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Abstract. A finite difference scheme with ghost cell technique is used to study vis-
cous fluid sloshing in 2D and 3D tanks with internal structures. The Navier-Stokes
equations in a moving coordinate system are derived and they are mapped onto a
time-independent and stretched domain. The staggered grid is used and the revised
SIMPLEC iteration algorithm is performed. The developed numerical model is rig-
orously validated by extensive comparisons with reported analytical, numerical and
experimental results. The present numerical results were also validated through an
experiment setup with a tank excited by an inclined horizontal excitation or a tank
mounted by a vertical baffle. The method is then applied to a number of problems
including sloshing fluid in a 2D tank with a bottom-mounted baffle and in a 3D tank
with a vertical plate. The phenomena of diagonal sloshing waves affected by a vertical
plate are investigated in detail in this work. The effects of internal structures on the
resonant frequency of a tank with liquid are discussed and the present developed nu-
merical method can successfully analyze the sloshing phenomenon in 2D or 3D tanks
with internal structures.

AMS subject classifications: 65M06, 76B10, 49L25, 35Q35, 74F10
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1 Introduction

Sloshing must be considered for almost any moving vehicle or structure containing a
liquid with a free surface, such as tankers on highways, liquid oscillations in large stor-
age tanks caused by earthquakes, sloshing of liquid cargo in ocean-going vessels and the
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motion of liquid fuel in aircraft and spacecraft. Excitation with frequencies in the vicin-
ity of the lowest natural frequency of the liquid motion is of primary practical interest.
Resonant free-surface flows in tanks in aircraft, missiles and rockets have been the focus
of extensive researches. The large amplitude of the liquid motion can create high im-
pact pressures on the tank walls, which in turn can cause structural damage and may
even create moments that affect the stability of the vehicle which carries the container.
For these vehicles, sloshing will have a strong influence on their dynamic stability. The
hydrodynamics of sloshing is complicated and the understanding of sloshing dynamics
requires a combination of theory, computational fluid dynamics (CFD) and experiments.

The numerical, analytical and experimental studies of liquid sloshing in tanks have
been reported in the past several decades and these studies have explored a range of
significant phenomena such as the effect of fluid viscosity, linear and nonlinear effects
and the classification of sloshing waves. If the interior of the tank is smooth, the fluid
viscosity plays a minor role to affect the sloshing in tanks and an inviscid/irrotational
potential flow solution is, therefore, suitable for describing the sloshing in a rigid tank.
Abramson [1] provides a comprehensive review and discussion of early analytic and
experimental studies of liquid sloshing, with application to the aerospace industry. In the
recent studies, the series of studies by Faltinsen and his co-workers constitutes a major
contribution to the field of sloshing. Faltinsen, Rognebakke and Timokha [2–4] extended
their asymptotic modal system to model nonlinear sloshing in a 3D rectangular tank.

Besides the potential flow approaches, many numerical studies of the sloshing prob-
lem with primitive variables have been made, particularly when the fully nonlinear ef-
fects of the waves on the free surface are included. Papers that describe the modeling
of two-dimensional or three-dimensional sloshing include Chen and Chiang [5], Sames,
Marcouly and Schellin [6], Frandsen [7], Chen [8], Chen and Nokes [9], Akyildiz [10, 11]
and more recent papers by Liu and Lin [12], Wu and Chen [13] and Chen and Wu [14].
The comprehensive discussions are reported by Faltinsen and Timokha [15].

Tuned liquid dampers (TLDs) are used to suppress horizontal vibrations of structures.
A TLD consists of a tank partially filled with water. The lowest resonant frequency of
sloshing is tuned to a structural natural frequency. Warnitchai and Pinkeaw [16] studied
the mathematical model compared with experimental investigations for a rectangular
tank with flow-damping devices. The vertical flat plate and the wire mesh screen can
cause significant damping effects on sloshing waves. Isaacson and Premasiri [17] devel-
oped the mathematic solutions and experiment investigations to solve the hydrodynamic
damping due to baffles in a fluid-filled rectangular tank undergoing horizontal motions.
The average rate of energy dissipation due to flow separation around baffles and the total
energy of sloshing waves were used to estimate the hydrodynamic damping.

Biswal et al. [18] used FEM (Finite element method) on computing the non-linear
sloshing response of liquid in a two-dimensional rectangular tank and a circular cylindri-
cal container with rigid baffles. The effect of baffle parameters including length, numbers
and position on sloshing response were discussed. A 3D FEM model for liquid sloshing
in a baffled tank was adopted by Firouz-Abadi et al. [19]. The determinations of the nat-
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ural frequencies and mode shapes of liquid sloshing in 3D baffled tanks with arbitrary
geometries were investigated. However, the potential flow assumption used in FEM can-
not predict the effect of energy dissipation due to viscous sloshing and flow separation.
Kim [20] and Kim et al. [21] employed the SLOA (solution algorithm) scheme to study the
3D liquid sloshing with baffles in tanks and compared the impact pressure with that of an
unbaffled tank. Liu and Lin [22] used NEWTANK (Numerical Wave Tank) to investigate
liquid sloshing in a 3D baffled tank with LES (Large-eddy-simulation). In their study, the
vertical baffle is a more effective tool in reducing the sloshing amplitude in tanks. Pani-
grahy et al. [23] did a series of experiment of liquid sloshing in a tank with and without
different types of baffles under various fill depths. They concluded that the introduction
of baffles in the tank decreases effectively the sloshing displacement because the sharp-
edged baffles could dissipate the kinetic energy by generating turbulence in the flow and
a type of ring baffles are the most effective device to reduce sloshing energy.

In this work, experiments of a 3D tank oscillated at various excitation angles was set
up and the results were used to validate the present numerical simulation obtained by the
proposed finite difference method. The experiment was further extended to investigate
liquid motions in a tank with a vertically tank bottom-mounted baffle. The comparison of
the results between the experimental measurements and the present computations shows
an excellent agreement. The present numerical model is then applied on the analysis of
liquid sloshing in the tank with internal structures, such as baffles. The treatment of
flow field around baffles is carried out by one dimensional ghost cell approach [24] and
the second order upwind scheme [25]. The phenomena of vortex generation and flow
separation due to baffles are presented as well. The influence of baffles inside the tank
on the natural frequencies of the tank is discussed in detail. Section 2 introduces the
equations of motion which are written in a moving coordinate system. The proposed
finite-difference method is introduced in Section 3. Besides, the one-dimensional ghost
cell approach [24] is implemented to deal with the fluid-structure domain, especially
for the structures with the sharp corners. The comprehensive benchmark tests of the
present numerical scheme are demonstrated in Section 4 and the setup of the experiment
is included as well. The investigations of tuned liquid damper (TLD) for 2D and 3D tanks
are also dissected in the section. Section 5 summarizes the key conclusions.

2 Mathematical formulations

In this work, a rigid tank partially filled with fluid is considered and analyzed by a time-
independent finite difference method [9] to simulate the movement of sloshing waves in
a tank with and without internal structures. As illustrated in Fig. 1, the breadth of tank
is L, the tank’s width is B and d0 is the still water depth. The Navier-Stokes equations
written in a moving coordinate system can be expressed as
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Figure 1: Definition sketches of the tank and the coordinate system.
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where u, v and w are the relative velocity components in the respective x, y and z direc-
tions, xc, yc and zc are the relative acceleration components of the tank in the respective
x, y and z directions; p is the pressure, ρ is the fluid density, ν is kinematic viscosity of the
fluid and g is the acceleration due to gravity.

The continuity equation for incompressible flow is

∂u

∂x
+

∂v

∂y
+

∂w

∂z
=0. (2.2)

The kinematic condition states that the fluid particles at a free surface remain on the free
surface, and it can be expressed as

∂η
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∂z
=v. (2.3)

Where η(x,z,t) = h(x,z,t)−d0 is the elevation of free surface measured from the undis-
turbed water depth d0. The dynamic condition requires that the normal stress is equal to
the atmospheric pressure and the two tangential stresses are zero along the free surface
boundary. The dynamic conditions can be expressed as follows:
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where Fr is the Froude number and Re is the Reynolds number that are defined as

Fr=
um

√

gd0

, Re=
umd0

ν
, (2.5)

where um = ωa0 (ω is the angular velocity and a0 is the excitation displacement of the
tank) is the maximum velocity of the tank. And ηx denotes a partial derivative of η with
respect to x and others have the same meanings. In the present study, Eq. (2.4a) is used to
determine the hydrodynamic pressure at the free surface, while Eqs. (2.4b) and (2.4c) are
used to extrapolate the horizontal velocity (u,w) at the free surface from the flow domain.

Taking partial derivatives of Eqs. (2.1a), (2.1b) and (2.1c) with respect to x, y and z
respectively and summing the results, one can obtain the following equation to solve for
the pressure
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2.1 The coordinate transformation

Many finite difference and finite volume methods have been reported to solve the free
surface displacement of sloshing fluid in tanks. Among these methods, MAC (Marker
and Cell), VOF (Volume of Fluid) and LS (Level set) are the most well-known. A brief
review of these methods can be referred to [9]. In contrast, the present study uses sim-
ple mapping functions to remove the time-dependence of the free surface of the fluid
domain. The irregular boundaries, including the time-varying fluid surface, non-vertical
walls and non-horizontal bottom, can be mapped onto a cube by the proper coordinate
transformations [9, 26, 27] and those descriptions are omitted here.

The convenience of the coordinate transformations is to map a wavy and time-
dependent fluid domain onto a time-independent unit cubic domain for computing. It
will, however, encounter some problems by implementing the coordinate transforma-
tions while the internal structures, for example, baffles or plates, are mounted inside the
tank. The problems mainly occur among the domain that the violent interaction between
the fluid and the internal structures, especially for irregular sharp geometries. As illus-
trated in Fig. 2, a structure with sharp corners surrounded with regular grids but the
connection between the structure boundary and grids is abnormal due to the deforma-
tion of the free surface with time. In the present study, it is hard to solve the boundary
condition of the structure surrounded by irregular meshes by using the finite different
method. The further coordinate transformation, therefore, is developed. Let’s take a 2D
tank with a vertically bottom-mounted baffle (see Fig. 3) as an example. As listed in Fig. 3,
the distance from the tank west wall to the baffle center is Xb and the distance between
the free surface and the baffle tip is Yb. We divide the fluid domain into two parts in the x
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Figure 2: A structure with sharp corners immerses in the regular grid system.

Figure 3: The new coordinate transformation on the tank with a tank bottom-mounted baffle.

and y axes based on the location and the height of the baffle. The new mapping functions
of coordinate transformation can be expressed as

x∗1 =
x1

Xb
x∗2 =

x2

L−Xb
(2.7a)

y1
∗=1−

y1+d0−Yb

h(x,z,t)−Yb
y2

∗=−
y2

Yb
. (2.7b)

Through the mapping functions in Eq. (2.7), one can map the west wall to x∗1 =0 and
the baffle center to x∗1 =1 and x∗2 =0 and the east wall to x∗2 =1; the free surface to y∗1 =0
and the baffle tip to y∗1 = 1 and y∗2 = 0 and the tank bottom to y∗2 = 1. In this way, the
transformations can be used not only to apply on the tank with internal structures at
various positions and heights but to avoid the internal structures surrounded by irreg-
ular meshes. Further, the stretching technique [13] is also adopted in this work and the
stretching grids can be arranged around the structure with sharp corners. For a 3D tank,
the new function of coordinate transformation in the z axis is

z∗1 =
z1

Zb
z∗2 =

z2

B−Zb
, (2.8)

where Zb is the distance from the south wall to the baffle center in the z axis.
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2.2 Dimensionless equations

All the numerical results presented in this work are in the dimensionless form listed as
follows. The dimensional parameters are normalized [14] and the momentum equation
(as an example) in the x-direction can, then, be expressed as

UT+(C10C13UX+C11C14UY+C12C15UZ)+C1C13UUX+C2C14UUY+C3C15UUZ
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=−
gx
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The definition of Rij (i = 1,2,3, j = 1,2,3) and the dimensionless forms of the other gov-
erning equations are omitted in the text. In Eq. (2.9), C1-C15 are the coefficients that arise
from the coordinate transformations and can be referred to Chen and Wu [14]. PX de-
notes a partial derivative of P with respect to X and UT is the partial derivative of U with
respect to dimensionless time T. All other terms have similar meanings. For a fully non-
linear free surface condition, the kinematic free surface condition must be applied at the
instantaneous free surface location, i.e., at η = h(x,z,t)−d0 . Thus, the coefficients C1-C15

related to the free surface position are updated during iterations.

3 Computational algorithm

In this three-dimensional analysis, the fluid flow is solved in a unit cubic mesh in the
transformed flow domain. Central difference approximations are used for the space
derivatives and the forward or backward difference is employed at the boundary A stag-
gered grid system is used in the analysis. The detailed finite difference scheme and the
revised SIMPLEC iterative procedure are omitted in the text and they can be referred
to [14]. Besides, the second-order central difference and first order upwind scheme [25]
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are implemented in this work. The present numerical scheme has been parallelized by
using MPI (Message passing interface), particularly when liquid sloshing in a 3D tank
with internal structures is considered. The efficiency of the present numerical approach
can be referred to [13, 14], where the grid numbers and the time step used in this work
were compared to the reported simulation by Kim [20]. The present computation can get
an accurate result with a less grid number and a larger time step. The accuracy of the nu-
merical results significantly depends on the spatial grid resolution and the selected time
step. The numerical errors can be reduced if the time step is restricted by the condition
given in Eq. (3.1)

∆t<min
{∆xmin

|ui,j,k|
,
∆ymin

|vi,j,k|
,
∆zmin

|wi,j,k|

}

, v∆t<
1

2

∆x2
min∆y2

min∆z2
min

∆x2
min+∆y2

min+∆z2
min

. (3.1)

The first term in Eq. (3.1) implies that a fluid particle cannot move more than one cell in
a single time step. The second ensures that the diffusion of momentum is not significant
over more than one cell in one time step.

3.1 A one-dimensional ghost cell approach

Traditional finite difference methods cannot work well on the discontinuous and non-
smooth functions since the Taylor expansion is not valid for such problems. As illustrated
in Fig. 4, a structure with sharp corners immersed into the fluid. It is tricky to apply the
finite difference methods on the discontinuous fluid-structure domain and the grids with
filled color need to be carefully treated. But, if the function is piecewise smooth, it is
possible to devise a technique that conforms to any jump in the function and its higher
derivatives. It would cause some problems that the finite difference approximations of
the convective terms are expressed on the filled color areas, especially for u∂u/∂y and
v∂v/∂x. If the forward or the backward finite difference representation of u∂u/∂y or
v∂v/∂x is implemented, the influence of the sharp corner A or B on the vicinity of the
fluid could be neglected. By doing this, however, the interaction between the fluid and
the structure is not considered which might result in incorrect results due to neglecting
the effect of the sharp corners. The function of implementing the one-dimensional ghost
cell approach is to continue the fluid domain inside the structure by utilizing the polyno-
mial approximation. The general central difference approximation of u∂u/∂y and v∂v/∂x
are expressed as

u
∂u

∂y
=u

ui,j+1−ui,j−1

∆y
, v

∂v

∂x
=v

vi+1,j−vi−1,j

∆x
. (3.2)

As depicted in Fig. 4(b), the positions of ui,j−1 and vi,j−1 are on the structure boundary
and their values are assumed zero in general. This also makes some problems because
of ignoring the effect of the sharp corners. We, therefore, replace the positions of ui,j−1

and vi,j−1 with the ghost points Ug and Vg and the values of Ug and Vg are given by the
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(a) (b)

Figure 4: Illustration of the ghost cells and the polynomial extrapolation around the sharp corner A.

extrapolating polynomial of three degree through 4 points that are expressed as

Ug=
4

∑
j=1

Uj

4

∏
i=1

y−yi

yj−yi
, Vg=

4

∑
j=1

Vj

4

∏
i=1

x−xi

xj−xi
, (3.3)

where x and y are the coordinates of Vg and Ug, respectively and the locations of x1 ∼ x4

and y1 ∼ y4 are marked in Fig. 4(a) that represent the coordinate of V1 ∼V4 and U1 ∼U4,
respectively. It is noted that the values of U1 and V1 are set to be 0 because of the no-slip
boundary condition on the corner A. Through the polynomial extrapolation, the fluid do-
main could be assumed continually penetrating the structure. As the free surface deforms
with time, so does the coordinate system in the y axis. As a result, the polynomial extrap-
olations of Ug and Vg have to be updated instantaneously at each time step. Further, the
treatment of diffusion terms of momentum equations near the structure boundaries also
can be implemented by the method described above.

4 Results and discussion

At first, the validation of the present numerical scheme is definitely of importance and,
therefore, a series of benchmark tests compared with the reported experimental, analyt-
ical and numerical solutions have been rigorously done in the present work. The con-
vergence (stability) study of numerical results is also illustrated. The experiment of a 3D
tank with or without internal structures under coupled surge-sway motion is instituted
as well to carry out further investigation of liquid sloshing.

4.1 Stability analysis and the benchmark tests

In this section, a tank without internal structures is considered to demonstrate the ac-
curacy of the developed time-independent finite difference method applied on liquid
sloshing.
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4.1.1 Convergence study

The accuracy of numerical results significantly depends on the numbers of grid and the
time step chosen for each problem. Accordingly, the proper grid system and time step
are needed to be verified before large numerical cases to be simulated. We consider a
rectangular tank with breadth/width =L/B=1, still water depth/breadth =d0/L=0.25,
the ground accelerations of surge, heave and sway motions are given as

xc= x0ω2
xsinωxt, yc =y0ω2

ysinωyt, zc= z0ω2
z sinωzt, (4.1)

where x0, y0 and z0 are the excited amplitudes of the tank and ωx, ωy and ωz are the
corresponding excited frequency with respect to surge, heave, and sway motions; For
the convergence study, we assume the tank’s motion is oscillated in the diagonal direc-
tion (θ = 45◦) with an excitation frequency of 0.9ωl (ωl: the lowest natural frequency of
the tank) and the ratio of the excitation displacement/tank breadth = a0/L= 0.005 that
implies x0= a0cosθ and z0= a0sinθ.

Fig. 5(a) presents the effect of the variation of grid numbers with a fixed dimension-
less time step ∆T = 0.00626 (T = t

√

g/d0) on the simulation and the results shown in
the figure indicate the influence of various grid numbers on the computational result is
insignificant. The effect of the varied time steps with a fixed grid number (20×10×20)
depicted in Fig. 5(b) shows the computational results of different cases are almost the
same with the decrease of time step. This means the present numerical results obtain
an excellent convergence in the grid numbers (20×10×20) and the time step =0.00626.
The parametric study of the stretching constants was also done [19] and the stretching
constants λ1=λ2=λ3, k1= k2 = k3=2 are used in this study.

(a) (b)

Figure 5: The convergence study of the wave history at corner A for a tank under diagonal excitation. The
influence of (a) grid numbers; (b) time step. H=η/d0 is the dimensionless wave elevation, T= t

√

g/d0 is the
dimensionless time. B/L=1, d0/L=0.25, a0/L=0.005, ωx =ωz=0.9ω1, θ=45◦.

4.1.2 Benchmark tests

In order to further validate the accuracy of our model, we compare our results to those
reported in the literature. Fig. 6 presents the comparison between the present numerical
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(a) (b)

Figure 6: The comparisons between experimental measurement, analytical results, and the present results of
wave elevation (near point F), d0/L=0.5, a0/L=0.005. (a) Surge motion, ωx=1.037ω1; (b) diagonal motion,
ωx=ωz=1.115ω1.

result and the experimental and theoretical results reported by Faltinsen et al. [4] as the
tank excited in only surge or diagonal motion and the agreements are very good.

4.1.3 Experiment investigation

Information on the experimental investigation of sloshing in published literature is very
limited and the major work done by Faltinsen et al. [2–4, 28] only concentrated on a tank
excited at only the longitudinal (θ=0◦) or diagonal (θ=45◦) direction. In reality, as the
tank is excited by accelerations due to an earthquake or waves, the excitation directions
include multi-degrees of freedom (surge/sway/heave/pitch/roll/yaw) and the excita-
tion frequency also varies with time. In view of this, an experiment program was con-
ceived in an attempt to carry out some preliminary investigation on the effect of sloshing
in tanks oscillated with various excitation angles and to further validate the accuracy of
the present numerical work.

An experiment setup is illustrated in Fig. 7(a), and the tank attached to a shaking ta-
ble which can be moved back and forth with various excitation angles by an AC motor.

(a) (b)

Figure 7: (a) The experiment setup; (b) positions of the wave probes.
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Figure 8: The comparison between the results of experimental measurement at probe P1 and numerical simu-
lation. B/L=1, d0/L=0.25, a0/L=0.005, ωx =ωz=0.97ω1, θ=15◦.

The excitation direction of the shaking table is designed to be altered by an aluminum
alloy rotational table. The maximum moving distance (r) of the shaking table is 30mm
and the highest revolutions of the motor is 2000r.p.m. The frequency level depends on
the limitation of the maximum velocity implemented by the AC motor and the motor re-
ducer. In this experiment of work, the maximum velocity (Vm =ωr) of the shaking table
is about 30mm/s that indicates if the excitation displacement (r) becomes large, the cor-
responding excitation frequency has to be reduced. The material of the tank is made by
tempered glass with 20mm thickness to prevent the tank deformation from the impact
of the hydrostatic and hydrodynamic pressure of the fluid. The measurement of wave
elevation is carried out by wave probes and the locations of wave probes, P1 and P2, are
depicted in Fig. 7(b). A near-resonant case is initially implemented that the excitation
frequency of the fluid-filled tank is 0.97ω1 with an excitation angle of 15◦. The excitation
amplitude is 5mm which is under the tolerance of the present experimental device. Af-
ter a great number of experimental tests have been performed, the experimental data are
filtered and then averaged by picking up 15 cases of measured data with minor differ-
ences. Fig. 8 presents the comparison between the results of experimental measurement
and numerical simulation and a good agreement is shown. The wave troughs of experi-
mental result correspond exactly with that of numerical simulation and the wave peaks,

(a) (b)

Figure 9: The comparison between the present results of experiment and numerical simulation under various
excitation angles and excitation frequencies. B/L= 1, d0/L= 0.25, a0/L= 0.005. (a) The measured data of
wave elevation at wave probe P2, ωx =ωz= 0.97ω1, θ= 5◦; (b) the measured data of wave elevation at wave
probe P1, ωx =ωz=0.90ω1, θ=30◦.
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(a) (b)

Figure 10: (a) Positions of the wave probes from the top view of the baffled tank; (b) The comparison between
the results of experiment and the present numerical simulation, d0/L=0.5, db/d0=0.5, a0/L=0.002, ωx=1.0ω1,
θ=0◦.

however, display a little difference between them. With various excitation angles and
excitation frequencies, the more experimental measurements compared with the present
numerical results are depicted in Fig. 9 and the excellent agreement is presented as well.
As a result, the present numerical model is an efficient and accurate tool to simulate the
dynamic response of liquid sloshing in 3D tanks.

The experiment of liquid sloshing in a tank with a vertically tank bottom-mounted
baffle is also considered in this work. Fig. 10(a) presents the photography of the experi-
ment (see the subplot) and the locations of the wave probes. The comparison of the wave
elevation at probe P2 between the experimental measurement and the numerical calcu-
lation for a baffled tank under surge motion is illustrated in Fig. 10(b) and an excellent
agreement is demonstrated. Accordingly, the present numerical scheme can be applied
on the study of liquid dynamics in tanks with internal structures.

4.2 A tank with internal structures (Tuned liquid damper)

A Tuned Liquid Damper (TLD) is one possible damping device uses in tall buildings
under wind and earthquake excitations. Ship motions excite sloshing, which in return
affects the ship’s motions. Ships equipped with anti-rolling tanks utilize this effect. The
sloshing-induced roll moment on the vessel will cause roll damping if the lowest natu-
ral sloshing period is tuned to be close to the roll natural period. For the study made
by Faltinsen & Timokha [15], the asymptotic formula shows that if vertical baffles are
mounted to the bottom of a rectangular tank and the liquid depth is finite, their effect
on the natural mode is, in general, negligible as long as the distance between their edges
and the mean free surface is larger than 0.2L (L: the horizontal dimension of the tank).
When the liquid depth becomes smaller or the distance decreases, the effect of the baffle
on the natural sloshing modes and frequencies becomes important. In this study, a ver-
tically tank bottom-mounted baffle or a vertical plate in a partially fluid-filled tank are
considered.
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surface resulted in the energy dissipation of sloshing waves. 

 

 

 

 

 

 

 

 

 

Figure 11: (a) definition sketch and (b) stretching grids for a vertically tank bottom mounted
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Figure 11: (a) Definition sketch and (b) stretching grids for a vertically tank bottom-mounted baffle at the
middle point of the tank. db =0.3d0.

4.2.1 A vertical baffle mounted at the middle of tank bottom

The vertically bottom-mounted baffle on a rectangular tank is depicted in Fig. 11, where
db is the height of the baffle. The stretching meshes are implemented and focus on the
tip of the baffle, as shown in Fig. 11(b). The comparison between the present result and
the reported numerical result [22] is shown in Fig. 12 and the results present a good
agreement. The further comparison of velocity vectors at t=5.05 seconds is displayed in
Fig. 13(a). The vortex shedding generated near the left and right sharp corners of the baf-
fle can be obviously seen in the present results. However, this phenomenon didn’t appear
in Liu’s study [22]. In other words, the stretch technique of grid system [13] implemented
in the present study assures the finer meshes around the tip of the baffles and the numeri-
cal simulation in this work can, therefore, capture the detailed local phenomenon of flow
movement around the tip. For a longer time simulation, the effect of vortex shedding
on the flow domain cannot be neglected in terms of the energy dissipation and the de-
velopment of turbulent flow. As conspicuously depicted in Fig. 13(b), the movement of
vortices towards the free surface resulted in the energy dissipation of sloshing waves.

Figure 12: The comparison of the wave elevation at point B between the present results and the numerical
results [22] and the analytic solution [29]. A tank excited in surge motion with or without a vertically tank
bottom-mounted baffle. d0/L=0.5, db/d0 =0.75, x0 =0.002L, ωx =1.0ω1.
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Figure 13: The phenomenon of vortex shedding. The same as in Fig. 12.

The influence of a vertically tank bottom-mounted baffle inside a tank on the natural
frequency of the container is, then, presented. The comparison between the present re-
sult, the asymptotic formula [15] and the numerical result reported by Firoua-Abadi [19],
as depicted in Fig. 14, agree well when db/d0 ≤0.3. For larger ratio of db/d0, the asymp-
totic formula [15] is inadequate to predict the influence of internal baffles on the natural
frequency of the tank. Based on the assumption of potential flow, the boundary element
method [19] cannot describe the phenomenon of flow separation that would cause energy
dissipation to affect the natural frequency of liquid sloshing in tanks. As db/d0 is close
to 1, which means the baffle is beneath the free surface for a small distance, the obvious
influence of the baffle on the natural frequency of the tank is significant.

Figure 14: The non-dimensional frequency versus baffle height-to-liquid depth db/d0 for a vertically tank
bottom-mounted baffle at the middle point with the liquid depth-to-tank height d0/L=0.5.

4.2.2 A 3D tank with a vertical plate

In this section, a 3D tank with a vertical plate mounted in the middle of the tank is pre-
sented and the definition sketch is shown in Fig. 15 where PL is the cross-sectional length
of the plate, L and B are the length and width of the tank, respectively. Fig. 16(a) presents
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Figure 15: The definition sketch of a 3D tank with a vertical plate in the middle of tank.

the comparison between the present numerical results and the experimental data re-
ported by Warnitchai & Pinkaew [16] and the results from asymptotic formula [15] and
the agreement is very good. The further investigation of liquid sloshing in this type of
plated tank under a resonant surge excitation is then discussed. The elevations of points
A (HA) and C (HC) for a tank with a vertical plate excited at a frequency of 1.0ω1 are
depicted in Fig. 16(b). In the analysis of sloshing liquid in a 3D tank under a resonant
excitation without internal structures, the sloshing displacement at point A will contin-
uously increase to a peak value. In the present simulation, the sloshing displacements
of points A and C increase with time but reach peak at t= 5.5s. The resonant sloshing
amplitude depicted in Fig. 16(b) is obvious reduced by the plate and the wave histories
of points A and C become a little irregular after t= 5s because the free surface has been
disturbed by the effect of the plate. The instantaneous snapshots of the free surface are
illustrated in Fig. 17. It is obviously seen that two 3D holes appear near the edges of
the plate and those holes are made by 3D vortices generated in the vicinity of the plate
corners.

(a) (b)

Figure 16: (a) The comparison between the present numerical results and the theoretical first-mode damping
ratio χ for the TLD with vertical plate tested by Warnitchai and Pinkaew as a function of wave amplitude. The
effect of the energy dissipation at tank walls and bottom is included. (b) The wave histories at points A and C
for a tank excited at a frequency of 1.0ω1 under surge motion. B/L=0.5, PL/B=0.25, d0/L=0.3, x0=0.005L.
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Figure 17: The snapshots of free surface for a tank with a vertical plate. The tank plate is thea vertical plate.
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Figure 17: The snapshots of free surface for a tank with a vertical plate. The plated tank is the same as that
in Fig. 16.

(a) (b)

Figure 18: The comparisons of wave histories at points G and I for a tank with various lengths of vertical plate
(PL) under diagonal forcing. H=η/d0 is the dimensionless wave elevation and T= t

√

g/d0 is the dimensionless
time. d0/L=0.5, a0/L=0.001, ωx =ωz=1.1ω1.

Wu and Chen [13] and Chen and Wu [14] reported in detail the classification and the
characteristics of various sloshing waves for a tank excited at coupled surge-sway and
surge-sway-heave motion without internal structures. In a tank under diagonal excita-
tion, the diagonal waves are generated in the tank. In this study, the effect of the length
(PL) of a vertical plate on the diagonal waves is demonstrated and discussed.

We mark the location of the absolute peak of the free surface at every instant of the
sloshing. The wave histories of points G and I, the wave pattern, the distribution of wave
peaks and the spectral analyses of HG and HI for a square base tank with d0/L = 0.5
and PL/B = 0.25, 0.5 and 0.75 under a diagonal forcing are illustrated in Figs. 18, 19,
and 20, respectively. The different beating phenomena of HG and HI are presented in
Fig. 18. The feature of the swirling waves is the peaks distribute along the tank walls
and is demonstrated in Fig. 19(a). The peaks’ distribution show in Fig. 19(b) presents
the characteristic of the swirling-like waves. The diagonal wave type in a tank without
internal structures is transferred to the swirling type due to the influence of the plate.
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Figure 19: A 3D tank with a vertical plate under a diagonal excitation, the distribution of peaks
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Figure 19: A 3D tank with a vertical plate under a diagonal excitation, the distribution of peaks (subplots: the
wave pattern). (a) PL/B=0.25; (b) PL/B=0.5; (c) PL/B=0.75.

(a) (b) (c)

Figure 20: A 3D tank with a vertical plate under a diagonal excitation, the spectral analyses of HG and HI .
(a) PL/B=0.25; (b) PL/B=0.5; (c) PL/B=0.75; d0/L=0.5.

For PL/B= 0.25, the distribution of absolute peak mostly concentrates in the vicinity of
corners A and C of the tank. The spectral analysis of HG shown in Fig. 20(a) reveals
several peaks. The maximum one is contributed by the external forcing (1.1ω1) and the
second one (1.0ω1) is the first natural frequency of the tank without internal structures. In
addition to the mode of external forcing (1.1ω1), the peak of 0.947ω1 is also demonstrated
in the spectral analysis of HI . The natural modes of a 3D square tank can be expressed as

λi,j=π
√

i2+ j2, ω2
i,j= gλi,j tanh(λi,jd0), (4.2)

where i, j are the natural mode’s components of x- and z-axes, respectively, g is the grav-
itational acceleration, d0 is still fluid depth and ωi,j are the natural frequencies of the 3-D
tank. The wave modes in a 3D square tank, therefore, are composed by the contribution
of i and j modes in the x- and z- axes, respectively. The plate in a tank would influence
the shift of the resonant modes of the sloshing waves, particularly in the surge direction.
As a result, the modes, 0.947ω1 and 1.0ω1, can be correlated with the first natural modes
in the x and z axes, respectively. Besides, it can be expected that as the length of the plate
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increases, the reduction of the first natural mode of the waves in the x direction increases
as well.

When the length of the plate increases to PL/B = 0.5, the beating of HI depicted in
Fig. 18(b) is quite dissimilar to that of PL/B= 0.25, and the swirling of waves is not as
strong as that in the plated tank of PL/B=0.25. Further, the absolute peaks of the waves
(Fig. 19(b)) predominantly distribute along the south and the north walls of the tank and
some of them scatter along the wall of the plate. This indicates the waves mainly travel
in the sway direction and this phenomenon also can be further discussed by the result
shown in Fig. 20(b). There are three visible peaks appear in the spectral analyses of HG

and HI (see Fig. 20(b)). The peak of 0.864ω1 can be correlated as the first natural mode
in the x axis and the shift of the lowest natural mode in the x axis becomes obvious as
the plate length increases. For a tank with a further longer plate (PL/B=0.75), the wave
elevations of points G and I (Fig. 18(c)) and the relationship of elevations between points
E and F (Fig. 19(c)) demonstrates the dominant elevation is at points E and G. For the dis-
tribution of the peaks depicted in Fig. 19(c), the wave peaks mainly scatter on the north
and south walls of the tank and along the plate and the characteristics of the swirling
waves is not present anymore. In other words, the sloshing waves mainly travel in the
transversal direction. Besides, the wave type of this case is dissimilar to those wave types
that were discovered by Wu and Chen [19]. The influence of a longer plate results in the
smaller gaps between the plate and the south or north tank wall. The original diago-
nal flow in a tank without internal structure becomes a sway-like wave. The dominant
modes of the sloshing waves (see Fig. 20(c) as an example) are the external excitation
frequency (1.1ω1) and the first mode (1.0ω1) of the wave in the z (sway) direction. The
other two smaller modes, 0.687ω1 and 1.5ω1 are related to the first natural frequency in
the x direction and the higher resonant mode of the waves, respectively.

5 Conclusions

A numerical scheme is developed and successfully used to study liquid sloshing in 2D
and 3D tanks with internal structures. The numerical results were rigorously verified
and extensive examples are made. The experiment setup with respect to the liquid slosh-
ing in an unbaffled or baffled tank under coupled surge-sway motion was explored and
a good agreement was presented between the experimental measurement and the com-
putational results. The influence of a vertical plate in a 3D tank on the diagonal slosh-
ing waves is investigated in detail. The following key conclusions are made: 1. The
fictitious cell approach associated with a coordinate transformation technique is success-
fully used to solve for the sloshing fluid in 2D and 3D tanks with internal structures. 2.
The stretch technique of grid system implemented in the present study assures the finer
meshes around the tip of the baffles and the numerical simulation in this work can, there-
fore, capture the detailed local phenomenon of flow movement around the tip. 3. The
effect of baffle height (db) on the lowest natural frequency of the liquid tank is studied.
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As the ratio db/d0 is large, the asymptotic formula [15] is inadequate to correctly pre-
dict the influence of internal baffles on the natural frequency of the tank. Based on the
assumption of the potential flow theory [28], the boundary element method cannot de-
scribe the phenomenon of flow separation that would cause energy dissipation to affect
the natural frequency of sloshing waves in tanks. The present results, therefore, might be
more acceptable in predicting the natural frequency of a tank with bottom-mounted baf-
fles. 4. The diagonal waves are transferred to the swirling waves because of the influence
of the vertical plate. The length of the plate (PL) can cause a significant influence on not
only the reduction of the lowest natural frequency of a partially fluid-filled tank but the
type of the sloshing waves. 5. For a longer plate (PL/B=0.75), the original diagonal flow
is conducted to a sway-like moving flow due to the smaller gaps between the plate and
the south or north tank wall. 6. The design of the vertical plate mounted parallel to the
east (west) wall of the tank is an effective tool to dampen the sloshing displacement in
the surge direction. 7. The developed numerical scheme can be used to analyse sloshing
liquid in 3D tanks with internal structures under six-degrees of freedom.
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