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Abstract. A comparative study is conducted to evaluate three types of lattice Boltz-
mann equation (LBE) models for fluid flows with finite-sized particles, including the
lattice Bhatnagar-Gross-Krook (BGK) model, the model proposed by Ladd [Ladd AJC,
J. Fluid Mech., 271, 285-310 (1994); Ladd AJC, J. Fluid Mech., 271, 311-339 (1994)], and
the multiple-relaxation-time (MRT) model. The sedimentation of a circular particle in
a two-dimensional infinite channel under gravity is used as the first test problem. The
numerical results of the three LBE schemes are compared with the theoretical results
and existing data. It is found that all of the three LBE schemes yield reasonable re-
sults in general, although the BGK scheme and Ladd’s scheme give some deviations
in some cases. Our results also show that the MRT scheme can achieve a better nu-
merical stability than the other two schemes. Regarding the computational efficiency,
it is found that the BGK scheme is the most superior one, while the other two schemes
are nearly identical. We also observe that the MRT scheme can unequivocally reduce
the viscosity dependence of the wall correction factor in the simulations, which reveals
the superior robustness of the MRT scheme. The superiority of the MRT scheme over
the other two schemes is also confirmed by the simulation of the sedimentation of an
elliptical particle.

PACS: 44.05.+e, 47.11.-j, 47.56.+r

Key words: Lattice Boltzmann equation, finite-sized particles, numerical performance, sedimen-
tation in channel.

1 Introduction

Particulate flows occur widely in both industrial and scientific applications, such as river
sediment resuspension and transport, blood clogging and cell transport in arteries and
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veins, DNA and polymer molecules [1, 2], colloidal suspensions, etc. Owing to the im-
portance of these applications, experimental and numerical studies have been attracting
considerable attention in the past decades.

In particulate flows, the fluid phase can be well-described by the Navier-Stokes (NS)
equations, while the description of the particle phase can be classified into two categories,
i.e., the point-particle method and the finite-size particle method. In the point-particle
method, a solid particle is considered as a mass point with negligible size and shape,
and its position and velocity are traced in a Lagrangian manner. The interactions be-
tween fluid and particles are modeled by some empirical or semi-empirical relations. The
point-particle method is suitable for most engineering applications with a large number
of particles with sizes far smaller than the flow length scale. However, the point-particle
method is not enough to reveal the fundamental mechanism of the fluid-particle interac-
tions. In contrast, the size and shape of a particle are considered in the finite-size particle
method, and the particle-fluid interactions can be described through the no-slip bound-
ary conditions on the particle interface directly. Therefore, this method can be viewed as a
direct numerical simulation method for particulate flows. Several direct numerical simu-
lation methods, including the finite element method (FEM) and the finite volume method
(FVM), have been developed within this framework [3–6]. However, these methods usu-
ally suffer from expensive computational costs due to frequent remeshing and projection
in simulations of particulate flows.

Besides these conventional methods that solve the NS equations, the lattice Boltz-
mann equation (LBE), which is a method based on kinetic theory, has also been applied
to particulate flows [7–16]. The first application of LBE to particulate flows with finite-
sized particles is attributed to Ladd [10, 11]. In this method [10, 11], a fixed regular grid
system is used to represent the flow field and the solid particle. A modified bounce-
back rule [11] is proposed to treat the no-slip boundary condition on the particle-fluid
interface, and an approach based on momentum exchange is developed to calculate the
hydrodynamic force exerting on the solid particle. It is assumed that the fluid can pass
through the boundary of the suspended solid particle and occupy its interior domains. In
this way, both the interior and exterior fluid nodes can be treated in an identical manner
as the particle moves on the lattice. It is noted that in Ladd’s model the particle behaves
like a rigid one with the combined mass and moment of inertia of the shell plus the inter-
nal fluid. Consequently, when the density ratio of particle to fluid is close to or smaller
than unity, numerical instability will occur in the particle update procedure [16–18]. To
overcome this limit, a number of methods have been developed to partially or fully re-
move the internal fluid of particle [12, 13, 19].

Another problem of Ladd’s model is that the particle surface is represented by the
boundary nodes which are actually a set of points located at the middle of the link be-
tween a fluid node and a solid node. This arrangement means that the body surface
is approximated by a stair-step shape. As the particle moves, this will generate some
noisy forces and further bring fluctuations to the particle velocities. Some improve-
ments [20–23] have been proposed for more accurate representation of the particle shape
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with curved boundary condition.

More recently, a number of approaches that combined LBE with other types of meth-
ods were also developed for fluid-particle systems. For instances, Ten Cate et al. [24]
introduced an adaptive-forcing method into LBE, and Owen et al. [25] established a com-
putational framework that hydrodynamically combined LBE with the discrete element
method (DEM) for suspensions, while Kollmannsberger et al. [26] proposed a partitioned
approach to couple LBE and FEM for fluid-structure problems. With the LBE and DEM,
Feng et al. [27, 28] simulated some turbulent fluid- particle flows. Feng and Michaelides
proposed a method to incorporate the immersed boundary method (IBM) [29,30] into the
LBE through either a penalty approach [31] or a direct-forcing method [32]. However, as
pointed out in Refs. [17, 32, 33], a priori selection of the stiffness coefficient is needed for
a specific problem [31], and the NS equations are solved by a finite difference method to
determine the density force, which may spoil the merits of LBE and bring errors to the
force computations on the object [32]. In addition, it is observed that some leakage of
fluid momentum inside the solid particle emerges in some cases. Some improved LBE
methods [17, 33, 34] were proposed recently, and some combinations of LBE with other
methods were also developed [35–39].

Although a variety of LBE methods have been developed for particulate flows [10,16,
33, 40, 41], the criterion for model selection is still not clear in practical applications, and
a systematic investigation of the performances of these schemes is still desirable. In the
present work, we intend to conduct a detailed comparison of the most widely used LBE
schemes by simulating the sedimentation of a particle in a 2D infinite channel in terms of
the accuracy, numerical stability, computational efficiency, and robustness.

The remainder of this paper is organized as follows. Section 2 presents a brief in-
troduction of the three LBE schemes, including the lattice BGK (LBGK) scheme, Ladd’s
scheme, and the multiple-relaxation-time (MRT) scheme. Section 3 provides the results of
this study. The test case of the sedimentation of one particle in an infinite channel is first
briefly described, and then the numerical results obtained by the three LBE schemes are
compared with the analytical results and the existing reference data. A detailed assess-
ment of the three LBE schemes, which focus on the accuracy, numerical stability, com-
putational efficiency and the viscosity dependence of the wall correction factor, is also
included in this section. To confirm the findings, Section 4 presents a further comparison
of the three LBE schemes by simulating the sedimentation of an elliptical particle in an
infinite channel. A brief summary is presented in Section 5 finally.

2 The lattice Boltzmann method for particulate flows

2.1 General formulation

In LBE for particulate flows, the fluid motion is described as:

fi(x+ciδt,t+δt)− fi(x,t)=Ωi(x,t), (2.1)
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where fi(x,t) is the fluid distribution function (DF) for the particle with discrete velocity
ci at time t and position x, δt is the time increment, and Ωi(x,t) is the collision term. The
fluid density ρ and velocity u are defined by the zeroth and first velocity moments of the
DF:

ρ=∑
i

fi, ρu=∑
i

ci fi. (2.2)

In the typical D2Q9 model [42, 43], the discrete velocity set is

ci =











( 0,0), i=0,
(

cos
[

(i−1)π/2
]

,sin
[

(i−1)π/2
])

c, i=1−4,
(

cos
[

(i−1)π/2+π/4
]

,sin
[

(i−1)π/2+π/4
])
√

2 c, i=5−8,

(2.3)

where c=δx/δt is the lattice speed, and δx is the lattice constant.

In practice, the evolution of Eq. (2.1) is usually decomposed into two steps:

Collision : f ∗i (x,t)= fi(x,t)+Ωi(x,t), (2.4a)

Streaming : fi(x+ciδt,t+δt)= f ∗i (x,t). (2.4b)

where f ∗i (x,t) denotes the post-collision state of DF. Within the LBE framework, the colli-
sion models in Eq. (2.1) are usually based on the linearized collision operator. According
to the collision models, most LBE models for simulating particulate flows can be classi-
fied into three categories: the BGK scheme, Ladd’s scheme, and the MRT scheme.

2.1.1 BGK scheme

In the BGK scheme, the collision operator is approximated by a relaxation process:

Ωi(x,t)=− 1

τ

[

fi(x,t)− f
(eq)
i (x,t)

]

, (2.5)

where f
(eq)
i (x,t) is the local equilibrium distribution function (EDF), and τ is the dimen-

sionless relaxation time which characterizes the rate of approaching to equilibrium.

The EDF for the D2Q9 model has the following form:

f
(eq)
i =ωiρ

[

1+
ci ·u
c2

s

+
(ci ·u)2

2c4
s

− u2

2c2
s

]

, (2.6)

where ωi is the weighting factor which is given as follows: ω0 = 4/9, ωi = 1/9 for i =
1,2,3,4, and ωi = 1/36 for i = 5,6,7,8. cs = c/

√
3 is the sound speed. In the low Mach

number limit, the macroscopic NS equations with a kinematic viscosity ν = c2
s (τ− 1

2)δt

can be recovered from the LBE through the Chapman-Enskog expansion.
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2.1.2 Ladd’s scheme

In Ladd’s scheme [10,16], in addition to the mass density ρ and velocity u, the momentum
flux Π is also involved, which is defined as:

Π=∑
i

cici fi. (2.7)

The equilibrium momentum flux can be obtained by

Π
eq =∑

i

cici f
(eq)
i = c2

s ρI+ρuu.

The post-collision distribution in Ladd’s scheme is written as a series of the moments

f ∗i =ωi

[

ρ+
ρu·ci

c2
s

+
(ρuu+Π

neq,∗) : (cici−c2
s I)

2c4
s

]

. (2.8)

The relaxation of the non-equilibrium momentum flux Π
neq is realized as follows:

Π
neq,∗=(1+λν)Π

neq
+

1

3
(1+λζ)

(

Π
neq : I

)

I, (2.9)

where Π
neq =∑i cici f

neq
i =Π−Π

eq, and Π
neq

=Π−Π
eq

(the overline used here indicates
the traceless projection). The parameters λν and λζ are the eigenvalues of the linearized
collision operator and are related to the shear and bulk viscosities, respectively.

In the original formulation of Ladd’s model [10, 16], the collision operator has three
parameters which respectively allow for separate relaxation of three kinds of modes, i.e.
shear modes, bulk modes, and kinetic modes. The kinetic modes can also have an effect
on the post-collision distributions, but the eigenvalues corresponding to these modes are
set to -1 in Ladd’s scheme so that they are “killed”. Through a multi-scale analysis [16,44],
the NS equations can be recovered in the limit of low Mach number, in which the shear
and bulk viscosities are determined respectively by

ν=−c2
s δt

(

1

λν
+

1

2

)

, ζ=−2c2
s

3
δt

(

1

λζ
+

1

2

)

. (2.10)

2.1.3 MRT scheme

The MRT collision model can be written as

Ωi(x,t)=−∑
j

Φij

(

f j(x,t)− f
(eq)
j (x,t)

)

, (2.11)

where Φij is the component of a collision matrix Φ. In moment space, the MRT collision
model can be expressed as:

Ω(x,t)=−M−1S
[

m(x,t)−m(eq)(x,t)
]

, (2.12)
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where m and m(eq) are the moment vector and the corresponding equilibria in moment
space, respectively. M is the transformation matrix that maps the distribution functions
to their moments,

m=M · f , f =M−1 ·m.

In Eq. (2.12) S= MΦM−1 is the corresponding collision matrix in moment space, which
is a diagonal matrix of relaxation rates {si}: S= diag(s0,s1,··· ,s8). For the D2Q9 model,
the transformation matrix M can be obtained by the Gram-Schmidt orthogonalization
procedure [45], which can be found in [45–48].

With this transformation matrix, the moment vector can be expressed as,

m=(ρ, e, ε, jx, qx, jy, qy, pxx, pxy)
T,

where T denotes the transpose operator. In the vector m, ρ is the fluid density, e and
ε are related to the total energy and the energy square, jx and jy are components of the
momentum, i.e., jx = ρux, jy = ρuy, qx and qy are the x and y components of the energy
flux, and pxx and pxy are related to the symmetric and traceless components of the stress
tensor, respectively.

The corresponding equilibria of the moments are given by

m(eq)=(ρ, e(eq), ε(eq), jx, q
(eq)
x , jy, q

(eq)
y , p

(eq)
xx , p

(eq)
xy )T, (2.13)

where the density ρ and the momentum j=ρu are the conserved moments. The equilibria
of the non-conserved moments depend on the conserved moments [45]:

e(eq)=ρ(−2+3u2
x+3u2

y), ε(eq)=−ρ(−1+3u2
x+3u2

y), (2.14a)

q
(eq)
x =−ρux, q

(eq)
y =−ρuy, (2.14b)

p
(eq)
xx =ρ(u2

x−u2
y), p

(eq)
xy =ρuxuy. (2.14c)

Noticing that the relaxation rates s0, s3 and s5 are related to the conserved moments and
can take any values, which are set to be zero in the present work. The other relaxation
rates are chosen in the range 0< si <2 to satisfy the stability condition for non-conserved
moments [45].

For the above D2Q9 model, the shear viscosity ν and the bulk viscosity ζ are given by

ν= c2
s

(

1

s7
− 1

2

)

δt, ζ= c2
s

(

1

s1
− 1

2

)

δt. (2.15)

In addition, it is required that s7= s8 and s4= s6.
In MRT-LBE, the collision step is first implemented in the moment space, and then

transformed back to the velocity space,

m∗(x,t)=m(x,t)−S
[

m(x,t)−m(eq)(x,t)
]

, f ∗=M−1m∗. (2.16)
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It is noted that the three LBE schemes have close relations. If we set all the relaxation
rates si to be 1/τ, the MRT-LBE scheme reduces to the standard LBGK scheme, while if
we set s7 = s8 =−1/λν, s1 = 6λζ /(λζ−4), and si = 1 for other moments, the MRT-LBE
scheme reduces to Ladd’s scheme. Ladd’s scheme is also equivalent to the LBGK scheme
with τ=1 in the special case of λν=λζ =−1. For convenience, we will set s7=s8=1/τ in
the MRT-LBE scheme and λν=−1/τ in Ladd’s scheme.

2.2 Particle-fluid boundary conditions

In order to apply the LBE to particulate flows, two issues should be carefully consid-
ered. One is how to treat the boundary conditions on a particle surface, and the other is
how to calculate the hydrodynamic forces exerted on the solid particle. In this work, we
will follow Ladd’s method [10, 16] to treat a particle, of which the interior is also filled
with the fluid. It is noteworthy that such treatment can ensure the mass and momentum
conservation of the flow, and can also facilitate the computations. The particle surface is
approximated by some boundary nodes, as illustrated in Fig. 1, which are placed halfway
along the links between the fluid node and solid node. The boundary condition imposed
at the solid-fluid interface is the no-slip condition, i.e., at a boundary node xb the fluid
velocity ub is set to be

ub=Up+Ωp×(xb−R), (2.17)

where Up and Ωp are the particle translational and angular velocities, respectively, R is
the location of the mass center of the particle.

xs
xf xb

Figure 1: Schematic of the location of boundary nodes. Solid circle: solid node; Open circle: fluid node; Solid
square: boundary node which is placed halfway along the links of fluid and solid nodes.

In order to realize the no-slip condition for a moving particle, Ladd [10, 11] proposed
a modified bounce-back rule in which the boundary velocity is taken into account,

fi′(x,t+δt)= f ∗i (x,t)−2ωiρ
ci ·ub

c2
s

, (2.18)

where x is the position of the node adjacent to the solid surface, i′ denotes the opposite
direction of the incident direction i (reflection direction). In the original scheme [10, 11],
Ladd applied the above rule to the boundary nodes on both sides of the solid surface.
Such bounce-back rule will be employed in the present work.



1158 L. Wang et al. / Commun. Comput. Phys., 13 (2013), pp. 1151-1172

At the boundary node xb, the hydrodynamic force exerted on the solid particle along
ci can be calculated by the momentum exchange method, which is written as

Fi(xb,t)=2
δ2

x

δt
ci

[

f ∗i (x,t)−2ωiρ
ci ·ub

c2
s

]

. (2.19)

The total force Ft and torque Tt on the solid particle can be determined by,

Ft=∑
xb

∑
i

Fi(xb), Tt=∑
xb

∑
i

(xb−R)×Fi(xb), (2.20)

where the summation runs over all boundary nodes and all relevant directions for each
boundary node.

The motion and rotation of the particle can be determined from the following equa-
tions:

Mp
dUp

dt
=Ft , Ip

dΩp

dt
=Tt , (2.21)

where Mp and Ip are the mass and the moment of inertia of the particle, respectively. In
the numerical scheme for solving these two equations, we adopt the following formula
to update both the translational and rational velocities of the particle at each time:

Un+1
p =Un

p +δtFt/Mp, (2.22)

and

Ω
n+1
p =Ω

n
p+δtTt/Ip. (2.23)

The particle is updated by integrating the velocity after each time step.

2.3 Particle-particle and particle-wall interactions

When a large number of particles exist in a container, it is possible that one particle locates
very close to another or the wall under certain circumstances. If the distance is less than
one lattice, the above force calculation will break down because no sufficient nodes exist
for implementing the momentum exchange. In addition, it is unphysical that the particles
penetrate into each other’s boundary or into the wall. To resolve these problems, we can
add some short-range repulsive forces when the minimum gap of the particle-particle
or particle-wall is less than a given threshold. In this paper, we will adopt the collision
model proposed by Wan and Turek [49]. For particle-particle collisions, the repulsive
force is given by

F
p

i,j =















0, di,j >Ri+Rj+ξ,
1
ε′p
(Xi−Xj)(Ri+Rj−di,j), di,j6Ri+Rj,

1
ε p
(Xi−Xj)(Ri+Rj+ξ−di,j)

2, Ri+Rj6di,j6Ri+Rj+ξ,

(2.24)
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Xi

X ′

i

d′i

Figure 2: Schematic diagram of the location of the imaginary particle.

where Ri and Rj are the radii of the ith and jth particles, Xi and Xj are their centers,
di,j= |Xi−Xj| is the distance between the centers, ξ is the threshold which is set to be one
lattice spacing in the present work, ε′p and εp are two small positive stiffness parameters

for particle-particle collisions and both are set to be 1.0×10−7. Similarly, for the particle-
wall collisions, the repulsive force is given by

Fw
i =















0, d′i >2Ri+ξ,

1
ε′w
(Xi−X ′

i )(2Ri−d′i), d′i62Ri,

1
εw
(Xi−X ′

i )(2Ri+ξ−d′i)
2, 2Ri6d′i 62Ri+ξ,

(2.25)

where X ′
i is the coordinate vector of the center of the nearest imaginary particle located

on the boundary and d′i = |Xi−X ′
i | (see Fig. 2), ε′w and εw are two stiffness parameters

which are set to be ε′w = ε′p/2 and εw = εp/2 in the calculations. It should be pointed out

that the supplementary force of particle collision, Fcol
i =F

p
i,j+Fw

i , is regarded as an external

force added to the total force acting on the i-th particle.

3 Numerical results and discussions for circular particle

In this section, we intend to compare the performance of the three LBE schemes in terms
of accuracy, numerical stability, computational efficiency, and robustness. The test prob-
lem is the sedimentation of a circular particle under gravity in an infinite channel, as
sketched in Fig. 3. The diameter of the particle is D, and the size of the channel is W×H,
where W and H are width and height of the channel, respectively. The gravitational force
is in the negative y-direction. This problem has been extensively studied by finite element
methods (FEM) [3, 50] and LBE methods [13, 39, 51, 52]. To mimic an infinite channel, a
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g

D

W

x

y

H

Figure 3: The schematic diagram for a circular particle settling under gravity in an infinite channel.

moving computational domain is used in these methods to capture the relevant section
of the infinite domain, which is also adopted in our simulations.

In simulations, the relaxation rates in the MRT scheme are set as follows: s0=s3=s5=0
for the conserved moments, s7 = s8 = 1/τ are determined by the shear viscosity ν based
on Eq. (2.15), while other relaxation rates are determined by the linear stability analysis
[45, 47, 48]. In our simulations, they are specified to be s4 = s6=1.8, and s1 =1.1, s2 =1.25
unless otherwise stated. For consistency, in Ladd’s scheme, we set λζ = 4s1/(s1−6) so
that the bulk viscosity is identical to that of the MRT scheme.

3.1 Accuracy

At low Reynolds numbers, an approximate analytical solution for the drag force on the
circular particle between two infinite and parallel walls can be expressed as [53]

Fd =4πKµU, (3.1)

where U is the settling velocity of the particle, µ is the dynamic viscosity of the fluid, and
K is a wall correction factor that reflects the effect of the channel walls on the drag force

K=
1

lnW∗−0.9157+1.7244(W∗)−2−1.7302(W∗)−4+2.4056(W∗)−6−4.5913(W∗)−8
,

(3.2)
where W∗ = W/D. When the particle is settling vertically at the constant speed, the
gravity force and the buoyancy force are balanced. The drag force can thus be given as

Fd =
1

4
πD2(ρ f −ρs)g, (3.3)
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where g is the gravitational acceleration, and ρs and ρ f are the particle density and fluid
density, respectively. So, the terminal sedimentation velocity of the particle is:

Ut=
D2

16Kµ
(ρ f −ρs)g=

D2

16Kν
(1−ρr)g, (3.4)

where ρr = ρs/ρ f is the ratio of particle to fluid densities, and ν=µ/ρ f is the kinematic
viscosity of the fluid. With this analytical solution, we can evaluate the accuracy of the
three LBE schemes.

The test problem has been studied by Nie et al. [39] using a LBE method coupled
with a direct-forcing fictitious domain technique [54] (LB-DF/FD). For comparison, the
computational parameters in the present simulation are taken the same as those used
in [39]. The computational domain is W×H = 1.2cm×6cm, the diameter of the parti-
cle is D= 0.24cm, the density and viscosity of the fluid are set to be ρ f = 1.0g/cm3 and
µ= 0.1g/(cm·s), respectively. A lattice with size of 120×600 is used to cover the com-
putation domain, and the relaxation time τ related to the shear viscosity is set to be 0.8.
Initially, the particle is located at (0.6cm,3.0cm) and held at rest (same as the fluid), and
the gravity accelerating velocity is g = 980.0cm/s2. In our simulations, zero velocities
are applied uniformly at the inflow boundary which is always 12.5D from the moving
particle, and the normal derivative of velocity is set to be zero at the outflow boundary
which is 12.5D from the particle. These boundary conditions are the same as those used
in [12, 13, 39]. No-slip boundary conditions are applied to the left and right walls, and
the non-equilibrium extrapolation scheme [55] is used to treat the boundary conditions
at the inlet and outlet. In our simulations, a moving mesh technique [39] is adopted so
that the computational domain moves with the particle. The technique of treatment is
briefly as follows: If the particle moves downward by one lattice unit, one layer of fluid
nodes at the downstream side is removed from the grid system and one layer of lattice
nodes will be added to the upstream side.

A number of tests with different density ratios ρr and Reynolds numbers Rep are
carried out. Here the particle Reynolds number Rep is defined by Rep=ρ f UcD/µ, where
Uc is the speed of the terminal settling velocity of the particle. In Fig. 4, the velocities
from the three LBE schemes are shown together with the analytical and the simulation
results in [39]. Also the corresponding particle Reynolds number (Rep) are listed in the
blankets. It is clear that the results obtained by the three LBE schemes are well consistent
with that by the LB-DF/FD method [39], except for the case of ρr = 0.95. In this case,
the particle velocities predicted by the BGK and Ladd’s schemes deviate sharply from
the constant terminal velocity as time marches to t > 2.1s, while the result of the MRT
scheme is still satisfactory. This is not surprising since Ladd’s (and the LBGK) scheme
has a requirement that ρs/ρ f > 1. This fact indicates that the MRT scheme may release
this constraint. Fig. 4 also shows that the LBE results deviate from the analytical solutions
given by Eq. (3.4) as |ρr−1| becomes larger. This may be because Eq. (3.4) is valid only
for small Reynolds numbers [53].
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Figure 4: Comparison of the vertical velocities of the particle during sedimentation at W/D= 5 for different
particle densities. The open circles are the results obtained by the LB-DF/FD method from [39], and the dashed
lines are analytical solutions obtained from Eq. (3.4). The number in the blanket of each case is the particle
Reynolds number.

In addition, we also conduct simulations using the MRT scheme with another set of
relaxation parameters: s1 = 1.1, s2 = 1.0, s4 = s6 = 1.2, and other relaxation parameters
are set to remain unchanged. It is found that the results are very close. For example, in
the case of ρr =0.95, the magnitude of the terminal velocity of the particle obtained from
the two sets of relaxation parameters are respectively 1.2324cm/s and 1.2380cm/s, with
a relative error within 0.454%.

We also noticed that there exist some slight differences between the magnitudes of
the simulating velocities for ρr=1+α and ρr=1−α, although they should be theoretically
identical as given by Eq. (3.4). This may be due to the effects of the interior fluid in
the particle adopted in the present method. However, the difference is very small. For
example, the largest difference is 3.05% between the velocity magnitudes for the cases of
ρr =0.95 and 1.05.

As noted previously, Ladd’s scheme can be viewed as a special case of the MRT
scheme (s1=6λζ/(λζ−4), s7=s8=−λν, and other si=1.0). We will demonstrate this point
numerically. In Fig. 5 the time history of the particle velocity predicted by the MRT-LBE
and Ladd’s scheme are shown. One can observe that the results from the two schemes are
nearly indistinguishable. To quantify the differences, we measure the relative difference
of the velocity:

E(t)=
|UpL(t)−UpM(t)|

|UpM(t)| , (3.5)

where UpL(t) and UpM(t) represent the instantaneous settling velocity of the particle
obtained by Ladd’s scheme and MRT scheme, respectively. The time history of relative
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Figure 5: Particle settling velocity at different density ratios predicted by the MRT and Ladd’s schemes (s1 =
6λζ /(λζ−4), s7 = s8=−λν, and other relaxation rates are set to be 1.0).

difference is plotted in Fig. 6(a) for ρr < 1 and Fig. 6(b) for ρr > 1. It can be seen that the
difference of the instantaneous velocities between the two schemes are very small (within
0.1%) in all of the cases considered. These results indicate that Ladd’s scheme can indeed
be regarded as a special case of the MRT scheme.
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Figure 6: Time variation of relative difference of particle settling velocity computed with Ladd’s scheme and
the present MRT scheme.

3.2 Numerical stability and computational efficiency

We now focus on the numerical stability of the three schemes. In our study, the stability
can be characterized by the minimum value of τ (τmin) below which numerical instability
will appear. It is hard to determine the exact τmin numerically, and we will roughly obtain
it by increasing from τ=0.5 with a small increment ς. A set of simulations are conducted
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Table 1: τmin with different grid resolution (ρs =1.01g/cm3).

τmin

D/δx LBGK Ladd-LBE MRT-LBE

10 1.3805 1.2285 1.1575

24 0.7505 0.7235 0.6895

40 0.5405 0.5345 0.5270

60 0.5255 0.5200 0.5120

Table 2: CPU time(s) of running 10000 time steps for the three LBE schemes.

Scheme

D/δx τ LBGK Ladd-LBE MRT-LBE

24 0.8 147.48 166.30 167.63

1.0 142.39 166.88 167.78

1.2 148.42 167.25 168.58

1.6 150.61 169.34 170.19

2.0 145.66 170.38 170.78

Maximum time increase 17.2% 17.83%

48 0.8 574.41 649.33 653.98

1.0 550.72 649.76 654.00

1.2 578.95 649.94 656.95

1.6 580.06 655.50 658.11

2.0 561.66 658.27 657.61

Maximum time increase 17.98% 18.75%

with different grid resolutions, and the computation is said to be stable if it works stably
till t=5.0s. ς is set to be 5×10−4 in our tests. Table 1 lists the values of τmin for the three
models with different lattices. The results given in Table 1 make it clear that the MRT
scheme is the most stable one among the three schemes on each mesh, while the LBGK
is the worst. Furthermore, it is found that the value of τmin decreases with decreasing δx

for each schemes.

We next pay our attention to the computational efficiency of the three LBE schemes.
To make a quantitative comparison, we used two different grid meshes, i.e., D = 24δx

and D = 48δx with different values of τ. For the parameter λζ in the Ladd’s scheme
and other relaxation rates in the MRT scheme, they are chosen as those described at the
beginning of this section. In all of these simulations, the particle-to-fluid density ratio
ρr is fixed at 1.01, and the particle diameter D is chose to be 0.24cm. With the aid of
Intel(R) C++ compiler 9.0, our simulations were conducted on a dual core Intel(R) E2180,
CPU 2.00GHz. Table 2 lists the CPU time for running 10000 time steps. As expected, it
is found that the BGK scheme takes the least CPU time, while the computation times of
Ladd’s scheme and the MRT scheme are almost the same although the former is slightly
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faster. It is also seen that both the MRT scheme and Ladd’s scheme are approximately
15∼ 20% slower than the BGK scheme. Overall, we can make a descending order with
respect to the computational efficiency of these three different schemes as follows: the
BGK scheme, Ladd’s scheme, and the MRT scheme.

3.3 Robustness

In the sedimentation process of a particle in an infinite channel, the particle is dragged
to move and rotate in response to hydrodynamic and gravitational forces. The channel
walls have significant effects on the particle, and the effects can be described by the wall
correction factor K given by Eq. (3.2). As shown, K depends only on the geometric pa-
rameter and irrelative to fluid properties such as the viscosity. In this section, we will
test the robustness of the three LBE schemes by measuring the wall correction factor with
different values of τ.

The wall correction factor K can be derived analytically from Eq. (3.4) and explicitly
written as follows:

K=
D2(1−ρr)g

16νUc
, (3.6)

where Uc is the speed of the terminal settling velocity of the particle which can be mea-
sured from the simulations, and g is the magnitude of the acceleration of gravity. In our
simulation, the following relaxation parameters of the MRT scheme will be employed:

s1= s2= s7= s8 =1/τ, s4= s6=8
(2−s8)

(8−s8)
. (3.7)

Substantially, Eq. (3.7) gives only two different relaxation rates in response to the even-
order and odd-order modes of the MRT scheme [23]. s7 is the relaxation rate for the even-
order modes which is determined by the shear viscosity according to Eq. (2.15), while s4

is the relaxation rate for the odd-order modes given by Eq. (3.7) so that the actual location
where the no-slip boundary conditions are satisfied is viscosity independent [23, 56, 57].
Furthermore, Eq. (3.7) has been also adopted in [58], where Pan et al. applied such set
of relaxation parameters to study the viscosity-dependent permeability in porous media
simulation. For Ladd’s scheme, the two parameters λν and λζ are set as before. The
acceleration of gravity is afresh set to be g=0.1cm/s2 in the simulations, and τ is varied
from 0.8 to 14.0. The density ratio is specified to be ρr = 1.01, and the diameter of the
particle is D = 0.24cm. The particle size is first chosen to be 24 lattice units, which is
sufficiently accurate for computations.

The normalized wall correction factor, K∗=KLB/K, where KLB is measured from the
LBE simulations according to Eq. (3.6) and K is given by Eq. (3.2), are plotted in Fig. 7
as a function of τ. As can be seen from the figure, for the LBGK scheme K∗ decreases
almost linearly with the relaxation time τ in the case of D= 24δx, which is unphysical.
For Ladd’s scheme, the computed K∗ also decreases linearly, but with a smaller rate com-
pared with the LBGK scheme. Contrary to the LBGK and Ladd’s schemes, K∗ predicted
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Figure 7: The normalized wall correction factor
K∗ versus the relaxation time τ with g= 0.1 and
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Figure 8: Same as Fig. 7 at D=32δx .

by the MRT scheme exhibits an almost unchanged value in the whole range of τ. We also
test this property with a finer grid (D= 32δx), and similar tendency is observed (Fig. 8).
These results clearly show that the MRT scheme is the most robust one among the three
schemes.

4 Numerical results of the sedimentation of an elliptical particle

In this section, we will perform some numerical simulations of the sedimentation of an
elliptical particle in an infinite channel to further compare the three LBE schemes. Many
studies of this problem have been reported [13, 14, 60]. As shown by Feng et al. [3] and
Huang et al. [59], the sedimenting elliptical particle can behave much differently from a
circular one due to its orientation.

In the following simulations, we will adopt the same computational conditions as
used by Xia et al. [60], who used both a FEM and a multi-block LBE method to solve the
two-dimensional problem. The elliptical particle is initially located at the center of a two-
dimensional channel with a width of W=0.4cm, and the orientation angle of the particle
with the horizontal axis is θ =π/4, as depicted in Fig. 9. The major and minor axes of
the ellipse are a=0.1cm and b=0.05cm, respectively. The lattice spacing is δx =1/260cm.
The fluid density is ρ f = 1.0g/cm3, and its kinematic viscosity is µ = 0.01cm2/s. The
elliptical particle is heavier than the fluid and settles under gravity acting in the negative
y-direction. To simulate the motion of the particle in an infinite channel, the moving
mesh method is again used here. Zero velocity condition (no-flow condition) is imposed
at the inflow boundary which is kept at a distance of 15a ahead of the center of the ellipse,
while the fully developed flow condition is applied to the outflow boundary which is 25a
behind the ellipse.

In Fig. 10, we compare the particle’s vertical velocities predicted by the three LBE
schemes with τ=0.648 together with that computed using the FEM [60] when the particle-
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Figure 9: Schematic of the sedimentation of an elliptical particle in an infinite channel.

fluid density ratio ρr = ρs/ρ f = 1.1. The particle Reynolds number Rep based on the
terminal velocity and the major axis of the particle is 12.78. As depicted in the figure,
after a period of sedimentation, the vertical velocity profiles of the ellipse obtained by
the BGK and Ladd’s scheme successively and obviously deviate from the finite-element
result [60], the velocity predicted by the BGK scheme exhibits some strong oscillations,
and that obtained by Ladd’s scheme also shows some oscillations weaker than that of
the BGK scheme. Such oscillations can lead to numerical instability as τ is further de-
creased. On the contrary, the velocity computed by the MRT scheme agrees quite well
with the element-finite result and no oscillations appear. These results indicate that the
MRT scheme can provide much satisfied numerical results and better numerical stability
as compared with the other two LBE schemes. To strengthen this point, we further de-
crease τ to 0.60 and increase Rep to a larger value by increasing ρr from 1.1 to 1.3. It is
found that the vertical settling velocity computed by the BGK scheme and Ladd’s scheme
deviates from the reference result with significant oscillations, whereas the MRT scheme
still works well and gives reliable results that are consistent with the finite-element re-
sult [60] (Fig. 11). Additionally, it is found that the MRT scheme is slower than the BGK
and Ladd’s scheme in terms of the computational efficiency, as observed in Section 3.2.

Also, different to the BGK scheme and Ladd’s scheme, for the two density ratios ρr

the velocity profiles of the elliptical particle predicted by the MRT scheme are in excellent
agreement with the FEM results [60], as clearly shown in Figs. 10 and 11. This indicates
that the results computed by the MRT scheme are less sensitive in comparison with the
other two schemes. These results further demonstrate the better robustness of the MRT
scheme.
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Figure 10: Comparison of the vertical settling veloc-
ity obtained by the three LBE schemes at τ=0.648
with the finite-element result of Xia et al. [60] for
an elliptical particle as ρr =1.1.
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Figure 11: Same as Fig. 10 at τ=0.60 as ρr =1.3.

5 Conclusions

In this work, we present a comparative study among three LBE schemes, i.e., the BGK
model, Ladd’s model, and the MRT model. The sedimentation of a circular and an el-
liptical particle in a two-dimensional infinite channel under gravity are used as the test
problems. The accuracy, numerical stability, computational efficiency, and robustness of
the three schemes are carefully analyzed in the simulations of sedimentation of a circular
particle. Our main results are summarized as follows.

First, the sedimentation velocities predicted by the three schemes agree well with the
analytical and available data in general in the six cases of density ratios, except that in
the case of ρr=0.95 the particle velocities obtained by both the BGK scheme and Ladd’s
scheme deviate from the other results at later stage. It is also observed that with properly
chosen relaxation times, the MRT scheme and Ladd’s scheme produces nearly identical
results, which confirms that Ladd’s scheme is also a special case of the MRT scheme,
just like the LBGK scheme. In this regard, the MRT scheme is the most general model for
simulations of particulate flows. Second, the numerical stability of the three LBE schemes
are investigated by comparing the minimum values of the reachable relaxation time for
the shear viscosity. It is found that the MRT scheme is the most stable scheme while
the LBGK scheme is the worst. However, the LBGK scheme is the most efficient one in
terms of the CPU times, while the MRT and Ladd’s schemes are nearly identical (with
about 15∼20% increase in comparison with the LBGK scheme). Third, the robustness of
the three LBE schemes are also investigated. It is found that in the case of D= 24δx the
normalized values of wall correction factor K∗ computed by both the LBGK scheme and
Ladd’s scheme show a linear decrease with the relaxation time, although the decrease
rate of K∗ of Ladd’s scheme is smaller than that of the BGK scheme. On the contrary,
the MRT scheme gives almost a fixed value of K∗. In addition, these three LBE schemes
produce such similar results in another case of D=32δx.

In the test problem of the sedimentation of an elliptical particle, the numerical results
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computed by the three LBE schemes are also compared. It is again found that the MRT
scheme can provide more accurate results and better numerical stability than the BGK
and Ladd’s scheme. Although the computational cost of the MRT scheme is the largest,
we would like to point out that it is more robust and insensitive.

These results show that the MRT scheme is a good choice for particulate flows since
it can achieve better accuracy, numerical stability, and robustness than the other two
schemes, which are demonstrated in our simulations.
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[26] S. Kollmannsberger, S. Geller, J. Düster A, Tölke, C. Sorger, M. Krafczyk and E. Rank, Fixed-
grid fluid-structure interaction in two dimensions based on a partitioned Lattice Boltzmann
and p-FEM approach, Int. J. Numer. Meth. Eng, 79 (2009), 817-845.

[27] Y. T. Feng, K. Han and D. R. J Owen, Coupled lattice Boltzmann method and discrete element
modelling of particle transport in turbulent fluid flows: Computational issues, Int. J. Numer.
Meth. Eng, 72 (2007), 1111-1134.

[28] Y. T. Feng, K. Han and D. R. J. Owen, Combined three-dimensional lattice Boltzmann meth-
ods and discrete element method for modeling fluid-particle interactions with experiment
assessment, Int. J. Numer. Meth. Eng, 81 (2010), 229-245.

[29] C. S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977),
220-252.

[30] C. S. Peskin, The immersed boundary method, Acta Numer., 11 (2002), 479-517.
[31] Z. G. Feng and E. E. Michaelides, The immersed boundary-lattice Boltzmann method for

solving fluid-particles interaction problem, J. Comput. Phys., 195 (2004), 602-628.
[32] Z. G. Feng and E. E. Michaelides, Proteus: a direct forcing method in the simulations of

particulate flows, J. Comput. Phys., 202 (2005), 20-51.
[33] X. D. Niu, C. Shu, Y. T. Chew and Y. Peng, A momentum exchange-based immersed

boundary-lattice Boltzmann method for simulating incompressible viscous flows, Phys.
Lett. A, 354 (2006), 173-182.



L. Wang et al. / Commun. Comput. Phys., 13 (2013), pp. 1151-1172 1171

[34] J. Wu and C. Shu, Particulate flow simulation via a boundary condition-enforced immersed
boundary-lattice Boltzmann scheme, Commun. Comput. Phys., 7 (2010), 793-812.

[35] B. K. Cook, D. R. Noble and J. R. Williams, A direct simulation method for particle-fluid
systems, Eng. Computation, 21 (2004), 151-168.

[36] X. Shi and S. P. Lim, A LBM-DLM/FD method for 3D fluid-structure interactions, J. Comput.
Phys, 226 (2007), 2028-2043.

[37] M. Rohde, J. J. Derksen and H. E. A. van der Akker, An applicability study of advanced
lattice-Boltzmann techniques for moving, no-slip boundaries and local grid refinement,
Comput. Fluids, 37 (2008), 238-1252.

[38] A. Dupuis, P. Chatelain and P. Koumoutsakos, An immersed boundary-lattice-Boltzmann
method for the simulation of the flow past an impulsively started cylinder, J. Comput. Phys,
227 (2008), 4486-4498.

[39] D. M. Nie and J. Z. Lin, A LB-DF/FD method for particle suspension, Commun. Comput.
Phys., 7 (2010), 544-563.

[40] Y. Peng and L. S. Luo, A comparative study of immersed-boundary and interpolated
bounce-back methods in LBE, Prog. Comput. Fluid Dyna., 8 (2008), 156-167.

[41] R. G. M. van der Sman, MRT Lattice Boltzmann schemes for confined suspension flows,
Comput. Phys. Commun., 181 (2010), 1562-1569.

[42] Y. H. Qian, D. d’Humières and P. Lallemand, Lattice BGK models for Navier-Stokes equa-
tion, Europhys. Lett., 17 (1992), 479-484.

[43] H. Chen, S. Chen and W. Matthaeus, Recovery of the Navier-Stokes equations through a
lattice gas Boltzmann equation method, Phys. Rev. A, 45 (1992), 5339-5342.

[44] U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau and J.-P. Rivet, Lattice gas
hydrodynamics in two and three dimensions, Complex Syst., 1 (1987), 649-707.

[45] P. Lallemand and L.S. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation,
isotropy, Galilean invariance, and stability, Phys. Rev. E, 61 (2000), 6546-6562.

[46] D. d’Humières, Generalized lattice-Boltzmann equations, In: Shizgal D et al., editors. RGD,
Prog. Astronaut. Aeronaut 159 (1992), 450-458.

[47] D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L. S. Luo, Multiple-relaxation-time
lattice Boltzmann models in three-dimensions, Phil. Trans. R. Soc. A, 360 (2002), 437-51.

[48] P. Lallemand and L-S. Luo, Theory of the lattice Boltzmann method: acoustic and thermal
properties in two and three dimensions, Phys. Rev. E, 68 (2003), 036706.

[49] D. Wan and S. Turek, Direct numerical simulation of particulate flow via multigrid FEM
techniques and the fictitious boundary method, Int. J. Numer. Meth. Fluids, 51 (2006), 531-
566.

[50] H. H. Hu, D. D. Joseph and M. J. Crochet, Direct simulation of fluid particle motions, Theo.
Comput. Fluid Dyn., 3 (1992), 285-306.

[51] H. B. Li, X. Y. Lu, H. P. Fang and Y. H. Qian, Force evolution in lattice Boltzmann simulations
with moving boundaries in two dimensions, Phys. Rev. E, 70 (2004), 026701.

[52] O. E. Strack and B. K. Cook, Three-dimensional immersed boundary conditions for moving
solids in the lattice-Boltzmann method, Int. J. Numer. Meth. Fluids, 55 (2007), 103-125.

[53] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Prentice-Hall, NewYork,
1965.

[54] Z. S. Yu and X. M. Shao, A direct-forcing fictitious domain method for particulate flows, J.
Comput. Phys., 227 (2007), 292-314.

[55] Z. L. Guo, C. G. Zheng and B. C. Shi, An extrapolation method for boundary conditions in
lattice Boltzmann method, Phys Fluids, 14 (2007), 2007-2010.



1172 L. Wang et al. / Commun. Comput. Phys., 13 (2013), pp. 1151-1172

[56] I. Ginzburg and P. Adler, Boundary flow condition analysis for the three-dimensional lattice
Boltzmann model, J. Phys., II 4 (1994), 191-214.

[57] I. Ginzburg and D. d’Humières, Local second-order boundary methods for lattice Boltzmann
models, J. Stat. Phys, 84 (1996), 927-971.

[58] C. Pan, L. S. Luo and C. T. Miller, An evaluation of lattice Boltzmann schemes for porous
medium flow simulation, Comput. Fluid, 35 (2006), 898-909.

[59] P. Huang, H. Hu, and D. Joseph, Direct simulation of the sedimentation of elliptic particles
in Oldroyd-b fluids, J. Fluid Mech., 362 (1998), 297-325.

[60] Z. H. Xia, K. W. Connington, S. Papaka, P. T. Yue, J. J. Feng and S. Y. Chen, Flow patterns in
the sedimentation of an elliptical particle, J. Fluid Mech., 625 (2009), 249-272.


