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Abstract. We investigate the hydrodynamic interactions of spherical colloidal nano
particles and nano tetrahedra near a planar wall by means of molecular dynamics
(MD) simulations of rigid particles within an all-atom solvent. For both spherical and
nano-tetrahedral particles, we find that the parallel and perpendicular components of
the local diffusion coefficient and viscosity, show good agreement with hydrodynamic
theory of Faxén and Brenner. This provides further evidence that low perturbations
from sphericality of a nanoparticle’s shape has little influence on its local diffusive be-
haviour, and that for this particular case, the continuum theory fluid dynamics is valid
even down to molecular scales.

PACS: 47.85.Dh, 47.11.Mn, 82.70.Dd
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1 Introduction

The diffusion of suspended particles in liquids is one of the most fundamental transport
processes in physical chemistry, with many applications in material science, chemical
engineering, and biology. Indeed, such diffusion processes may significantly affect the
properties of the liquid suspension; for instance, it is known that particle diffusion sets
the rate-limiting step to many chemical reactions in liquids [1], and that the addition of
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particles to liquids leads to an increase of the viscosity, as predicted by Einstein nearly a
century ago [2]. The diffusion of a suspended particle within a liquid is inversely related
to the dynamic viscosity of the liquid, according to the Fluctuation-Dissipation-Theorem
(FDT) [3], as combined with Stoke’s law for the drag experienced by a colloidal parti-
cle within a fluid solvent [4]. The mathematical expressions associated with these two
conceptual pillars are typically derived in free-space, where long-range hydrodynamic
correlations can develop without hindrance. However, in the presence of solid walls
(confined flows), or other colloidal particles (dense suspensions), it is known that both
particle diffusivity and liquid viscosity acquire significant corrections, due to the distor-
tions experienced by hydrodynamic correlations as compared to the ideal case of a single
particle within an infinite fluid domain. Such finite-size and finite-concentration effects
are paramount to most practical applications, typically involving colloidal suspensions of
nano-particles of assorted shapes [5, 6]. In this paper, we shall focus on finite-size effects
in confined nanofluids. Several experimental [7–11] as well as theoretical [12] studies
have focussed on these effects for colloidal particles. More specifically, we compute the
local diffusion coefficients of a suspended nanoparticle as a function of its distance from a
planar wall, along both parallel and perpendicular directions to the wall. To this purpose,
extensive molecular dynamics (MD) simulations are performed, and compared against
the analytical results, as provided by Faxén’s and Brenner’s continuum hydrodynamics
theories [13–15]. Two basic shapes are explored, spherical and tetrahedral, the latter be-
ing of special interest to the growth of optical crystals through self-assembly of silicon
nano-particles [16, 17].

Deviations from continuum hydrodynamics in the vicinity of the wall have made the
object of basic molecular dynamics investigations in the past. Vergeles et al. performed
molecular dynamics simulations of a single sphere approaching a planar wall at constant
velocity u [18]. These authors confirmed the validity of hydrodynamics sufficiently away
from the wall, and showed that the near-wall divergence disappears in the atomistic
treatment due to a depletion of the fluid layer. More recently, Challa and van Swol [19],
alluded to the importance of solvation forces, namely the conservative forces experienced
by the sphere independently of its speed.

Since we aim at a realistic model of a nanoparticle immersed in a liquid and ask for
the validity of Faxén’s and Brenner’s hydrodynamic theories in this case, our simulation
setup will differ from the one used in the aforementioned works in several aspects. i) In-
stead of assigning a constant velocity to the nanoparticle, requiring the assumption that
its mass is infinite, we track its thermal equilibrium fluctuating motion and apply statisti-
cal mechanical theory (Green-Kubo relations) and the Stokes-Einstein relation to compute
transport coefficients from velocity autocorrelation functions (VACFs). ii) As a conse-
quence, our nanoparticle is not just small in terms of length scales, but in addition, it will
not have infinite mass. On the other hand, we aim at approximately Brownian behaviour,
i.e. an exponentially decaying VACF. For this, we require a mass density for the nanopar-
ticle which is considerably larger than the fluid density. It will turn out that Brownian
behaviour is already sufficiently achieved for a mass density ratio of 10. iii) Investigating
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thermal equilibrium also means that we consider the case of vanishing Reynolds number
Re→0, in contrast to the intermediate Reynolds numbers Re=0.01,··· ,0.3 in [19] and, for
the nanoscale, very high Reynolds numbers Re=O(1) in [18]. iv). We do not monitor
net forces on the particle, but velocity fluctuations applied to the Green-Kubo definition
of the diffusivity, thus there is no need to split into static (conservative, solvation) and
dynamic (drag, lubrication) force contributions [19]. v) Vergeles et al. and Challa et al.
mostly focus on non-molecular ideally smooth walls and spheres. We believe that we
should focus on walls and spheres with molecular structure, which, e.g., reduces the de-
pletion of fluid layers near walls [18].

The advantage of our approach is that thermal equilibrium fluctuations provide all
admissible motions of the nanoscale object. This allows the investigation of the motion
parallel and perpendicular to the wall within one and the same simulation. Hence we
can compare to both Faxén’s and Brenner’s theories. One drawback of our approach is
that the additional fluctuations of the nanoparticle and the molecular structure make the
computed transport coefficients more noisy, increasing the size of the error bars.

Our investigations show that for both shapes, the MD results are in agreement with
Faxén’s and Brenner’s theories, for parallel and perpendicular diffusion, respectively.
This applies to a large range of distances from the wall, down to one molecular radius,
where the validity of continuum hydrodynamics is questionable, showing a nonphysi-
cal singularity of the perpendicular diffusivity at zero distance. Our results show that,
firstly, for the specific phenomenon in point, we find that continuum hydrodynamics
holds down to the molecular scale. Secondly, the diffusivity shows no shape-dependence,
i.e. tetrahedron and sphere show equivalent results in line with the statistical precision.
The latter statement, though, is likely to be challenged when using anisotropic tetrahedra
or ellipsoids.

The paper is organized as follows. In Section 2 we discuss the hydrodynamic cor-
rection terms for the drag force experienced by particles close to walls and also present
the main statistical mechanical tools required for the analysis of the MD simulations. We
then present our simulation method and setup in Section 3 and, finally, in Section 4 we
present and discuss the numerical results.

2 Theoretical background

The drag force Fd on a rigid sphere with radius R, moving with a constant relative ve-
locity v through a viscous fluid with shear viscosity η, is given by Stokes’ law. For the
derivation of Stokes’ law we assume laminar flow (Re≪ 1), in which case the Navier-
Stokes equation reduces to the following static balance between pressure drive and dis-
sipation [4]:

∇p=η∆v. (2.1)

This can be solved for the pressure p along the velocity component u given in spherical
coordinates r and Θ, where Θ=0 and Θ=π denote the front and rear side of the sphere,
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respectively:

p(Θ,r=R)= p0+
3ηu

2R
cosΘ, (2.2)

where p0 is the bulk pressure.
By integrating the pressure field over the surface of the sphere, the drag force Fd along

u takes the familiar form of Stokes’s law:

Fd=6πη Ru. (2.3)

The above relation holds in free space. Once the sphere is brought in the vicinity of a
planar wall, the drag force Fd shows a significant, anisotropic, increase, due to the hydro-
dynamic pressure caused by the interaction of the sphere with the planar wall. For the
case of the perpendicular diffusion, this enhancement develops into a formal singularity
in the limit of zero distance from the wall. The particle then experiences a local viscos-
ity that depends on the distance to the wall and on the direction of motion, i.e. parallel
versus perpendicular.

The analytical description of the viscosity increase in the parallel direction was first
developed by Faxén in 1922 [13,15], who introduced a correction term, λ‖, accounting for
the corrections to the Stokes’ law. The perpendicular correction term, λ⊥, was analytically
derived by Brenner with the method of reflections [14, 15]. The corresponding extended
Stokes’ law reads as follows:

F
‖,⊥
d =6πη Ru‖,⊥ ·λ‖,⊥, (2.4)

λ‖=
(

1−9/16d−1+1/8d−3−45/256d−4−1/16d−5
)−1

, (2.5)

λ⊥=
4

3
sinhα

∞

∑
n=1

n(n+1)

(2n−1)(2n+3)

[

2sinh(2n+1)α+(2n+1)sinh2α

4sinh2(n+1/2)α−(2n+1)2 sinh2α
−1

]

, (2.6)

where d = 1+z/R is the distance of the sphere’s centre of mass to the wall normalised
to the sphere’s effective radius R, z is the distance of the sphere’s effective surface to the
wall, and α=cosh−1d. It can be checked that the above expression for λ⊥ tends to 1 in the
limit z/R→∞ (bulk) and to R/z in the opposite limit z/R→0 (d→1), yielding a formal
singularity at vanishing distance from the wall.

A closely related view on the problem of wall effects is Felderhof’s [20]. He derived
theoretically a qualitative change of the hydrodynamic tail of the nanoparticle’s veloc-
ity autocorrelation function from t−3/2 to t−5/2. This result was obtained from a first
order approximation in R/z and, concerning the dependence of the particle’s mobility
on z, is equivalent to Lorentz’ findings [15, 21] which are only reliable for small R/z,
whereas Brenner’s and Faxén’s theories represent the generalisation to arbitrary relative
distances. Reducing, e.g., Faxén’s equation (2.5) to Lorentz’ result means to truncate after
the term proportional to d−1. This makes Brenner’s and Faxén’s theories more useful in
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the present context, since we are especially interested in the behaviour of nanoparticles
at distances z for which R/z&1. On the other hand in contrast to Brenner’s and Faxén’s
theories, Felderhof’s general approach is not limited to the low frequency Stokes regime
(treated in this work) and can be used as a starting point for the analysis of, e.g., the
neutrally buoyant case, which is only briefly mentioned in Section 4.1 of the present pa-
per. Also note the work by Pagonabarraga et al. [22], which describes the solvent by a
Lattice-Boltzmann method and provides long time power law decays of both the velocity
correlation and angular velocity correlation functions of a colloidal particle near a wall.

The effective radius R and the normalised distance to the wall d−1= z/R require a
definition as soon as molecular interactions are introduced [18, 19]. Since all elements
of our simulated systems, i.e., the fluid, the immersed particle, and walls will be con-
structed from point-particles with the same particle density n and interacting with the
same Lennard Jones (LJ) potential, our definitions are based on the approach to assign
effective volumes to all these particles. Following this argument, we get R= R′+ d̄A/2
where R′ is the distance of the nanoparticle’s centre of mass to the coordinate of the far-
thest LJ particle it contains, and d̄A ≈n−1/3 is the average distance between LJ particles.
As a consequence, the nanoparticle’s normalised distance to the wall is

d−1=
z

R
=

d′−R′− d̄A

R
=

d′− d̄A/2

R
−1, (2.7)

where d′ is the distance between the nanoparticle’s centre of mass and the coordinate of
the “innermost” layer of LJ particles forming the wall. Note that this definition is different
from the definition in [18, 19], where fluid particles were treated as point particles in the
definition of an effective radius and distance, and it was assumed, e.g. that the “free
space” between a fluid particle and the spherical surface where the LJ potential diverges
entirely belongs to the sphere.

We express the hydrodynamic transport coefficient η in terms of the microscopic
molecular dynamics (MD) variables by the Green-Kubo and Stokes-Einstein relations,
investigating whether the hydrodynamic corrections based on continuum hydrodynam-
ics also hold for the case of our nanoparticles, just a few nanometres in diameter.

In the limit of low Reynolds numbers we can combine the equations of Brownian
motion with the drag force from Stokes’ law and obtain the Stokes-Einstein relation that
relates the diffusion coefficient to the viscosity of the fluid [23]

D=
kBT

6πηR
, (2.8)

with D the diffusion coefficient, kB the Boltzmann constant, T the temperature. We will
use this relation to replace the calculation of the distance dependent viscosity by com-
puting the diffusion coefficients. The anisotropic increase of the viscosity is analytically
described by the correction terms (2.5) and (2.6). Thus we assume that we can calculate
the viscosity profile from the reciprocal diffusion profile.
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Figure 1: The analytical solution of the anisotropic increase of the drag force on a spherical object moving
relative to a planar wall according to Faxén’s (2.5) and Brenner’s (2.6) correction terms for Stoke’s law.

The diffusion coefficient will be computed from the Green-Kubo integral of the veloc-
ity auto-correlation function of the nanoparticle’s centre of mass

D=
∫ ∞

0
〈v(τ)v(0)〉dτ, (2.9)

where the bracket indicates time averaging and also ensemble averaging over several
MD realizations, and v stands for one of the velocity components. Since we measure dif-
fusion constants D|| parallel and D⊥ perpendicular to the wall, we use the perpendicular
velocity component for D⊥ and average over the two parallel components for D||.

3 Simulation method and setup

3.1 Molecular fluid dynamics

We perform three-dimensional molecular dynamics (MD) simulations, with about 6.7×
104 solvent molecules over a time span of about 10 million timesteps. Macroscopic quan-
tities, such as the particle diffusivity, are computed by taking statistical averages over
micro canonical ensembles provided by the MD simulations.

We use the Velocity Verlet integrator to compute the trajectory of the fluid particles.
The Lennard-Jones (LJ) (12,6) potential

VLJ(rij)=4ǫ

[

(

σ

rij

)12

−
(

σ

rij

)6
]

(3.1)

is used to model the interaction forces, where rij= |ri−rj| is the distance between atoms i
and j, ǫ is the depth of the potential well and σ is the distance at which the inter-particle
potential is zero.
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We truncate the tail of the LJ potential at its minimum at rc = 21/6σ and shift the
minimum to zero. Hence, we treat only the repulsive part of the potential, to obtain the
so-called Weeks-Chandler-Anderson (WCA) potential, [24]

V(r)=

{

VLJ(r)−VLJ(rc), for r≤ rc ,

0, for r> rc ,
(3.2)

which we use for all simulations throughout this paper. Despite its simplicity, this po-
tential proves adequate for the inspection of hydrodynamic effects in molecular fluids
[23, 25, 26].

3.2 The nanoparticle: rigid body dynamics

To keep the model as close as possible to the assumptions of Faxén and Brenner [13, 15],
we model the nanoparticle as a rigid-body (RB). In a particle-based RB the positions of
a number of particles, shaping the RB, are strictly fixed to the local coordinate system
centred in the RB’s centre of mass. This way, only three translational degrees of freedom
(DOFs) X,Y,Z and three rotational DOFs θ,ψ,φ, have to be tracked. Forces are computed
between the fluid particles and the body’s particles and for simplicity, the same inter-
action potential (3.1) as inside the fluid is used. No forces are computed between the
body’s particles, as their position in the coordinate system of the centre of mass is fixed.
Forces acting between the fluid particles and the body particles are split into linear force
and torque, with respect to the centre of mass. Because of d’Alembert’s principle, the
linear forces and torques of the body’s particles can be accumulated. The resulting lin-
ear force and torque are applied only to the 6 DOFs X,Y,Z,θ,ψ,φ. The update of these
6 DOFs according to the force and torque defines a translation and rotation of the RB’s
local coordinate system and hence of the RB-particles fixed in it.

To compute the orientation of the nanoparticle we use quaternions as combined with
a Verlet-like time integration scheme, developed by Omelyan [27].

3.3 Simulation setup

The physical units of our LJ-model system depend on the material to be represented. As a
simple approximation the LJ-potential is used for many fluids, although in a strict sense,
it only represents accurately noble gases, such as Argon. For the latter, the values for σ

and ǫ are given in Table 1. In these units, the diameter of the spherical nanoparticle is 2.5
nm, hence very small.

Using MD, we simulate a colloidal nanoparticle performing Brownian motion. We
make use of several equilibrium MD simulations of one nanoparticle in a LJ fluid and at
different initial distances to a planar wall. We track the position and the velocity of the
diffusing nanoparticle and compute the velocity-autocorrelation-function (VACF) of the
nanoparticle’s velocity. With the Green-Kubo expression (2.9), we compute the diffusion
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Table 1: The molecular dynamics (MD)-units and their values for Argon in SI-units.

parameter MD-unit values for argon [SI-units]

length l∗=σLJ 3.40×10−10 m

energy ǫ∗=ǫLJ =kBT 1.66×10−21 J

mass m∗=mLJ 6.69×10−26 kg

time t∗=σLJ

√
m∗/ǫ∗ 2.16×10−12 s

coefficient. Our goal is to obtain a profile of the parallel and perpendicular components of
the diffusion coefficient as a function of the nanoparticle’s distance from the planar wall.
Since the nanoparticle is unconstrained and allowed to perform free Brownian motion in
the entire simulation domain we can not simply associate the diffusion coefficients that
we measure for a nanoparticle, to its initial or average position. Therefore, we apply
a sorting algorithm that uses the instantaneous position of the nanoparticle to generate
pieces of the velocity trajectory that belong to different layers, corresponding to ranges
of distances of the nanoparticle to the planar wall (cf. Fig. 2). Differently to the simplified
figure, these ranges may overlap and vary in width from ∼ 3σ close to the wall to ∼ 7σ

more in the bulk. Besides the overlap, no additional smoothing of the data points is
performed. We then compute the VACF for each of these pieces of the velocity trajectory,
and compute a weighted average of all VACFs belonging to the same layer. We finally use
the Green-Kubo relation to obtain the diffusion coefficients from the averaged VACF and
associate this coefficient with the average particle position of all trajectories of a layer.

Table 2 summarises the parameters that are used for all simulations. We use periodic
boundary conditions in all directions with the lateral sizes of the domain given in the
table. To model the planar wall with normal vector in z-direction (the particle layer on the
left in Fig. 2), we freeze a layer of fluid particles, initially arranged in a face-centred cubic
(FCC) lattice and exclude these particles from the time integration. Due to the periodicity
of the simulation domain, there is in fact a periodic array of walls in z-direction. The
wall thickness is one FCC elementary cell length ac (cf. Table 2), and hence larger than
the cutoff rc. By choosing the largest domain size in z-direction, we try to minimise finite
size-effects, although we cannot exclude them completely.

We run 40 and 35 simulations with different initial conditions for the sphere and the
tetrahedron, respectively. Besides the initial velocities of the fluid particles, the initial
conditions differ in the nanoparticle’s initial distance to the wall. Each of the simulations
consists of 2×107 production timesteps following 105 thermalisation and equilibration
timesteps. Thermalisation is performed by a rescaling of the velocities of the fluid parti-
cles periodically at specific time steps and subsequent relaxation periods. The nanopar-
ticle’s degrees of freedom are not rescaled but converge to the desired temperature along
with the fluid particles. The fluid’s and the nanoparticle’s average temperatures during
the production run are both always within 2% of the desired value.

During the random walk, the nanoparticle usually travels through the complete sim-
ulation volume. Hence, it is not necessary to position the nanoparticle of the ensemble



908 A. Fuchs et al. / Commun. Comput. Phys., 13 (2013), pp. 900-915

Figure 2: Illustration of the subdivision of the simulation volume into layers parallel to the wall for computing
local velocity-autocorrelation-functions (VACF) and diffusion constants. The unit of length used in the figure is
ac ≈1.79σ (cf. Table 2) and is used to denote the dimensions of the simulation box. The colour-coding of the
representative particle trajectory indicates its start (red) and end (blue). For a better visualisation, the trajectory
extends to the neighbouring periodic boxes instead of being cut and shifted back to the original simulation box
shown in light grey.

simulations at even greater distances to the wall. The most interesting region with re-
spect to the correction terms, is the one close to the wall (cf. Fig. 1), which is also the
statistically best covered one.

We simulate spherical nanoparticles consisting of 140 MD particles and nano tetrahe-
dra of 56 MD particles. To construct the nanosphere, we initially place particles in a FCC
lattice and select those inside a spherical volume with radius R′. This radius is used as
starting point to compute the effective hydrodynamic radius R ≈ 3.69σ (cf. Table 2) as
described in Section 2.

For the nano-tetrahedron, we additionally cut the particles inside the spherical vol-
ume by four planes corresponding to the faces of the tetrahedron. Here, we use an ef-
fective radius of R ≈ 2.60σ. To obtain the effective radius for the tetrahedron, we first
inflate the tetrahedron along its surface normals by d̄A/2 and then calculate the radius
for a sphere with the same surface area. This choice is motivated by the fact that hydro-
dynamic interactions act through the nanoparticle’s surface. Interestingly, computing the
effective radius from D as obtained with Green-Kubo of a periodic bulk simulation and
the known viscosity of the LJ-fluid, leads to a very similar result for the effective radius
R. In order to ensure Brownian motion the mass density of the nanoparticles is set to 10ρ0

where ρ0 is the density chosen for the LJ-fluid. This is realised by setting the mass of a
single rigid body particle to mRB =10m f where m f is the mass of a fluid particle.
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Table 2: The basic setup of the nanoparticle molecular dynamics (MD)-simulations.

parameter value: MD-units for Argon

FCC cell constant ac 1.79 0.61 nm

simulation domain 20×20×42a3
c 3.77×103 nm3

number of particles 67200 –

density n 0.7 1.70×103 kg m−3

temperature T 1.0 120 K

timestep 0.003 8.64×10−15 s

equilibration time 105∆t 8.64×10−10 s

simulation time 2·107∆t 1.73×10−7 s

number of simulations (sphere/tetrahedron) 40/35 –

cut-off range rc 2(1/6) 0.38 nm

effective particle radius (sphere/tetrahedron) R 3.69/2.60 1.25/0.89 nm

mass of sphere Ms 140×10 9.37×10−23 kg

mass of tetrahedron Mt 56×10 3.75×10−23 kg

4 Results

4.1 Brownian motion

First, we verify in a periodic bulk liquid that our choice for the nanoparticle mass, or,
more specifically, the ratio of nanoparticle to fluid mass densities ρRB/ρf = 10 allows us
to assume Brownian behaviour and hence the Stokes-Einstein relation in its simple form
(2.8). This is the case, if the nanoparticle’s velocity autocorrelation function (VACF) de-
cays exponentially. Note that this strict definition of Brownian motion is not consistently
used in the literature. More general definitions including non-exponential VACFs can
be found as well (cf., e.g., [20]). Fig. 3 shows the VACFs exemplarily for the sphere, on
the left for ρRB/ρf = 1, and on the right for ρRB/ρf = 10. We used the same timestep of
∆t = 1.152×10−14s for the light and the heavy nanoparticle simulations, since the ac-
celerations of the light fluid particles are the limiting factor for ∆t. While the VACF
for equal mass densities shows an approximately double exponential behaviour, the in-
creased nanoparticle mass density leads to a VACF that can be sufficiently well fitted by a
single exponential representing an extended region II as compared to ρRB/ρ f =1. By do-
ing so the largest error of ≈20% can be observed for the exponential’s extrapolated value
at t=0 which was not constrained to 3kBT/M during fitting. This error stems from disre-
garding region I. Note that hydrodynamic theory predicts in the incompressible case that
the VACF decays approximately exponentially in region II with an extrapolated value
at t = 0 of ≈ 3kBT/(M+M f /2), where M f is the fluid mass displaced by the particle
due to vortex diffusion (for details cf., e.g., [4, 28]). This effect represented by region I is
clearly dominant for ρRB/ρ f =1 and strongly reduced for ρRB/ρ f =10. Note further, that
increasing the mass density ratio increases the characteristic time for Brownian motion
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Figure 3: Velocity-autocorrelation-functions (VACF) for a light (left: ρRB/ρf = 1) and a ten times heavier
nanoparticle (right: ρRB/ρf=10), with and without rotational degrees of freedom. While the left VACF must
be fitted by two exponentials (I and II), the right VACF shows exponential decay with one single time constant
and hence Brownian behaviour. The VACFs Ψ(t)≡〈v(t)·v〉 have been normalised by 〈v·v〉= 3kBT/M. The
extension of the exponential to negative times serves only for improving the distinction of curves. The unit of
time is given in Table 1.

and hence delays the t−3/2 behaviour of the hydrodynamic tail (of region ”III”) to times
where noise makes it unobservable. We expect a hydrodynamic tail to be detectable for
ρRB/ρ f = 1 but this would require improved statistics for this case which is of minor
interest for the work presented here. Then, for the simulations with ρRB/ρ f = 1 and a
confinement by walls, we have to ask the question whether the change in the behaviour
of the hydrodynamic tail being now proportional to t−5/2 as theoretically predicted by
Felderhof [20] can be detected. Additionally we see that the presence or exclusion of
rotation does not have a major effect.

4.2 Spatially dependent diffusion constant

Fig. 4 shows the computed profiles of the anisotropic diffusion coefficients for the spher-
ical nanoparticle and the nano-tetrahedron with properties as given in Table 2. Both
nanoparticles have an equal mass density ρRB=10m∗/l∗3 but different volume and mass
due to a different number of particles (140 vs. 56) and effective radius R′. We normalize
the diffusion values with the bulk diffusion D0 and normalise the distance between par-
ticle and wall to the effective particle radius R. The bulk diffusion D0 was calculated
through the Green-Kubo integral (2.9) from simulations in a cubic box with periodic
boundary conditions (PBC) and edge length L = 32σ resulting in a finite-size diffusion
constant DPBC

L to give

D0=DPBC
L

(

1− Rξ

L

)

, (4.1)

where ξ ≈2.837 is a correction factor according to [29]. In the correction given there, we
have expressed the shear viscosity η in the bulk by the effective radius R and the diffusion
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constant D0 through the Stokes-Einstein relation (2.8) leading to the above expression.

The diffusion profile, that we obtain for a nano sphere (cf. Fig. 4a) is shown in Fig. 4c.
The plot shows the normal and the parallel component of the nanoparticle’s self diffusion
coefficient as a function of the nanoparticle’s distance to the planar wall. Also plotted are
the inverted analytical correction terms (2.5, 2.6). We repeated the MD-simulations for
the nano tetrahedron (cf. Fig. 4b). In the vicinity of the wall both objects show diffusive
behaviour in good agreement with theory. For increasing distance, the parallel diffusion
constant of the sphere deviates from the theoretical prediction, while the perpendicular
diffusion parameter remains in good agreement.

The tetrahedron’s diffusion constants are plotted against the distance to the wall nor-
malised by the effective radius R=2.60σ. Note that there is no significant change in be-
haviour due to the non-spherical shape of the nanoparticle. Moreover, the tetrahedron’s
diffusion values agree with the theory for the equivalent sphere up to large distances.

We attribute the deviation of the third parallel diffusion constant from the wall to
additional errors due to the measurement algorithm which are not accounted for by the
given error-bars. These may stem from the huge number of very short trajectories that
result in the region close to the wall possibly leading to a partially incomplete equiparti-
tion. We are currently unable to explain the disagreement of measurement and theory for
the sphere’s parallel diffusion component for z/R>1. An inconsistency due to different
finite size effects parallel and perpendicular to the wall may give rise to this deviation.

4.3 Nanoparticle orientation

Since no significant shape dependence has been observed for the diffusion coefficient,
we take a closer look at the orientation and the rotational motion of the nanosphere and
nanotetrahedron when brought close to the planar wall. Therefore, we transform the
trajectory of the orientation of the nanoparticle, which is given in quaternions q(t), into
spherical coordinates φ(t),θ(t),r = 1 of a representative vector which is constant in the
nanoparticle’s local coordinate system. We define a region close to the wall, with a small
gap. This gap of 0.54 nm serves to avoid artefacts in the statistics due to close contact
with the wall. The parts of the trajectories lying inside this region are extracted in order to
compute histograms of the spherical coordinates φ(t),θ(t). The orientational histograms
for the spherical cluster and the tetrahedron are shown in Fig. 5. φ should be equally
distributed in case of isotropy and the distribution of θ should be sin(θ). Besides the
noise, both nanoparticle shapes show an isotropic orientation near the wall, thus we do
not observe any significant shape dependence.

5 Summary and discussion

Summarizing, we have presented a molecular dynamics investigation of the hydrody-
namic interactions of spherical and tetrahedral nanoparticles close to planar walls.
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(a)

(c)

(b)

(d)

Figure 4: Top: A cluster of (a) 140 MD particles approximating a spherical nanoparticle and (b) 56 MD particles
approximating a nano-tetrahedron. Bottom: Profile of the diffusion coefficient for the (c) sphere and (d) for
the tetrahedron. The errors of the diffusion values increase with the distance, because of less data.
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Figure 5: Histograms of the orientation angles of nano sphere and tetrahedron. The ideal isotropic distributions
are plotted as well.

For both shapes, numerical data are found to reproduce the anisotropic correction
to fluid viscosity, as predicted by the continuum hydrodynamic theories of Faxén and
Brenner [13–15]. This is an interesting finding, because in experimental work [30,31], the
parallel diffusion coefficient could either not be measured independently of the normal
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one or the measured parallel diffusion coefficient showed large deviation from the the-
oretic predications of Faxén and Brenner for particle sizes of 100 nm. We also see, that
the particle touches the wall, which was claimed to be unphysical in previous theoretical
work [32]. The present results provide yet another evidence of the broad range of validity
of hydrodynamic theory, down to a very few atomic distances [23], in our case down to a
molecular radius σ. For the spherical nanoparticle a very good agreement is observed for
the diffusion constant perpendicular to the wall. A pronounced deviation in the break-
down region near the wall is shown. On the other hand the parallel diffusion constant
for a sphere follows the theoretical prediction down to the shortest distances resolved by
our simulation results, where no singular behaviour of the theory is present. In contrast,
at larger distances the deviations are increasing most likely due to the above mentioned
inconsistency in the simplified treatment of finite size effects.

The results for the tetrahedron show very good agreement with the theory in the
parallel direction, while the perpendicular direction is in good agreement within the sta-
tistical uncertainty. The deviation at short distances from the wall is pronounced in the
perpendicular diffusion constant as well. This leads us to the conclusion that there is
no distinct dependence due to the two different geometrical shapes of the nanoparticle
used. Even though our Reynolds number tends to zero and is hence very different from
Vergeles et al.’s [18], we can confirm their conclusion that hydrodynamics holds down to
molecular scales. Challa and van Swol’s observed solvation force’s [19] did not seem to
influence our results.

Only very recently, experimental setups for Brownian particles were devised, which
enable to measure the normal and the parallel component of the anisotropic particle mo-
bility independently by light scattering and the evaluation of correlation functions [33].
The MD scheme presented in this work can therefore offer a useful complement and al-
ternative to experimental investigation.
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