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Abstract. We report about a numerical algorithm based on the lattice Boltzmann
method and its applications for simulations of turbulent convection in multi-phase
flows. We discuss the issue of ’latent heat’ definition using a thermodynamically con-
sistent pseudo-potential on the lattice. We present results of numerical simulations in
3D with and without boiling, showing the distribution of pressure, density and tem-
perature fluctuations inside a convective cell.
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1 Introduction

Thermal convection, the state of a fluid heated from below and cooled from above, is
a ubiquitous phenomenon in nature, present in many industrial, geophysical and astro-
physical systems [1]. It is also challenging from the theoretical point of view, due to its
extremely rich and different regimes, ranging from intricate pattern formations at mod-
erate temperature jumps from bottom and top plates (i.e. moderate Rayleigh number), to
extremely turbulent behaviour where heat transfer and its adimensional definition (i.e.
Nusselt number) is dominated by bulk or boundary layer physics (or by both, see e.g. re-
cent reviews [2]). Thermal convection is often studied in its simplest version, the so-called
Oberbeck-Boussinesq (OB) approximation, where a single phase – unstratified – fluid is
present with constant material properties. Compressibility is also neglected except for
buoyancy forces. In many situations some, or all, of the above assumptions breaks down
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and one speaks about Non-Oberbeck-Boussinesq (NOB) convection. Deviations from OB
can arise in many different ways. Two notable cases are (i) the presence of stratification
(and/or rotation) arising in many geophysical applications and/or (ii) the presence of
boiling, i.e. when the parameter excursions inside the convective cell allows for phase
transition inside the flow [3–5].

The equations governing the system are the usual – compressible – Navier-Stokes
equations supplied with an equation for the internal energy and for an Equation of State
(EoS) defining the non-ideal properties at equilibrium:

{

∂tρ+∂j(ρuj)=0,

∂tρui+∂j(ρuiuj)=−∂iP+∂j(µ(∂iuj+∂jui))+gρẑ,
(1.1)

where µ=ρν is the molecular viscosity, g is the gravity, ρ is the local fluid density and

P(ρ,T)=P0(ρ,T)+PNI(ρ)

is the non-ideal pressure. Pressure is fixed by the equation of state and it is made of
two terms, the ideal part P0(ρ,T)= ρT and the non ideal part which in our LBM system
reads: PNI(ρ)=Gexp(−2/ρ) (see below). The equation for the internal energy, U= cvT+
∫

dρPNI /ρ2 is given by:
ρDtU+P∂juj =κ∂jjT, (1.2)

where κ is the thermal conductivity. The above equation can also be rewritten in terms of
the system temperature in two equivalent ways:

{

cpρDtT−αTDtP=κ∂jjT,

cvρDtT+P0∂juj=κ∂jjT,
(1.3)

where Dt stands for the material derivative, cv is the specific heat at constant volume,
cp and α =−(∂Tρ)/ρ are the specific heat and compressibility at constant pressure, re-
spectively. The above set of equations tends to the usual OB system when the fluid is
considered single phase and incompressible, ρ = const., ∂juj = 0 and both µ,κ are con-
stant [6]. In this proceedings, we report about some technical issues on how to implement
the above set of equations using a Lattice Boltzmann Method and on some preliminary
applications to study 3D convection under boiling, i.e. allowing for bubbles nucleation
and evaporations inside the convective cell.

2 The LB algorithm

In the non ideal gas lattice Boltzmann model, the force experienced by the particles at x

from the particles at x
′ is assumed to be in the following form [7, 8, 19]:

F(x,x′)=G(|x−x
′|)ψ(x)ψ(x

′), (2.1)
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where x is a function of the local properties at x only. The function ψ(x) may be though
as an ’effective mass’ in the system and is encoding non ideal details of the interactions.
For fast-decaying forces, when the sites interacting with the particles on x are limited to
their N neighbors, not necessarily the nearest ones, the total force exerted on particles at
x is given by summing over all x

′. Therefore, given a limited set of links that we define
as cl , in principle not necessarily the same as those involved in the lattice Boltzmann
dynamics, and requiring that the interaction is isotropic (i.e. that |x−x

′|= |cl | brings the
same interaction strength) we write

F=−Gψ(x)
N

∑
l=1

w(|cl |
2)ψ(x+cl)cl , (2.2)

where now G is a constant of proportionality dictating the overall strength of these non
ideal interactions (G<0 encoding attractive interactions). Such form has been used with
various choices of ψ by many authors over the last 20 years. Nevertheless, looking at
a continuum case where the detail of the interaction is given by a pairwise potential
as a function of the distance between two particles, one would be tempted to assume
ψ(x)≈ρ(x).

Let us now discuss thermodynamical properties following [19]. We take an isother-
mal system and connect the interaction forces F to the pressure tensor by requiring that
the relation

F=−Gψ(x)
N

∑
l=1

w(|cl |
2)ψ(x+cl)cl =−∇P (2.3)

is satisfied exactly on the lattice. To this aim, considering the various force vectors
−Gw(|cl |

2)ψ(x)ψ(x+cl), we can compute their flux over the unit area and immediately
derive the pressure tensor summing over all possible interaction links [12]. For example,
for nearest neighbor interactions we get

P=Pidδ+
G

2
ψ(x)∑

l

w(|cl |
2)ψ(x+cl)clcl, (2.4)

where δ is the unit tensor and Pid = ρT is the ideal pressure contribution. When next
to nearest neighbor interactions are included, the analytical details are a bit more com-
plicated, but expressions similar to (2.4) are still obtained [12] and they are exact on the
lattice.

Being exact on the lattice and dealing with a lattice model, we take therefore equation
(2.4) as a starting point. If we describe a one dimensional interface developing along z,
we can set Pzz equal to a constant, say P0, and determine the interface properties. An
expansion of Pzz up to second order derivatives [12, 19] delivers

Platt
zz =Pb(ρ,T)+

G

12

[

a

(

∂ψ

∂z

)2

+bψ
∂2ψ

∂z2

]

=P0, (2.5)
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where Pb(ρ,T)=ρT+ Gψ2

2 is the bulk pressure and

a=1−3e4, b=1+6e4.

In the above, e4 refers to the fourth order tensors associated with the weights w(|cl |
2), i.e.

e4=
w1

2
+2w2+8w4+25w5+32w8+··· .

Without losing generality, we have normalized the second order tensor e2 (that should
appear in from of the term G

2 ψ2 in (2.5)) to unity

e2=2w1+4w2+8w4+20w5+16w8+···=1.

For example, in the case of nearest-neighbor interactions on a square lattice, i.e. w(|cl |
2)=

0 for |cl |
2
> 2, the isotropic conditions up to the forth order tensors determine the two

weights as

w1=
1

3
, w2=

1

12
, e4=

1

3
.

If we use the relation
∂2ψ

∂z2
=

1

2

∂

∂ψ

(

∂ψ

∂z

)2

we can integrate Eq. (2.5) to obtain

ψ1+ǫ

ψ′

∂

∂ρ

[

G(ψ′)2(∂zρ)2

8(1−ǫ)ψǫ

]

=P0−Pb(ρ,T) (2.6)

with

ǫ=−
2a

b
=

6e4−2

6e4+1
. (2.7)

A direct consequence of Eq. (2.6) is that

G(ψ′)2(∂zρ)2

8(1−ǫ)ψǫ
=

∫ ρ

ρg

(P0−Pb(ξ,T))
ψ′

ψ1+ǫ
dξ.

Since in the liquid bulk phase we have that (∂zρ)2 = 0, we therefore end up with an
integral constraint such that [19]:

∫ ρl

ρg

(P0−Pb(ρ,T))
ψ′

ψ1+ǫ
dρ=0. (2.8)

An alternative to Eq. (2.8) comes from considering the continuum pressure tensor, instead
of the lattice one reported in (2.4). Such continuum pressure tensor is obtained from (2.3)
by taking the Taylor expansion of the force field

F=−Gψ(x)
N

∑
l=1

w(|cl |
2)ψ(x+cl)cl ≈−Gψ(x)∇ψ(x)+···
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and then satisfying (2.3) up to second order in such Taylor expansion [13]. Skipping all
the technical steps (they can be found in [13]), we report directly the result for the integral
constraint imposing the mechanical equilibrium

∫ ρl

ρg

(P0−Pb(ρ,T))
ψ′

ψ2
dρ=0 (2.9)

that now is independent of ǫ.

2.1 Numerical benchmarks

We now proceed to a numerical benchmark, using the pseudopotentials ψ(ρ)=e−1/ρ and
ψ(ρ)= 1−e−ρ. We then choose nearest neighbor interactions, so that ǫ= 0. In Fig. 1 we
report equilibrium densities as a function of the temperature T. We choose w1=

1
3 , w2=

1
12

and wi = 0 (i≥ 2), corresponding to ǫ= 0. We then consider a one dimensional interface
at constant pressure P0, and report the liquid and gas densities as obtained with lattice
Boltzmann simulations with ψ(ρ)=e−1/ρ (left panel) and ψ(ρ)=1−e−ρ (right panel). The
coupling strength in (2.2) has been chosen equal to G=− 4

3 . The theoretical prediction for
the two cases has been obtained from the integral constraint (2.8) and is reported with
the black solid line. As we can see, the agreement between the theory and numerical is
very good.
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Figure 1: The equilibrium densities as a function of the temperature T. For the same value of ǫ=0, we consider
a one dimensional interface at constant pressure P0, and report the liquid and gas densities as obtained with
lattice Boltzmann simulations with ψ(ρ)= e−1/ρ (left panel) and ψ(ρ)=1−e−ρ (right panel). The theoretical

prediction for the two cases has been obtained from the integral constraint
∫ ρl

ρg

(

P0−ρT− G
2 ψ2

) ψ′

ψ dρ=0 and is

reported with the black solid line.

Next we proceed to test the prediction of Eq. (2.9). In Fig. 2 we report the numerical
data previously discussed for the case with ψ(ρ) = 1−e−ρ. As we can see, the lattice
argument is working better than the continuum counterpart.
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Figure 2: The equilibrium densities as a function of the temperature T. For the same value of ǫ=0, we consider
a one dimensional interface at constant pressure P0, and report the liquid and gas densities as obtained with
lattice Boltzmann simulations with ψ(ρ)=1−e−ρ. Both the theoretical predictions reported in (2.8) and (2.9)
are reported.

3 Clausius Clapeyron relation

It is now instructive to show the difference between data reported in Fig. 1 in terms of
equilibrium thermodynamics. We have seen that the integral constraint coming from
the lattice theory (2.8) is able to predict very well the equilibrium densities for both the
pseudopotentials ψ(ρ)=1−e−ρ and ψ(ρ)= e−1/ρ. The crucial difference between the two
cases is that the pseudopotential ψ(ρ)= e−1/ρ leads to an integral weight in (2.8) that is
the very same predicted by Maxwell rule

ψ′

ψ
=

1

ρ2
, for ψ(ρ)= e−1/ρ, (3.1)

something that is not possible for the pseudopotential ψ(ρ)=1−e−ρ. We therefore argue
that the pseudopotential ψ(ρ)= e−1/ρ leads to a consistent thermodynamic description.
In other words, in case of ψ(ρ)= e−1/ρ we should be able to define a chemical potential
and set it to the same bulk values at equilibrium. The latter condition leads directly to
the well known Clausius Clapeyron equation

dP

dT
=

∆s

∆v
(3.2)

which we can verify in the numerics. In the above, P is the equilibrium pressure at
coexistence temperature T, v=1/ρ is the specific volume, and

s(T,ρ)=−log
( ρ

TD/2

)

is the specific entropy. We note that the functional form of the entropy is the same as that
of an ideal gas, the reason being that the potential interactions (2.1) are built with inter-
action tails and therefore we expect no influence on the entropy function (at least that’s
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Figure 3: We report the evaluation of the terms dP/dT and ∆s/∆v as computed from the equilibrium data
reported in Fig. 1. In the previous notation, P is the equilibrium pressure at coexistence temperature T, v=1/ρ

is the specific volume, and s(T,ρ)=−log
( ρ

TD/2

)

is the specific entropy. Clausius Clapeyron relation predicts the

equality of both terms. In the left panel data obtained with the pseudopotential ψ=e−1/ρ show thermodynamical
consistency. The inset shows the latent heat extracted from λ= T∆s. The right panel corresponds to data
obtained with the pseudopotential ψ=1−e−ρ and are not thermodynamically consistent.

the lesson learned from the Van Der Waals model, where the entropy is solely influenced
by the local exclusion volume effect). As we see from the left panel of Fig. 3, the terms
dP/dT and ∆s/∆v in (3.2) match very well when computed from the equilibrium data
from Fig. 1. The same does not happen for equilibrium data coming from the pseudopo-
tential ψ(ρ)=1−e−ρ (right panel of Fig. 3). With the matching of both terms in (3.2) we
are therefore able to couple in a consistent way the heat associated with phase transition
(embedded in ∆s) with the mechanical part of the model (embedded in P). This offers a
direct natural link with the latent heat

λ(T)=T∆s. (3.3)

which, in our case, corresponds to the inset of the left panel of Fig. 3. A numerical fit
leads to the following expression in the range 0.14≤T≤0.17

λ(T)=−0.845166+17.2615T−67.2153T2 .

3.1 LBM implementation and results

Despite the existence of fully thermal lattice Boltzmann schemes [9], also applied to high
Reynolds and Rayleigh systems [10, 11], we prefer here to adopt a standard two popula-
tions lattice Boltzmann models (LBM) [14]. The main reason is that thermal algorithms
need long-range velocity speeds on the lattice leading to highly non-trivial spurious ef-
fects at the boundaries. Here, being interested in thermal convection, a system fully
driven by thermal instabilities at the boundaries, we need to have the physics of the
boundary layer better under control. The starting point is a standard coupled mesoscopic
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dynamics described by [14, 15]:

fl(x+cl ,t+1)− fl(x,t)=−
1

τ
( fl− f

(eq)
l )(x,t), (3.4a)

gl(x+cl ,t+1)−gl(x,t)=−
1

τg
(gl−g

(eq)
l )(x,t), (3.4b)

where fl(u,t), gl(x,t) stand for the probability density functions to find at (x,t) a particle
whose kinetic velocity belongs to a discrete and limited set cl (with l=0,18 in the D3Q19
LBM adopted here [14]). Hydrodynamical fields, density, momentum and temperature
are defined as coarse-grained quantities of the distribution functions

ρ=∑
l

fl , ρu=∑
l

cl fl , T=∑
l

gl . (3.5)

A Chapman-Enskog expansion [16] around the local equilibria

f
(eq)
l (u′,ρ,T)=wl

[

ρSl(T)+
ρu′

kck
l

c2
s

+
(ck

l cs
l −c2

s δks)(ρu′
ku′

s)

2c4
s

]

,

g
(eq)
l (u(H),T)=wlT

[

1+
u
(H)
k ck

l

c2
s

+
(ck

l cs
l −c2

s δks)(u
(H)
k u

(H)
s )

2c4
s

]

leads to the equations for density, momentum and temperature (1.1)-(1.3), with ν=c2
s (τ−

1/2) and κ=c2
s (τg−1/2) [14]. In the above equations, the hydrodynamical velocity is de-

fined as u
(H)=u+ 1

2
F

ρ , while the primed velocity is such that u
′=u+ τF

ρ . Lattice discrete

effects in the introduction of the forcing term are then controlled with the ideas proposed
in [16]. Notice that in order to reproduce the correct ideal part of the pressure, P0=ρT, a
coupling between fl and gl populations in (1.3) is introduced using a recent proposal by
Zhang and Tian [17] by plugging the dynamical temperature in the equilibrium distribu-
tion of (3.4a). This is the reason for the presence of the extra term Sl(T)=3T (l=1,··· ,18),
S0(T)=3−6T. In order to reproduce exactly the divergence term, P0∂juj, in (1.3), we also
found necessary to add a proper counter term to the evolution of gl populations in (3.4b),
similarly to what has been done in [18]. The idea is to add a isotropic volume term in the
RHS of (3.4b) projecting only on the zero-th order manifold without affecting higher or-
der momenta. Moreover, adopting the definition of the temperature as in (3.5), we found
necessary to add the extra diffusive term κ( 1

ρ −1)∆T to get Eq. (1.3).

As a result, we ended with a LBM scheme able to reproduce in the hydrodynamic
limit the NS equations (1.1)-(1.3) with a non-ideal Pressure tensor and a consistent def-
inition of latent heat. See Fig. 4 for a plot of the compressibility at constant pressure
α=−(∂Tρ)/ρ and at constant temperature β= ∂Pρ/ρ calculated in the two phase coex-
istence regime for the boiling simulation and in the non boiling case. In Fig. 5 we have
shown a scatter plot of phase diagrams for a boiling cell. As one can see most of the
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Figure 4: Compressibility at constant pressure (left) and constant temperature (right) defined in the liquid or
vapor phase for boiling simulations or for the single-phase liquid.
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Figure 5: Thermodynamic properties inside the convective cell for three different simulations. Two simulations
with phase-coexistence (BOILING 1 and 2) and one simulation with single phase liquid (NO-BOILING).

volume is at thermodynamical equilibrium, superposing with the equilibrium curves in the
T−ρ phase space. The presence of bubbles is clearly detected by the spots concentrating
along the ρ = ρg branch and it is also interesting to notice that the corresponding bub-
ble temperature is always larger than the mean temperature in the cell, indicating that
bubbles are transferring temperature upwards very efficiently [20].
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