Γi

ukTP
jkds

′−
∫

Γi

tkUP
jkds

′
=

∫

Γi

tT
k Ujkds

′
, (3.6a)

1

2
uj−

∫

Γ
ukTjkds

′−
∫

Γ
tkUM

jk ds
′
=

1

2
u0

j −
∫

Γ
u0

kTM
jk ds

′−
∫

Γ
t0
kUM

jk ds
′
. (3.6b)

We solve these integrals equations for u1, u2 and t1,t2 and then compute Gel using Eq. (2.5).
Note that this is a direct formulation of the elasticity equations. Other, indirect formula-
tions have also been developed, e.g., [12, 29].

4 The rescaling scheme

The rescaling scheme developed in [26] is limited to a single interface (one precipitate)
in an infinite matrix phase. The idea of the rescaling scheme in [26] is to scale out the
overall growth by a scaling factor, which is derived using an imposed condition: the area
of the precipitate in the rescaled frame is always conserved. In addition, time is rescaled
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such that the area of the precipitate grows exponentially fast in the rescaled time. Here,
we extend this approach to the case of multiple precipitates.

For multiple particles, the situation gets complicated because of the interaction be-
tween the precipitate and the matrix phases and interactions among the precipitates
themselves. In particular, new length scales are introduced into the system – the dis-
tances between the precipitates – which typically decrease in the rescaled frame as time
progresses. Further, to track the evolution of each individual precipitate, one has to com-
pute the centroid of each individual precipitate. This ensures that the precipitate is placed
at the right location and that the interactions with other precipitates can be computed
properly. With this in mind, we introduce the following spatial and temporal scaling

xi(t)+xi
c(t)= R̄(t̄)

(

x̄i(t̄)+ x̄i
c(t̄)

)

, (4.1a)

t̄=
∫ t

0

1

f (t′)
dt

′
, (4.1b)

where R(t)= R̄(t̄(t)) is a scaling factor, the superscript i denotes the ith precipitate cen-
tered at xi

c(t), f is a function of time t that represents the temporal rescaling and the
barred variables are quantities in the rescaled frame. We identify the interface of the ith
precipitate using xi(t,α)+xi

c, with α a parametrization of Γi and write its normal velocity
as

V i=
d(xi+xi

c)

dt
·n=

(

R̄
d(x̄i+ x̄i

c)

dt̄
+(x̄i+ x̄i

c)
dR̄

dt̄

)

dt̄

dt
·n̄. (4.2)

Recalling Eq. (2.3), we obtain

J=
1

2π

∫

∪p
i=1Γi

V ids

=
1

2π

∫

∪p
i=1Γ̄i

R̄2 dt̄

dt

d(x̄i+ x̄i
c)

dt̄
·n̄ds̄+

1

2π

∫

∪p
i=1Γ̄i

R̄
dR̄

dt̄

dt̄

dt
(x̄i+ x̄i

c)·n̄ds̄

=
1

2π

∫

∪p
i=1Γ̄i

R̄2 dt̄

dt
V̄ ids̄+

1

π
R̄

dR̄

dt̄

dt̄

dt
Ā, (4.3)

where

V̄ i=
d(x̄i+ x̄i

c)

dt̄
·n̄, Ā=

1

2

∫

∪p
i=1Γ̄i

(

x̄i+ x̄i
c

)

·n̄ds̄. (4.4)

Note that the quantity A now represents the total area enclosed by all interfaces, i.e.,
Ā=∑

p
i=1 Āi. Imposing a total area conservation constraint

∫

∪p
i=1Γ̄i

V̄ ids̄=0 in the rescaled

frame, we obtain

J=
1

π
Ā

R̄

f (t̄)

dR̄

dt̄
. (4.5)
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Thus, with this choice of R, the total precipitate area does not change in the rescaled
frame. To achieve an exponential growth rate R̄(t̄)=exp

(

π J̄ t̄/Ā
)

, we choose f =R2 J̄/J.
For example, if the flux J= J̄ is a constant, then f =R2, or if J= J̄/R then f =R3.

Finally, the centroid coordinates x̄i
c(t̄)=(x̄i

c(t̄),ȳ
i
c(t̄)) are updated using the following

two equations

dx̄i
c

dt̄
=

1

Āi(t̄)

[

∫

Γi

x̄iV̄ ids̄i
α− x̄i

c(t̄)
∫

Γi

V̄ ids̄i
α

]

, (4.6a)

dȳi
c

dt̄
=

1

Āi(t̄)

[

∫

Γi

ȳiV̄ ids̄i
α− ȳi

c(t̄)
∫

Γi

V̄ ids̄i
α

]

, (4.6b)

i=1,··· ,p. In practice, we update the centroid using the second order Adams-Bashforth
method.

However, updating x̄i by an explicit method suffers from severe stability constraints–
the time step ∆t∼O(∆s3), where ∆s is the arclength spacing between interface marker
points [14]. Thus, not only is there a high-order constraint, the clustering of marker points
along the interface significantly exacerbates the stiffness. To overcome these problems,
we follow the non-stiff time stepping method proposed by Hou et al. [14] and pose the
dynamic equations using L−θ system, where L denotes the interface length and θ is the
angle that the interface tangent makes with the x-axis (tangent angle). At time t=0, the
interface is discretized using marker points that are equally spaced along the interface.
For the each precipitate interface Γi, we choose a special tangential velocity Ti to keep
the marker points equally spaced at later times [14]. The equations of motion for the
precipitate-matrix interfaces Γi then become

L̄i
t=

∫ 2π

0
θ̄i

αV̄ i(α,t)dα, (4.7a)

θ̄i
t =

2π

L̄i
(−V̄ i

α+ T̄iθ̄i
α). (4.7b)

Following the small scale decomposition technique [14] where the highest order term is
identified and integrated explicitly using an integrating factor, Eq. (4.7b) is solved by a
semi implicit integrating factor method. Eq. (4.7a) is updated using the second order
Adams-Bashforth method.

4.1 Rescaling of elasticity integral equations

Define ū and t̄j with u= R̄ū and tj= t̄j. A straightforward calculation shows that the form
of the elasticity integral equations remains unchanged with these new barred variables.
Further, there is no need to rescale the elastic energy as it remains unchanged in the
rescaled frame, i.e., Gel = Ḡel.
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4.2 Rescaling of diffusion integral equations

The curvature of the rescaled interface is related to the original by κ̄ = R̄κ. Introducing
rescaled dipole density φ̄= R̄φ and rescaled source terms B̄k= R̄Bk, Eqs. (3.1a), (3.1b) and
(3.1c) become

− 1

2
φ̄(s̄, t̄)+

1

2π

∫

Γ̄
φ̄(s̄

′
, t̄)

[

∂

∂n̄(s̄′ , t̄)
log|z̄(s̄′ , t̄)− z̄(s̄, t̄)|+ R̄

]

ds̄
′

+
p

∑
k=1

B̄k logR̄|z(s̄, t̄)−Sk|= Z̄Ḡel+κ̄, (4.8a)

p

∑
k=1

B̄k= J̄, (4.8b)

∫

Γ̄j

φ̄(s̄
′
, t̄)ds

′
=0, j=1,··· ,p−1, (4.8c)

where Z̄= R̄Z.

4.3 Rescaling of Dirichlet Neumann map

The Dirichlet Neumann map, which is used to compute the velocity, takes the following
form in the rescaled frame

V̄=
dx̄

dt̄
·n̄

=
f

R̄

( 1

2πR̄2

∫

Γ
φ̄,s′

∂

∂s̄
log|z̄(s′)− z̄(s)|ds̄

′

+
p

∑
k=1

B̄k

R̄2

(x̄1− x̄1k)x̄2,s−(x̄2− x̄2k)x̄1,s

(x̄1− x̄1k)2+(x̄2− x̄2k)2
− π J

ĀR̄
x̄·n̄

)

, (4.9)

where x̄j,s̄ =
∂x̄j

∂s̄ .

4.4 Algorithm

In practice, we first solve the elasticity equation to compute Gel term for the diffusion
problem. We then solve the diffusion problem, compute the normal velocity and update
the interface. The preconditioners for the diffusion and elasticity problems are derived
using the small scale decomposition(SSD) of the kernels [15]. The idea of SSD is to extract
the dominant part of the equations at small spatial scales [14]. SSD has been successfully
implemented in the context of Hele-Shaw problem [14, 25, 26], evolution of an epitaxial
thin film [24], crystal growth [3] and dynamics of inextensible vesicles [36]. The overall
algorithm is given below.
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Algorithm 4.1: Numerical algorithm

Input: starting shapes x̄

1. at t=0 perform equal arclength discretization

2. for t=0 to t f inal do

3. discretize elasticity equations using alternating point quadrature

4. solve discrete system using preconditioned GMRES

5. compute Gel

6. discretize diffusion equation using alternating point quadrature

7. solve discrete system using preconditioned GMRES

8. compute normal velocity V̄

9. construct tangential velocity T̄

10. update interface x̄

11. end for

5 Results and discussions

All simulations are carried out on a cluster having 16 nodes. Each node has two In-
tel(R) Xeon(R) 2.53GHz processors, each of which has 4 cores (total 8 cores per node).
Each node also has 24GB memory, with 3GB for each core, so the memory is not shared
between processor cores. There is infiniband connection between nodes. The diffu-
sion problem with N marker points on each interface corresponds to a matrix of size
(pN+p−1)×(pN+p−1). To solve the elasticity problem one needs to compute two com-
ponents of the displacement and another two components of the traction for each marker
point on the interface. Thus the matrix size is (4pN×4pN). To reduce the cost of matrix
vector multiplications from O(N2) to O(N logN), we implement an adaptive tree code
method to compute the matrix-vector product in the GMRES solvers for both diffusion
and elasticity problems [10]. If necessary (especially when the precipitate morphologies
become complicated and N is large), we use a source dividing strategy to parallelize the
code in which the source points are evenly divided among all the processors [10].

For the diffusion problem, at early times the iteration number of GMRES is about 4
and then slowly increases to about 20 at later times as the morphologies of the precipitates
get complicated. For the elasticity problem, at early times the iteration number of GMRES
is about 7 and the number of iteration is roughly four times the iteration number for
the diffusion problem at later times. Note that for the elasticity problem we solve four
integral equations (two for the displacement and two for the stress).

5.1 Performance of the algorithm

5.1.1 Convergence test

We use two circular precipitates of unit radius centered at (3,0) and (0,3). The far-field
flux is J=25.
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Figure 2: (a) Numerical evidence of second order convergence in time of the total area of the precipitates. (b)
Numerical evidence of the spectral accuracy of the scheme for the total area of the precipitates.

To check the temporal convergence, we take N=512 marker points on each interface
and run the code to t̄=0.04 using time steps ∆t̄=2×10−4, 1×10−4 and 5×10−5. We use
the total area of the two particles Ā to measure the numerical error

err=
∣

∣Ā(0,N=512)− Ā(∆t̄,N=512)
∣

∣ (5.1)

for the three different time steps ∆t̄. Fig. 2(a) shows a plot of −log10(err) versus the
scaling factor R(t̄). We see that the curves are separated by an amount of 0.6 when the
time step is halved. Thus the second order convergence in time is confirmed.

To check the spectral accuracy, we use a fixed time step ∆t̄ = 5×10−5 and run sim-
ulations with N = 256,512,1024 points up to t̄= 0.04. Note that we can use much large
time steps, but for the purpose of accuracy we choose a small one. The numerical error
err= |Ā(t= 0,N)− Ā(t̄,N)| is plotted against R(t̄) in Fig. 2(b). The curves superimpose
on each other suggesting spectral accuracy. In practice, we notice when the precipitates
get close to each other (around the grid resolution, h), the spectral accuracy is lost if no
refinement of the interfaces is made.

5.1.2 Comparison with results from the original unscaled algorithm

We demonstrate the equivalence between the rescaled and original formulation by com-
paring a shape factor

(

δ/R
)

i
=max

α

∣

∣

∣
|x̄|i/Ri

eq−1
∣

∣

∣
, (5.2)

where Ri
eq is the equivalent radius of the ith shape, Ri

eq =
√

Ai/π. Note that Ai is used

rather than Āi so that the equivalent radius is defined in the original frame. In absence
of elasticity, we use the same test case as Fig. 2. We plot the shape factors of the precipi-
tate initially located at (0,3) obtained from the scaled and the original code against time
in Fig. 3(a). The shape factors match exactly, which confirms that the rescaled and the
original formulation produce identical results.
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Figure 3: (a) Evolution of the shape factor of two circular particles that are initially centered at (3,0) and
(0,3) and have unit radius. The flux is J=25. We show the shape factors of the precipitate initially located at
(0,3) using the original (circles) and rescaled (line) algorithms. Insets show the configuration of the particles at
different times of evolution, labeled according to the scale factor R. (b) A comparison of the CPU times shows
that the rescaled scheme (line) is much more efficient than the original (line with circular marker points). (c)
Evolution of the shape factors of two particles growing in presence of elastic fields with J=10. The elastic field
is generated due to an applied shear with ǫ0

11= ǫ0
22 =−0.02 and Z=6000. The particles are initially located at

(−10,−7.5) and (10,−7.5) and have unit radii.

The speed gain due to exponential scaling is significant. For example, using a time
step ∆t̄=1×10−4 we run the rescaled code up to time t̄=0.20, which corresponds roughly
to the time t=5.85 in the unscaled frame. It takes roughly 112 seconds CPU time to finish
the computation. We run the original code up to time t = 5 using a much larger time
step 5×10−3. It takes roughly 850 seconds CPU time to complete the calculation. Even
at this early stage, the computation is roughly eight times faster as shown in Fig. 3(b).
From the steep rise of the CPU time curve for the original formulation, the gain will be
dramatically higher at later times for the rescaled scheme.

In presence of elasticity, we consider parameters Z=6000 and J=10. In the far-field,
we apply ǫ0

11 =−ǫ0
22 = 0.02. The elastic constants are µM = 1, µP = 0.5 and νM = νP = 0.2.

The two circular precipitates are initially centered at (−10,−7.5) and (10,7.5). As we can
see in Fig. 3(c), the results from both formulations agree completely.

Putting these quantitative tests and comparisons together, we are convinced the
rescaled formulation works as expected. Next we perform long time simulations to study
the nonlinear dynamics of multiple precipitates.

5.2 Diffusion with a constant flux J= J̄

We perform a long time simulation using three precipitates, two of which have identical
shapes with radii given by r = 2(1+0.05(cos3θ+sin2θ)) and centered at (−7,−7) and
(−14,14). The third precipitate is centered at (7,7) and has radius r = 1+0.05(cos3θ+
sin2θ). The far-field flux is J = 10. We begin the computation using N = 1024 marker
points on each interface and the number increases to N=16,384 by the end of the simula-
tion. We double the number of points on each interface when the shape needs refinement.
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Figure 4: (a) Evolution of three particles in the absence of elastic stresses (Z= 0). Two of the particles have
initial radii 2(1+0.05(cos3θ+sin2θ)) and are initially located at (−7,−7) and (−14,14). The third precipitate
has initial radius r = 1+0.05(cos3θ+sin2θ) and is initially positioned at (7,7). The flux is J = 10. (b) The
normal velocity of the marker points on the scaled interface is shown at t̄=4.715. (c) The evolution of the total
area as a function of the total arclength in the original frame for the precipitates shown in Fig. 4(a). (d) The

evolution of the equivalent radii Ri
eq of each precipitate as a function of time in the original frame.

That is, if we observe the area calculation in the rescaled frame is less than five signifi-
cant digits after the decimal point compared with the exact value Ā (t=0), we perform
the doubling of the points on the interface. During the doubling, we apply interpolation
in the Fourier space to compute the unknown interpolated values with spectral accu-
racy. In addition, we begin the computation in serial mode. At the later stages of the
computation, however, we use up to 4 processors. The marker points are distributed to
different processors and each processor is responsible for computing the contributions of
the marker points under its control. Also the marker points are distributed in such a way
that work load of each processor is evenly distributed [10]. The time step for this compu-
tation is 5×10−5. The evolution of these precipitates is shown in Fig. 4. All the particles
evolve into ramified fingering patterns, with the overall pattern being reminiscent of the
result from the evolution of a single particle [14, 15].
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Interestingly, at late stages of the evolution the particles do not merge. Instead, nar-
row channels form between the precipitates. The normal velocity of the interfaces, which
is shown in Fig. 4(b) at t̄=4.715, indicates that the velocity of the channels is much smaller
than that elsewhere on the precipitate.

In Fig. 4(c), we plot the total area in the original frame, A = R2Ā, as a function of
the total arclength in the original frame L= RL̄= R∑i L̄

i. We generally find that A∼ Lγ

where γ= 2 at early times and decreases below 2 at late times A∼ L1.7. In Fig. 4(d), we
plot the evolution of equivalent radii Ri

eq =
√

Ai/π versus time for the three particles.
It is evident that the precipitates are growing at different rates and the one originally at
(−14,14) grows faster than other two. This is because this precipitate is farther from the
origin and is closer to the flux of matter from the far-field and thereby receives more mass
than the other precipitates.The overall growth rate is Req∼ t1/2 as expected for a constant
flux.

5.3 Diffusion with flux J= J̄/R, J̄=constant

In the context of a single precipitate, Li et al. [26] demonstrated that the Mullins-Sekerka
instability can be suppressed if a time-dependent flux J= J̄/R(t), where J̄ is a constant, is
used. In fact, for a single particle, Li et al. showed that the evolution tends to an attractive
self-similarly evolving shape that depends on J̄.

Here, we consider the growth of several precipitates under this time-dependent flux
condition. As a test case, we use the same initial precipitate configuration as in Fig. 4. The
results are shown in Fig. 5. The most significant feature is that there is no tip splitting and
the particles grow with compact morphologies. The possibility of self-similar growth is
currently being investigated. In Figs. 5(b) and 5(c) the total area and equivalent radii for
the three precipitates are shown for this simulation. We observe that A∼ L2, reflecting
the stable growth and that the particle at (−14,14) grows fastest, for the same reason as
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Figure 5: (a) The evolution of precipitates with initial positions and shapes as in Fig. 4, but with flux J=10/R.
(b) The evolution of the total area versus the total arclength in the original frame for the precipitates shown in

Fig. 5(a). (c) The evolution of the precipitate equivalent radii Ri
eq versus time in the original frame.
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stated earlier. The other two particles grow almost at the same rate. All equivalent radii
grow at a slower rate, Req∼ t1/3, than in the case when a constant flux is used.

5.4 Elasticity with flux J= const

When the precipitates and matrix are elastically stressed, the precipitates tend to align
themselves along the principal axes of the applied stress field. In Fig. 6(a), we present a
simulation of three precipitates initially centered at (15,0), (0,15) and (0,−15) and having
unit radii initially, under a flux J=15. We set Z=6000 and the far-field stress ǫ0

11=−ǫ0
22=

0.005. The elastic constants are µM =1, µP =0.5 and νM =νP =0.2.

As the precipitates grow, they acquire dendrite-like shapes with primary arms aligned
along the principal axes of the stress field. In this case, the applied shear field effects are
comparable to a 4-fold anisotropic surface tension. Fig. 6(b) shows the total area versus
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Figure 6: (a) The evolution of three particles initially located at (15,0),(0,15) and (0,−15), with unit radii.

The flux is J=15, Z=6000 and ǫ0
11 =−ǫ0

22=0.005. (b) The total area as a function of total arclength in the

original frame. (c) The evolution of the precipitate equivalent radii Ri
eq versus time in the original frame for

the particles shown in Fig. 6(a). (d) The evolution of the same system of precipitates but with a larger applied

strain ǫ0
11=−ǫ0

22=0.02.
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total arclength (in the original frame). Features similar to the diffusion case are observed.
At early times, A∼ L2, while at later times A∼ L1.88. In Fig. 6(c) we plot the equivalent
radii Ri

eq versus time in the original frame. Since precipitates B and C evolve identically,
we plot the equivalent radius of B only. We that observe precipitates B and C grow faster
than precipitate A since they are farther from the origin and receive more mass flux. As
in the diffusion case without stress, we observe that Ri

eq ∼ t1/2. In Fig. 6(d), we increase

the applied elastic field to ǫ0
11 = ǫ0

22 =−0.02. This results in a larger tip velocity and side
branches that are not as pronounced as in Fig. 6(a).

5.5 Elasticity with flux J= J̄/R, J̄= constant

Our previous work in [3] shows that if J= J̄/R and Z=Z̄/R (e.g., applied field is reduced
in magnitude like 1/R) then the Mullins-Sekerka instability can be suppressed and a
single precipitate tends to an attractive self-similar shape as it evolves. Here, we test
this idea to the case of multiple precipitates. In Fig. 7(a), we present the evolution of
three precipitates initially configured as in Fig. 6. The flux J = 15/R and Z = 6000/R.
The applied field is ǫ0

11 =−ǫ0
22 = 0.005 and the elastic constants are µM = 1, µP = 0.5 and

νM = νP = 0.2. We observe that the particles grow with compact shapes compared with
the dendritic shapes observed in Figs. 6(a) and (d). Further, precipitate A tends to move
away from the other two precipitates at late times. In Figs. 7(b) and (c) the total area and
equivalent radii of the particles are shown in the original frame. The behavior is similar
to that obtained without stress (e.g., Figs. 5(b) and (c)). As in the case without stress, we
are investigating further into the possibility of self-similar evolution in this regime.
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Figure 7: (a) The evolution of three particles with initial locations as in Fig. 6(a), but with flux J=15/R and
Z=6000/R. (b) The total precipitate area versus the total interface length in the original frame. (c) The

evolution of the equivalent radii Ri
eq versus time for the case shown in Fig. 7(a).

5.6 Growth and shrinkage at same time with J>0

Up to now, all the precipitates are seen to grow when the applied far-field flux J > 0.
Here, we present some results to show that shrinkage can also occur even when J>0. In
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Figure 8: (a) The diffusional evolution of five unstressed (Z = 0), initially unit circular precipitates. Four
precipitates are located on outer ring at a distance of 12.00 units from the origin and the fifth precipitate is
placed at the origin. (b) Evolution of Req for the particle at center and particles on the outer circle.

Fig. 8(a) we show the evolution of five unstressed precipitates (Z=0) with J =25. Four
precipitates are placed on the x or y-axes at a distance of 12 units from the origin. The
fifth particle is located at the origin (0,0). The solid contours correspond to the initial
configuration, the dash-dot contours correspond to an intermediate configuration and
the dashed contours correspond to the final configuration of the precipitates. The equiv-
alent radii of the particles Ri

eq are plotted in Fig. 8(b). As can be seen from these figures,
the four outer precipitates always grow. However, the fifth precipitate grows at early
times, but at late times becomes screened from the far-field flux by the four outer precip-
itates and starts to shrink. This precipitate will vanish after a finite time, as it becomes
fully screened from the far-field flux and is subject to a local coarsening process where
the system lowers the interfacial energy by diffusing the mass of the fifth precipitate to
the other precipitates.

6 Conclusions and future work

We have presented a space-time rescaling scheme to simulate the diffusional evolution of

multiple, elastically-stressed precipitates. The scheme allows us to compute complicated
morphologies of growing precipitates in a fraction of the cost required used by fixed-
frame algorithms. We have shown that when the precipitates are unstressed, the particles
tend to acquire a highly ramified structure with the overall shape reminiscent of that of
a single particle. In particular, long channels form between the precipitates and precip-
itate merger is not observed. In presence of applied elastic field, the precipitates form
dendrite-like structures with the primary arms aligned in the principal directions of the
elastic field. We found that when the far-field flux decreases with the effective radius of
the system, tip-splitting and dendrite formation can be suppressed, as in the one particle
case. Depending on the initial position of the precipitates, we also observed that some
precipitates may shrink while others grow, even when a positive far field flux is applied.
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In future work, we will explore the possibility that like single precipitates, multiple
precipitates may tend to attractive self-similar configurations under appropriate growth
conditions (e.g., J = J̄/R and Z = Z̄/R). In addition, the evolution of precipitates un-
der anisotropic surface tension and elastic stresses is another interesting extension of the
present work.
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