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s.n.c., 01100, Viterbo, Italy.
4 Istituto per le Applicazioni del Calcolo - CNR, Via dei Taurini, 00100 Roma, Italy.

Received 14 November 2011; Accepted (in revised version) 20 December 2011

Available online 29 August 2012

Abstract. This work is concerned with the modelling of the interaction of fluid flow
with flexibly supported rigid bodies. The fluid flow is modelled by Lattice-Boltzmann
Method, coupled to a set of ordinary differential equations describing the dynamics of
the solid body in terms its elastic and damping properties. The time discretization of
the body dynamics is performed via the Time Discontinuous Galerkin Method. Several
numerical examples are presented and highlight the robustness and efficiency of the
proposed methodology, by means of comparisons with previously published results.
The examples show that the present fluid-structure method is able to capture vortex-
induced oscillations of flexibly-supported rigid body.

PACS: 62, 47
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1 Introduction

The correct prediction of the interaction between a solid structure and a fluid flow is a
problem of great interest both from a theoretical and a practical point of view [1, 2]. Sev-
eral industrial, technological, biological and environmental problems are, in fact, associ-
ated with Fluid-Structure Interaction (FSI) and the ability of predicting the fluid and solid
behavior in such processes is extremely important for these applications. This, together
with the increased computer power of the last two decades, is promoting an enormous
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research effort in this field of computational mechanics. Being this a typical ”coupled
field” problem, monolithic (i.e. fluid and solid equations solved simultaneously) or par-
titioned (i.e. each physical field is separately discretized and numerically solved) ap-
proaches can be used, being the latter of simpler implementation and presently the only
one applicable to practical problems [3–6]. In this paper the fluid flow is modelled by
the Lattice-Boltzmann Method (LBM), which is a numerical approach for fluid dynamic
investigation based on Boltzmann’s Kinetic Equation [7, 8]. In recent years, the LBM has
been successfully adopted for the simulation of phenomena of technical interest, such as
multiphase/reacting flows [9–11], cavitation, spray formation and break-up [12] and o-
thers. LBM has also been employed in problems of fluid-structure interaction [13–15] and
in the framework of immersed boundary approaches [16–19], for the ease and accuracy
with which it enables complicated boundary geometries to be processed. In particular,
Zhang and his coworkers [11,12] have proposed an immersed boundary-lattice Boltz-
mann coupling scheme for deformable and moving boundaries and demonstrated it on
blood flows with simplified bi-dimensional geometries. A Lattice-Boltzmann based im-
plicit immersed boundary method has been also developed by Hao and Zhu [20] and
tested to simulate a flexible and massless filament in a bi-dimensional viscous flow at
low Reynolds numbers.

In LBM, a popular scheme for the fluid-structure interaction is based on the 2nd-order
accurate bounce-back rule enforcing the no-slip condition on the solid surface [21, 22].
Such a scheme is suitable for the rigid-solid case where the motion of the solid obstacle
is determined only by the external force. However, for the elastic-body case where the
solid motion is determined by the local stress state, a very fine mesh might be required
for high accuracy [14]. Recently Kollmannsberger et al. [23] have presented very inte-
resting results for bi-dimensional fluid-structure interaction obtained by coupling fixed-
grid Lattice-Boltzmann fluid solver with p-refinement finite element solid solver. An
interface mesh is used to adapt the two different discretizations and a staggered algo-
rithm with subiteration is chosen for the fluid. Solid time integration is performed by the
Newmark method.

The method proposed in this paper can be classified as ”non-boundary-fitted”, as the
solid boundaries do not lie on the fluid nodes, similarly to immersed boundaries [24].
Therefore, the main advantage of the present method is the absence of moving meshes,
which usually require high computational times, combined to the simplicity and the com-
putational efficiency of the Lattice Boltzmann method for fluid flows. Using the LBM as
the fluid solver, in fact, allows moving the body in a fixed lattice, given proper boundary
conditions (i.e. Mei et al. [25]) and a refill procedure for fluid node initialization after
solid obstacle motion [15, 26, 27]. The dynamics of the rigid body is modelled through
the Time Discontinuous Galerkin Method, because of its good accuracy and dissipative
properties [28, 29]. The computational cost is successfully reduced owing to the imple-
mentation proposed in [28, 29]. Different types of constraints, including rigid and elastic
joints are considered and the dynamic response of the rigid obstacle is calculated as a
coupled function of the fluid-dynamic external field.
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2 Numerical method

2.1 The Lattice Boltzmann method

Our theoretical/computational analysis is based on the lattice Boltzmann equation (LBE),
a minimal form of the Boltzmann kinetic equation, which has proven quite successful for
the quantitative description of a broad class of complex flow phenomena [7]. Since the
LB has been described at length in the current literature, here we shall only revisit the
basic ideas behind its formulation. The LB equation reads as follows,

fi(x+ci∆t,t+∆t)− fi(x,t)=−ω( fi− f
eq
i )∆t, (2.1)

where fi is the probability (density function) of finding a fluid particle at site x at time t,
moving along the i−th lattice direction defined by the discrete speeds ci, with i=0,··· ,b.
The left-hand side of Eq. (2.1) stands for molecular free-streaming, whereas the right-
hand side represents the collisional relaxation towards local Maxwellian equilibrium, on
a time-scale τ=1/ω.

The local equilibrium is given by the usual expression, in the form of a second-order
expansion in the local mach number, Ma=u/cs, of the local Maxwell distribution:

f
eq
i (x;t)=wiρ

(

1+
v·ci

c2
s

+
(v·ci)

2

2c4
s

− v·v
2c2

s

)

, (2.2)

where

ρ(x;t)=∑
i

fi(x;t) (2.3)

is the fluid density, and

v(x;t)=
∑i fi(x;t)ci

ρ(x;t)
(2.4)

is the flow velocity.
In this work we refer to the D2Q9 particles speed model: a standard 9-speed, two-

dimensional lattice, with b=8 (including a zero-speed particle).

2.2 Time integration scheme for the solid structure

The equation of motion of a deformable solid discretized using, for example, the finite
element method reads as follows:

Mü+Cu̇+Ku=F, (2.5)

where u is a vector of n components describing the displacements of the solid and M, C

and K are n×n matrices, representing the mass, damping and stiffness of the structure,
respectively. The dot symbol ( ˙ ) indicates the time derivative.
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Figure 1: Rigid body.

By restricting to rigid body dynamics (see Fig. 1) the time-dependent loads on the
structure are given by

R(t)=
∮

∂Ω
σndS, M(t)=

∮

∂Ω
r×σndS, (2.6)

where σ is the fluid stress tensor, acting upon the boundary ∂Ω of the solid, with outer
unit normal n, and r is the distance from the center of mass.

In two-dimensional conditions, the equation of motion (2.5) reduces to the following
three equations

miüi+ciu̇i+kiui=Ri, i= x,y, (2.7a)

Iθ θ̈+cθ θ̇+kθθ=M, (2.7b)

where x and y are the in-plane directions, the displacements ui are the rigid translations
and θ represents the rigid rotation. The scalar quantities mi, ci, ki, Iθ, cθ , kθ denote mass,
damping and stiffness moduli for the translational and rotational degrees of freedom;
Ri are the in-plane components of the resultant force vector R and M is the in-plane
component of the resultant moment M.

The above equations are integrated in time using the Time Discontinuous Galerkin
Method (TDG) [28, 29]. It is a one-step method that possesses higher order accuracy in
the low-frequency modes and effective dissipation in the high-frequency ones. In particu-
lar, piecewise linear time interpolants are adopted for both displacements and velocities,
assumed as independent variables. The approximations may be discontinuous at time
levels tn, as illustrated schematically in Fig. 2.

Selecting linear test functions wu and wv the TDG formulation for the typical time
interval is given by the following condition that should be satisfied for any test function:

∫ tn+1

tn

wT
v (Mü+Cu̇+Ku−F)dt

+
∫ tn+1

tn

wT
uK(u̇−v)+wT

u(tn)KJu(tn)K+wT
v(tn)MJv(tn)K=0, (2.8)
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Figure 2: Time approximation for solid displacements and velocities.

where Ju(tn)K and Jv(tn)K are the jumps of the approximate solution for displacements
and velocities at t= tn. The above condition enforces, in a weak sense, the equation of
motion, the relation between displacement and velocity and the initial conditions for the
typical time interval.

It can be proved that in linear regime the resultant TDG algorithm is third-order accu-
rate, unconditionally stable and asymptotically annihilating in the high-frequency range
(L-stable). Indeed, a recent work presents an improved TDG version that retains these
properties for non-linear dynamics as well [29]. Despite these good properties, the major
drawback is the computational cost, which is here successfully reduced through the im-
plementation proposed in [28]. This approach is based on the following iterative scheme:

{

M∗v̄
(l+1)
k =F∗

k−Cṽ
(l+1)
k −Kũ

(l+1)
k ,

ū
(l+1)
k = ṽ

(l+1)
k +ν∆tv̄

(l+1)
k ,

k=0,1. (2.9)

In the above equation, predictor displacements ũk and velocities ṽk are defined as

ṽ
(l+1)
0 = v̄n+β∆t(v̄

(l)
0 −v̄

(l)
1 ), (2.10a)

ũ
(l+1)
0 = ūn+β∆t(ū

(l)
0 −ū

(l)
1 )+ν∆tṽ

(l+1)
0 , (2.10b)

ṽ
(l+1)
1 = v̄n+(1−ν)∆tv̄

(l+1)
0 , (2.10c)

ũ
(l+1)
1 = ūn+(1−ν)∆tū

(l+1)
0 +ν∆tṽ

(l+1)
1 , (2.10d)

where the effective mass matrix M∗ and load vectors F∗
k are given by

M∗=M+ν∆tC+ν2∆t2K, (2.11a)

F∗
0 =

1

4

[

(3
√

2−2)F0+3(2−
√

2)F2/3

]

, (2.11b)

F∗
1 =

1

2
(3F2/3−F0). (2.11c)
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F0 and F2/3 are the values of the load vector F at t=tn and t=tn+2/3∆t, respectively, and
the coefficients ν and β are fixed to [28]:

ν=1−
√

2

2
, β=

√
2− 4

3
. (2.12)

Displacements and velocities at the end of the current time step are given by

vn+1= ū
(l)
1 , un+1= ūn+∆t

[

(1−ν)ū
(l)
0 +νū

(l)
1

]

. (2.13)

Notice that vectors v̄k are computed using the same matrix M∗, that can be factorized
only once.

It can be proved that the iterative scheme converges and, in particular, two iterations
(l=2) are sufficient to get third-order accuracy and L-stability. Indeed, the first iteration
(l=1) reduces to the Nørset algorithm [30], that is second-order accurate and L-stable.

The present approach offers also the advantage of two embedded error estimates. The
first is obtained by comparing the second-order accurate solution of the first iteration
with the third-order accurate solution of the second one. The second error estimate is the
jump of the approximate solution at the beginning of the current time step, which gives
a valuable information about the amount of numerical dissipation [31].

2.3 Fluid-solid coupling scheme

The LB fluid and TDG solid solvers are coupled through a staggered-explicit coupling
strategy, adopting the same time sequence for both solvers.

As a result, at each LB step, the LB solver provides the hydrodynamic load, F(t), to
the structure, while the solid solver restitutes the array of displacements u, which is then
used in the formulation of the LB boundary conditions. More precisely, the updated set
of displacements is used to compute the new position of the solid boundary, according
to the interpolation scheme described in [32].

A sketch of the fluid-solid coupling procedure is provided in Fig. 3.

As to the initialization of fluid nodes uncovered by the solid motion, we employ the
refill procedure described in [15].

Figure 3: Schematic representation of the coupling between the LB fluid solver and the TDG solid solver.
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(a) (b)

Figure 4: Sketch of the boundary condition scheme for the moving solid object; (b) sketch of the refill procedure.

Lattice nodes immediately close to the obstacle do not participate to the standard
LB streaming process as the immersed object acts as a wall for the particles’ motion.
The motion of the solid obstacle within the background lattice is reconstructed by means
of Filippova and Hänel enhanced procedure [25, 32]. We consider the nodes xf and xb

located immediately outside and inside the solid object, respectively, see Fig. 4(b). The
location xw on the boundary denotes the intersections of the object boundary with the
lattice link between xf and xb. The length fraction of the intersected link between xf and
xw is ∆=‖xf−xw‖/‖xf−xb‖. The probability density functions of the nodes surrounding
the cylinder are recovered by using the linear interpolation proposed in [32], that is,

f̃ ī(xb,t)=(1−χ) f̃i(xf,t)+χ f ∗i (xb,t)+2wiρ(xb,t)[cī ·v(xw,t)]/c2
s , (2.14)

where f̃ is the post-collision population, subscript ī denotes the direction from a wall
node xw to a fluid node xf, and subscripts i and ī identify opposite directions. Once the
populations are computed according to Eq. (2.14), the standard collision process takes
place for all the lattice sites in the computational domain. In Eq. (2.14), f ∗i (xb,t) is a
fictitious equilibrium density function given by

f ∗i (xb,t)=wiρ(xf,t)

[

1+
ci ·v∗

c2
s

+
[ci ·v(xf,t)]2

2c4
s

−‖v(xf,t)‖2

2c2
s

]

. (2.15)

In Eqs. (2.14) and (2.15), the quantities χ and u∗ are determined as follows:
{

v∗=[(∆−1)v(xf,t)+v(xw,t)]/∆, χ=[2∆−1]/τ, if ∆≥1/2,

v∗=v(xf,t), χ=[2∆−1]/[τ−1], if ∆<1/2.
(2.16)

An ad-hoc refill procedure is adopted for the hydrodynamic quantities of nodes unco-
vered by cylinder motion [15].
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According to Fig. 4(b), we initialize the nodes uncovered by the moving obstacle by
fixing their populations to the equilibrium ones; to this purpose we need macroscopic
density and velocity for these nodes. To compute density and velocity, we extrapolate the
populations in the uncovered nodes according to the first two fluid neighbours along the
object motion direction. Once the populations are fixed, we compute density and velocity
according to Eqs. (2.3) and (2.4).

3 Results and discussion

The simulated test case is a uniform flow over an oscillating cylinder that can move only
in the direction normal to the inlet velocity. The geometry of the problem and the bound-
ary conditions employed in the simulation are displayed in Fig. 5. The spring is linear,
with stiffness k=5.79 N/m and damping factor c=0.325 g/s. The mass and the diameter
of the cylinder are m=2.979 g and D=0.16 cm. The fluid is water with viscosity µ=0.01
g/(cm s) and density ρ=1 g/cm3.

p = 0

v = 0

v = 0

v = 0

U= U8

1 3

1.4

1.4

Figure 5: Oscillating cylinder: definition of the problem and associated internal and external boundary conditions.
At the inlet, a given mainstream speed U∞ is prescribed, while at the outlet, zero pressure boundary conditions
are imposed. At the upper and lower boundaries, zero-velocity conditions are applied. Zero-velocity conditions
are also applied at the moving surface of the cylinder.

Different far-field fluid velocities are considered, such that the Reynolds number,
given by Re = ρU∞D/µ, varies between 90 and 130. In all numerical experiments, the
fluid is started from rest conditions U=0. As usual the mainstream speed is denoted by
U∞.

Fig. 6 shows the vortex shedding frequency fV as a function of the Reynolds, Re,
number. The frequency fV is evaluated from the evolution of the lift coefficient. We
indicate with fN the natural frequency of the rigid body as a mass-spring system ( fN =√

k/m). Benchmark values are taken from the vortex shedding frequencies associated
with the stationary cylinder, as suggested in [33, 34].

Fig. 7 shows the relative amplitude Y/D as a function of the Reynolds number, where
Y is the displacement along vertical direction induced by the lift force. The figure clearly
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Figure 6: Oscillating cylinder: frequencies vs
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ary cylinder [33,34].
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Figure 7: Oscillating cylinder: amplitudes of the ver-
tical motion vs the Reynolds number. The figure
clearly displays the onset of a symmetry-breaking in-
stability in the range 95<Re<110, in close agree-
ment with experimental results (solid line) [35].

shows the onset of a symmetry-breaking instability in the range 95<Re< 110, in close
agreement with the experimental data obtained in [35].

At the low Reynolds number end of the lock-in region, the oscillations start with a
sudden jump-up. As the Reynolds number increases, the amplitude of the oscillations
smoothly decreases so that the jump-down at the upper end of the lock-in region is less
significant. Figs. 6 and 7 show a good agreement between our results and literature data,
thereby lending credit to both numerical model and the coupling algorithm present in
this work [33–35].

In Figs. 8(b) and 9(b), we report the behaviour of the oscillating cylinder in the fre-
quency domain, as obtained by Fourier transforming the time sequence of the center-
mass displacement. The graphs show the amplitude spectrum of Y/D, as obtained by
a Fast Fourier Transform of the data represented in Figs. 8(a) and 9(a) vs frequency. It
should be remarked that for the latter figure, the Fourier transform is taken after the
transient is exhausted (t> 100 s). From these figures, it is apparent that up to Re= 120,
the spectrum gives no sign of multi-mode locking, i.e. the frequency spectrum remains
highly peaked around a single frequency.

On a standard PC (Intel I7-920, frequency clock 2.6GHz, 8 cores, 8 MB cache L3, 8 GB
RAM), the method takes about 0.05 CPU seconds per time step, for a LB grid of 350×220
lattice sites, slightly higher (about 10%) than the computational time needed for the flow
over a fixed cylinder. The computational cost is mainly due the fluid-solid boundary
condition.

The computational cost due to the fluid solver is negligible, due to the fact that the
rigid body motion is described by a single degree of freedom. The procedure described
in this paper is suited to handle a generic class of constraints and any number of solid
degrees of freedom. In particular, fluid interaction with multi-bodies or elastic structures
discretized by the finite element method could be investigated using the present frame-
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Figure 8: Oscillating cylinder at Re=90: (a) amplitudes, (b) FFT of amplitude signal in frequency domain.
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Figure 9: Oscillating cylinder at Re=120: (a) amplitudes, (b) FFT of amplitude signal in frequency domain.

work. As regards the computational cost, when the number of solid degrees of freedom
increases the solid solver could contribute significantly to the overall cost. The study of
more complex fluid-structure problems is currently under investigation.

4 Conclusions

Summarizing, in this work we have presented an adapting LB for an established FSI cou-
pling scheme employing TDG, based on the combination of the Lattice Boltzmann (LB)
method for the fluid and the Time Discontinuous Galerkin (TDG) method time-marching
scheme for the solid degrees of freedom. The LB-TDG scheme is demonstrated for the
case of an oscillating cylinder, and shows to provide satisfactory agreement with exist-
ing literature data, both numerical and experimental. The methodology presented here
is fairly general and can describe a broad class of two-dimensional fluid-solid problems,
including deformable bodies, without the need of moving meshes. This makes the com-
putational time comparable to that needed for modelling the flow over a fixed cylinder.
It is important to note that the proposed method (i.e. curved boundaries combined to
a proper refill procedure) is independent from the geometry of the boundaries (i.e. the
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body is somehow ”immersed” in the lattice). Therefore, the gain with respect to tradi-
tional FSI is expected to grow with growing body shape complexity (i.e. typical engi-
neering problems). The extension of the present coupling scheme to three-dimensional
problems, although computationally intensive, does not appear to pose any conceptual
problem, and will be explored in the future.
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[4] B. Hübne, E. Walhorn, and Dinkler D. A monolithic approach to fluid-structure interaction
using space-time finite elements. Comp. Meth. Appl. Mech. Engr., 193:2087-2104, 2004.

[5] G.P. Guruswamy. A review of numerical fluids/structures interface methods for computa-
tions using high-fidelity equations. Comp. Struct., 80(1):31–41, 2002.

[6] C. Wood, A.J. Gil, O. Hassan, and J. Bonet. Partitioned block-Gauss-Seidel coupling for
dynamic fluid-structure interaction. Comp. Struct., 88(23-24):1367–1382, 2010. Special Issue:
Association of Computational Mechanics, United Kingdom.

[7] R. Benzi, Succi S., and M. Vergassola. The lattice Boltzmann equation: Theory and applica-
tions. Phys. Rep., 222:145–197, 1992.

[8] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon,
Oxford, 2001.

[9] S. Chibbaro, G. Falcucci, G. Chiatti, H. Chen, X. Shan, and S. Succi. Lattice Boltzmann
models for nonideal fluids with arrested phase-separation. Phys. Rev. E, 77, 036705, 2008.

[10] G. Falcucci, S. Ubertini, and S. Succi. Lattice Boltzmann simulations of phase-separating
flows at large density ratios: the case of doubly-attractive pseudo-potentials. Soft Matter,
6:4357–4365, 2010.

[11] G Falcucci, S. Ubertini, C. Biscarini, S. Di Francesco, D. Chiappini, S. Palpacelli, A. De Maio,
and S. Succi. Lattice Boltzmann methods for multiphase flow simulations across scales.
Comm. Comput. Phys., 9:269–296, 2011.

[12] G. Falcucci, G. Bella, S. Ubertini, S. Palpacelli, and A. De Maio. Lattice Boltzmann modeling
of Diesel spray formation and break-up. SAE Int. J. Fuels Lubr., 3:582–593, 2010.

[13] D. Qi and C.K. Aidun. A new method for analysis of the fluid interaction with a deformable
membrane. J. Stat. Phys., 90:145, 1998.

[14] X. Shi and N. Phan-Thien. Distributed lagrange multiplier/fictitious domain method in the
framework of lattice Boltzmann method for fluid-structure interactions. J. Comp. Phys.,
206:81–94, 2005.



834 A. De Rosis et al. / Commun. Comput. Phys., 13 (2013), pp. 823-834

[15] G. Falcucci, M. Aureli, S. Ubertini, and M. Porfiri. Transverse harmonic oscillations of lam-
inae in viscous fluids: A lattice Boltzmann study. Phil. Trans. Royal Soc. A, 369(1945):2456–
2466, 2011.

[16] Z.G. Feng and E.E. Michaelides. The immersed boundary-lattice Boltzmann method for
solving fluid-particles interaction problems. J. Comp. Phys., 195:602–628, 2004.

[17] Y. Cheng and H. Zhang. Immersed boundary method and lattice Boltzmann method cou-
pled FSI simulation of mitral leaflet flow. Computers & Fluids, 39:871–881, 2010.

[18] J. Hao and L. Zhu. A lattice Boltzmann based implicit immersed boundary method for
fluid-structure interaction. Comp. Math. App., 59:185–193, 2010.

[19] K. Suzuki and T. Inamuro. Effect of internal mass in the simulation of a moving body by the
immersed boundary method. Computers & Fluids, 49:173–187, 2011.

[20] J. Hao and L. Zhu. A lattice boltzmann based implicit immersed boundary method for fluid-
structure interaction. Comp. Math. Appl., 59(1):185–193, 2010.

[21] A.J.C. Ladd. Numerical simulation of particulate suspensions via a discretized Boltzmann
equation, part 1. Theoretical foundation. J. Fluid Mech., 271:285, 1994.

[22] A.J.C. Ladd. Numerical simulation of particular suspensions via discretized Boltzmann
equation, part 2. Numerical results. J. Fluid Mech., 271:311–339, 1994.
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