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Abstract. The gas-kinetic scheme is applied to a depth-integrated continuum model
for avalanche flows, namely the Savage-Hutter model. In this method, the continuum
fluxes are calculated based on the pseudo particle motions which are relaxed from non-
equilibrium to equilibrium states. The processes are described by the Bhatnagar-Gross-
Krook (BGK) equation. The benefit of this scheme is its capability to resolve shock
discontinuities sharply and to handle the vacuum state without special treatments.
Because the Savage-Hutter equation bears an anisotropic stress on the tangential space
of the topography, the equilibrium distribution function of the microscopic particles
are shown to be bi-Maxwellian. These anisotropic stresses are the key to preserve the
coordinate objectivity in the Savage-Hutter model. The effect of the anisotropic stress
is illustrated by two examples: an axisymmetric dam break and a finite mass sliding on
an inclined plane chute. It is found that the propagation of the flow fronts significantly
depends on the orientation of the principal axes of the tangential stresses.

AMS subject classifications: 76A05, 82B40, 86-08, 97M10
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1 Introduction

Landslides, avalanches, and debris flows are gravity-driven rapid geophysical flows. Be-
cause these flows commonly exhibit the characteristics of shallowness, the shallow-water
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type of equations are often applied to model the phenomena. In addition, the flows con-
tain a large portion of solid particles and present solid-like behavior. To account for the
solid effects, Savage & Hutter [1] propose to use the Mohr-Coulomb soil constitutive law
for the landslide or avalanche materials in the shallow-water continuum model. When
the granular mass is in motion, the basal friction causes the material to move on the basal
surface to yield. With the internal friction angle and the Mohr-Coulomb yield criterion,
the stresses in the tangential plane to the basal surface are calculated and incorporated
into the momentum equation.

The Savage-Hutter model is subsequently extended for two-dimensional channel to-
pography, Hutter et al. [2], Pudasaini & Hutter [3], Wang et al. [4]. The model equations
form a conservative hyperbolic system. Because this type of partial differential equations
contains discontinuous weak solutions, e.g. shock waves (hydraulic jumps), numeri-
cal schemes need to be able to resolve these weak solutions accurately. There are sev-
eral common categories of solvers, for example, the high-order (approximate) Riemann
solvers, LeVeque [5], Toro [6], and the non-oscillatory central finite difference schemes,
Jiang et al. [7], Tai et al. [8]. In addition, particularly for landslide flow applications, wet-
dry states are often encountered such as in the landslide flows of a finite mass reported
in the previous literature.

In this paper, we aim to extend the kinetic scheme, Xu [9], to the Savage-Hutter model.
In this method, the flow fluxes across the interfaces between computational cells are sim-
ulated by the motions of microscopic pseudo particles. These pseudo particles move
along with their microscopic velocities and are subjected to perfectly elastic collisions.
Under such circumstances, the density distribution function of the particles is assumed to
follow the approximate Boltzmann equation, the Bhatnagar-Gross-Krook equation. Tak-
ing statistical moments of these pseudo particle motions yields the mass and momentum
fluxes in the continuum regime. The benefit of this scheme is its capability to resolve
shock discontinuities sharply, the positiveness of the flow depth, and to handle the wet-
dry state without the need of special treatments.

With the Mohr-Coulomb soil constitutive law and through the theoretical derivation
of the depth averaged model [2, 10–12], the stresses in the tangential plane to the basal
surface are related to the flow depth and basal friction. The principal axes of the stresses
are in general dependent on the local flow conditions, i.e. the tangential stresses are
anisotropic. To simplify the complexity of this solid property for numerical simulations,
Hutter et al. [2], Tai et al. [8], as well as Wang et al. [4] align the primary principal axis along
the flow channel direction and the minor axes in the transverse direction. Though the
approach simplifies the numerical scheme, the model becomes coordinate-dependent,
as commented in Hutter, Wang and Pudasaini [13]. To amend this deficit, a variety of
models have been proposed.

There are three main categories of these amending theories: Iverson and Denlinger [14]
model the tangential stresses of a fluid element as isotropic active (passive) soil stresses
if the element is in dilation (compaction). De Toni and Scotton [15], and Kelfoun and
Druitt [16] assume that the primary principal axis of the tangential stresses is parallel



1434 W.-C. Chen et al. / Commun. Comput. Phys., 13 (2013), pp. 1432-1454

to the local flow velocity. Luca et al. [12] propose that the principal axes coincide with
those of the local strain rate. In the latter two variants, the anisotropic properties of the
tangential stresses are retained.

In applying the gas-kinetic scheme, we can investigate the effects of the anisotropic
stresses as well. This leads to the bi-Maxwellian distribution of the pseudo particles.
Such kind of anisotropy has been seen in plasma and astrophysics where the multi-
temperature state can be realized. What may differ from the situation considered here
physically is that, in plasma- and astrophysics, the particle motion is restrained by the
electric-magnetic fields, resulting in the temperature anisotropy [17, 18].

The Savage-Hutter model is briefed in Section 2. The gas kinetic scheme is presented
in Section 3, where the relation between the microscopic pseudo particle motion and the
continuum anisotropy Savage-Hutter equation is established. In Section 4, the numeri-
cal scheme for isotropic inviscid fluid is verified and the coordinate-dependent property
of the Savage-Hutter model, [2, 8, 10, 11], is demonstrated. Subsequently in Sections 4.3
and 4.4, we investigate the effect of the direction of the stress principal axes by an ax-
isymmetric dam break flow and apply De Toni’s amendment for the flow of a finite mass
sliding down an inclined flat chute. It is shown the anisotropic stresses influences the
flow spreading significantly.

2 Savage-Hutter model

The mass and momentum balance equations of the Savage-Hutter model for shallow,
cohesionless granular flows (cf. [1, 13, 19]) can be written, respectively, as

∂h

∂t
+div(hu)=0, (2.1a)

∂

∂t
(hu)+div

(

hu⊗u+
g3h2

2
K

)

=hS, (2.1b)

where h and u denote the depth and velocity of the avalanche flow. The reference co-
ordinates X=(x1,x2) are ideally constructed to incline at the average slope of the basal
surface. In these reference coordinates, the basal surface is described by x3 = b(X) in the
x3-direction, defined normal to the X-plane. It is also along this direction that the flow
depth is measured. The x3-component of the gravitational acceleration in the flow di-
rection is g3 and the other component of the gravitational acceleration is g= giei in the
X-plane. Symbol K denotes the matrix of the earth pressure coefficients which results
from the Mohr-Coulomb soil constitutive law.

The source term S on the right-hand side of (2.1) takes the form

S= giei−g3 gradb−µg3
u

|u| , (2.2)

where the first term is the gravitational driving acceleration and the second is the driving
force due to the basal surface gradient. The last term is the resistive Coulomb friction
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force acting in the opposite direction of the flow. The basal friction coefficient is µ which
is conventionally related to the basal friction angle δ by tanδ.

The general form of the earth pressure coefficients K is a 2×2 matrix

K=

(

k11 k12

k21 k22

)

(2.3)

with entries kij for i, j= 1,2. This specific form can be obtained rigorously by the formal
depth integration procedures presented in [12]. When applied in chute flows, Hutter et
al. [2] and Wieland et al. [11] choose x1 to coincide with the main flow direction and ne-
glect the tangential earth pressure components by setting k12=k21=0. This simplification
is equivalent to assume that the primary principal axis of the tangential stresses is in the
flow direction and the minor principal axis is in the cross flow direction x2. Under such
circumstances, k11 and k22 become the primary and secondary earth pressure coefficients,
and the earth pressure coefficient matrix becomes

ΛK =

(

k1 0
0 k2

)

. (2.4)

Using the Mohr-Coulomb soil yield condition, these two pressure coefficients are func-
tions of the internal and basal friction angles, which can be written explicitly as

k1 =2sec2φ
√

1∓(1−cos2φ/cos2δ)−1 (2.5)

and

k2 =
1

2

(

k1+1∓
√

(k1−1)2+4tan2δ

)

, (2.6)

where φ is the internal friction angle of the flow material. The ∓ signs in the expressions
are chosen according to the signs of ∂ui/∂xi (i=1,2), i.e. the stretching or compaction
of the flow element, [13]. Hungr [20], McDougall & Hungr [21] further argue that not
only there is a gradual transition between the active and passive states but also the earth
pressure coefficients depend on the strain history of flow elements. The versatile roles
of the earth pressure coefficients are illustrated in [22] by inspecting deposit profiles of
a one-dimensional dam break flow. Therefore, to concentrate on the anisotropic effect
of the earth pressure coefficients while maintaining our numerical scheme rigorously
correct herein, the principal earth pressure coefficients (k1, k2) are assumed constant and
the active states in the major and minor principal axes are chosen (minus signs in (2.5)
and (2.6)). These assumptions correspond to stretching flows on a fixed basal surface
with a constant internal friction angle.

The major principal axis can in general align at any angle θ to the x1-axis that the flow
prefers, i.e. angle θ depends on the local flow conditions and varies according to different
models for the anisotropic tangential stresses, as described in [15], [16] or [12]. We neglect
the microscopic gyro motions of soil particles in the present paper and this simplification
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leads to a symmetric earth pressure coefficient matrix, i.e. k12 = k21. Therefore, K is
diagonalizable by rotating the coordinates with an invertible rotation matrix T = T(θ)
such that we have ΛK=T−1KT.

For conveniencing the following discussion, Eq. (2.1) is recast into the customary hy-
perbolic form

∂W

∂t
+

∂F1

∂x1
+

∂F2

∂x2
=Ψ, (2.7)

where the column vectors W,F1,F2 and Ψ are

W=(h,hu1,hu2)
T ,

Fi=

(

hui,hu1ui+
1

2
g3k1ih

2,hu2ui+
1

2
g3k2ih

2

)T

,

Ψ=

(

0,g1h−g3h
∂b

∂x1
−µg3h

u1

|u| ,g2h−g3h
∂b

∂x2
−µg3h

u2

|u|

)T

,

for i=1,2.

3 Gas kinetic scheme

The gas kinetic scheme is constructed based on using the statistical behavior of the mo-
tions of microscopic pseudo particles to mimick the conservation law of the continuum
governing equation. The motions of the pseudo particles are described by the Bhatnagar-
Gross-Krook (BGK) equation [23].

At the discretized level, the mass flux and momentum across the interfaces between
adjacent computational cells are in general discontinuous and, as the time step marches,
these physical quantities are transported into the cells according to the conservation law.
In the scheme, this process is described by the redistribution process of pseudo micro-
scopic particle motions from a non-equilibrium (initial) state into an equilibrium state.
This process is in a similar way as the redistribution process in statistical mechanics but
in contrast to the method based on the wave propagation, e.g., Riemann solvers.

Prendergast & Xu [24, 25] demonstrate the applicability of this type of the gas kinetic
theory for compressible gas dynamics simulations and, subsequently, Xu [9] extends it
to the hydraulic shallow-water (SW) equations. In these approaches, the equilibrium
distribution of the pseudo particles is assumed to be Maxwellian and the redistribution
process is described by the BGK equation

∂ f

∂t
+c·grad f =

g− f

τ
, (3.1)

where f and g are the non-equilibrium and the equilibrium distribution functions, re-
spectively. The relaxation time between the two states is denoted by τ and c=(c1,c2)T

is the velocity of the pseudo microscopic particles. In the present scheme, the external
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gravitational force is not balanced in the microscopic scale as in [9], but is treated in the
continuum level as a source term.

Because of the anisotropic tangential stresses of the Savage-Hutter model, the pseudo
particle motions are spatially asymmetric. For two-dimensional domains, the equilib-
rium distribution at any given position is a bi-Maxwellian distribution. In the principal-
axis coordinates of the tangential stresses, this equilibrium distribution can be explicitly
written as

g=
1

πg3

√
k1k2

exp

{

− 1

g3 h
(c′−u′)T

Λ
−1
K

(

c′−u′)
}

, (3.2)

where c′ and u′ are the micro- and macro-scale velocities along the primary and sec-
ondary principal axes and ΛK is defined in (2.4). In the X-coordinates, the corresponding
equilibrium distribution can be obtained by rotating the major principal axes to the x1

coordinate. This rotation yields

g=
1

πg3

√
k1k2

exp

{

− 1

g3 h
(c−u)T K−1 (c−u)

}

, (3.3)

where c and u are the micro- and macro-velocities in the X-coordinates and the coor-
dinate transformation c = T−1c′ and u = T−1u′ is applied. In fact, this bi-Maxwellian
distribution can be theoretically obtained according to the law of maximum entropy. The
prerequisites and the results of the theoretical derivation are briefed in Appendix A. In
the literature, asymmetric distributions, such as the present bi-Maxwellian distribution,
have occurred in plasma physics and they usually result from the external restraining
force fields, e.g. Xu et al. [26].

The bi-Maxwellian distribution function (3.3) is a function of the flow depth, h, ve-
locity, u, i.e. it is a function of the conservative flow variable g(W). Because the flow
variable is in turn a function of space and time, g can be alternatively written as g(X,t).
We will choose whichever expression is appropriate in the following derivation and the
same rule applies to the nonequilibrium distribution function f .

With g, the continuum source-free (homogeneous) Savage-Hutter equations (2.1) can
be reconstructed by taking the conservative moment integrals of the BGK equation at the
limiting state ( f = g), see Appendix A. This property ensures that the gas kinetic scheme
can be designed.

The gas kinetic scheme starts by solving for the non-equilibrium distribution function
of the BGK equation (3.1). For a given relaxation time τ, the distribution function reads

f (X,t)= f0(X0,0)exp
(

− t

τ

)

+
1

τ

∫ t

0
g(X̂,s)e

s−t
τ ds, (3.4)

where the first term is the transient homogeneous solution to fulfill the initial distribution
f0 at t=0 and the second term represents the particular solution in convolution form with
the equilibrium distribution g. Notation X̂ is defined as X̂=X−(t−s)c=X0+sc, which is
understood as the particle trajectory.
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The continuum physical quantities can be constructed by taking the moment integral
with respect to the column vector Θ=(1,c1,c2)T on the BGK equation which reads

∫

Θ

(

∂ f

∂t
+c·grad f

)

dc=
∫

Θ
g− f

τ
dc. (3.5)

At the equilibrium limiting state, f =g, the above integrals yield the homogeneous equa-
tions of the Savage-Hutter model as pointed out previously.

We now proceed with the gas kinetic scheme. This scheme is used to solve for the
homogeneous evolution of the Savage-Hutter equation. Its relation to the homogeneous
Savage-Hutter equation is analogous to the zeroth order Chapmann-Enskog expansion
of the ideal gas BGK equation to the Euler equation. The scheme is designed to have a
vanishing right hand side of (3.5) at all time, i.e. to satisfy

∫

Θ
(g− f )

τ
dc=0. (3.6)

This condition is referred to as the compatibility condition in [25].

In the numerical scheme, the computation domain is discretized into a set of uni-
formly distributed grids. For clarity, take a row of grids in the x1-direction (x) for illus-
tration, see Fig. 1. As shown in the figure, the subscripts i and i+1 indicate the centers of
the ith and (i+1)th cells, and the subscript i+1/2 represents the interface between the two
cells. At the beginning of each time step, say t=0, the continuum flow variable in the two
cells are denoted as Wi and Wi+1 and, with a second order slope reconstruction, there are

✘✘✘
✘✘✘

✘✘✘

✥✥✥✥✥✥✥✥✥

✉

✉

✉

✉

gr
0

gl
0

gr
0+

∂gr
0

∂x
(xi+3/2−xi+1/2)

gl
0+

∂gl
0

∂x
(xi+1/2−xi−1/2)

✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜✜

✧
✧
✧
✧
✧
✧
✧
✧
✧

✉

✉

✉ g̃

g̃+
∂g̃r

∂x
(xi+3/2−xi+1/2)

g̃+
∂g̃l

∂x
(xi+1/2−xi−1/2)

xi+1/2

✉ ✉

xi xi+1

Wi Wi+1

xi−1/2 xi+3/2

Figure 1: Initial discretized local non-equilibrium f0 and equilibrium g distribution functions at interface xi+1/2.
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also ∂Wi/∂x and ∂Wi+1/∂x in each cell. Using these values, we approximate the initial
non-equilibrium distribution function f0 in the left and right cells as

f0(x,0)=















gl
0+

∂gl
0

∂x
(x−xi+1/2), x≤ xi+1/2,

gr
0+

∂gr
0

∂x
(x−xi+1/2), x> xi+1/2.

(3.7)

This non-equilibrium state is achieved by the numerical update from the previous time
step. The superscripts l and r represent that the distribution function is evaluated at
the immediate left and right of the interface. I.e., gl

0 and gr
0 are gl

0 = g(Wi(xi+1/2)) and

gr
0 = g(Wi+1(xi+1/2)) where g is given by (3.3). Their spatial derivatives (∂gl,r

0 /∂x) can
be accordingly found with the aid of the continuum variables, Wi, Wi+1, ∂Wi/∂x, and
∂Wi+1/∂x. Without digression, the explicit expression of ∂g/∂x is given later, cf. (3.17).

On the other hand, there is an equilibrium distribution g which is yet an unknown. It
is assumed to be continuous across the interface and to satisfy the compatibility condition
at each time step. The equilibrium distribution, hence, in the space-time neighborhood
of the cells can be approximated to second order as

g(x,t)=















g̃+
∂g̃l

∂x
(x−xi+1/2)+

∂g̃

∂t
t, x≤ xi+1/2,

g̃+
∂g̃r

∂x
(x−xi+1/2)+

∂g̃

∂t
t, x> xi+1/2.

(3.8)

In the above expression, g̃ is understood by the initial equilibrium state on the interface
x= xi+1/2 and is to be found by the compatibility condition (3.6) on the interface.

We are now to find each term on the right hand side of (3.8). Assuming that the
relaxation time is independent of the particle velocity, (3.6) becomes

∫

Θ g̃dc=
∫

Θ f0 dc, (3.9)

on the interface at the initial time, after substitution of (3.7) and (3.8). The left hand side of
(3.9) is in fact W̃i+1/2 on the interface and the right hand side integral is then calculated
by the moments that the particles carry cross the interface. With (3.7), (3.9) is readily
recast into

W̃i+1/2=
∫

c1≥0
Θ gl

0 dc+
∫

c1<0
Θ gr

0 dc. (3.10)

Having obtained W̃i+1/2, the initial equilibrium distribution g̃ is solved to be g=g(W̃i+1/2).
Using W̃i+1/2 with Wi(xi) and Wi+1(xi+1), we find the slopes of the flow variables in the
two cells ∂W̃i/∂x and ∂W̃i+1/∂x. Subsequently the slopes, ∂g̃l,r/∂x, are defined also with
the help of (3.17) below. Finally, for ∂g̃/∂t, we need the time derivative of W̃i+1/2 which
can be found by integrating (3.6) with (3.4), (3.7), and (3.8) on x = xi+1/2. After some
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lengthy but routine calculations, ∂W̃i+1/2/∂t reads

∂W̃i+1/2

∂t
=

αΓ1

Γ0

(

∫

c1≥0
c1Θ

∂g̃l

∂x
dc+

∫

c1<0
c1Θ

∂g̃r

∂x
dc

)

+
αΓ2

Γ0

(

∫

c1≥0
c1Θ

∂gl
0

∂x
dc+

∫

c1<0
c1Θ

∂gr
0

∂x
dc

)

+
αΓ3

Γ0

(

∫

c1≥0
Θ(gl

0− g̃)dc+
∫

c1<0
Θ(gr

0− g̃)dc

)

, (3.11)

where the multiplying constants are

Γ0=∆t−τ(1−e−∆t/τ), (3.12a)

Γ1=−∆t+2τ(1−e−∆t/τ)−∆te−∆t/τ , (3.12b)

Γ2=∆te−∆t/τ−τ(1−e−∆t/τ), (3.12c)

Γ3=1−e−∆t/τ, (3.12d)

α= k1k2/(k11k22+k2
12), (3.12e)

and ∆t is the upper bound of the time integral. Note that the anisotropic earth pressure
coefficients lead to the extra coefficient α. Again by referring to (3.17), with ∂/∂x replaced
by ∂/∂t, we obtain ∂g̃/∂t.

The numerical fluxes across the interface xi+1/2 can be obtained by taking moments
of f (xi+1/2,t),

F1(i+1/2)=
∫

c1Θ f (xi+1/2,t)dc

=γ0

(

∫

c1≥0
c1Θ gl

0dc+
∫

c1<0
c1Θ gr

0dc

)

+

(

∫

c1≥0
c2

1Θ
∂gl

0

∂x
dc+

∫

c1<0
c2

1Θ
∂gr

0

∂x
dc

)

+γ2

(

∫

c1≥0
c1Θ g̃dc+

∫

c1<0
c1Θ g̃dc

)

+

(

∫

c1≥0
c1Θ

∂g̃l

∂x
dc+

∫

c1<0
c1Θ

∂g̃r

∂x
dc

)

+γ4

(

∫

c1≥0
c2

1Θ
∂g̃l

∂x
dc+

∫

c1<0
c2

1Θ
∂g̃r

∂x
dc

)

, (3.13)

where f (xi+1/2,t) is the one-dimensional form of (3.4) and substitution of (3.7) and (3.8)
has been made. As a reminder, the same procedure has also been applied in finding
(3.11). The multiplying constants, γ0 to γ4, are

γ0= e−∆t/τ, (3.14a)

γ1=−∆te−∆t/τ , (3.14b)

γ2=1−e−∆t/τ, (3.14c)

γ3=∆t+τe−∆t/τ−τ, (3.14d)

γ4=−τ+∆te−∆t/τ+τe−∆t/τ. (3.14e)
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The flux in the x2-direction, F̃2, can be found similarly as in (3.13) by changing the coor-
dinate axis and by replacing c1 and ∂/∂x with c2 and ∂/∂x2 in the integrand.

For the two-dimensional calculation, we use a finite volume scheme [27]. In the
scheme, the discretized equation (2.7) is updated by

Wn+1
i,j −Wn

i,j =
1

∆x1

∫ tn+1

tn
(F1(i+ 1

2 ,j)−F1(i− 1
2 ,j))dt

+
1

∆x2

∫ tn+1

tn
(F2(i,j+ 1

2 )
−F2(i,j− 1

2 )
)dt+

∫ tn+1

tn
Ψi,j dt, (3.15)

where the superscript n stands for the nth time step and the subscripts i and j stand for the
grid cells in the x1- and x2-directions. A van Leer limiter is applied for the second order
reconstruction. The marching time step, ∆t, is constraint by the CFL (Courant-Friedrichs-
Lewy) condition with a CFL number 0.5. The relaxation time τ is calculated following
Xu [9],

τ= a1∆t+a2

∣

∣

∣

h2
l −h2

r

h2
l +h2

r

∣

∣

∣
∆t, (3.16)

where a1 and a2 are set to be 0.05 and 1.0. Variations of the relaxation time are verified to
be insignificant to the simulation results. After each time step update, the equilibrium
particle distribution is disturbed, the numerical scheme resets the initial condition of
the particle distribution function and iterates through the aforementioned redistribution
process. Then the iteration continues till the terminal time is reached.

Before proceeding further, we recapitulate the derivation of the derivatives of the

distribution function for the second order accuracy. These derivatives include ∂gl,r
0 /∂x,

∂g̃l,r/∂x and ∂g̃/∂t in (3.7) and (3.8). Because they bear a great deal of similarities, only
one essential expression is shown here, ∂g/∂x for example. Taking ∂/∂x on (3.3) and
applying the chain rule of calculus, we have

∂g

∂x
=(m1+m2c1+m3c2+m4c1c2+m5c1

2+m6c2
2)g, (3.17)

where c1 and c2 are the velocity components of the micro-particles. The coefficients, m1

to m6, can then be elaborated in terms of the continuum flow variable W:

m1=
1

g3h2k1k2

(

3(k22u2
1+2k12u1u2+k11u2

2)
∂h

∂x

−2(k22u1+k12u2)
∂hu1

∂x
−2(k12u1+k11u2)

∂hu2

∂x

)

, (3.18a)

m2=
1

g3h2k1k2

(

−4(k22u1+k12u2)
∂h

∂x
+2k22

∂hu1

∂x
+2k12

∂hu2

∂x

)

, (3.18b)

m3=
1

g3h2k1k2

(

−4(k12u1+k11u2)
∂h

∂x
+2k12

∂hu1

∂x
+2k11

∂hu2

∂x

)

, (3.18c)
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m4=
1

g3h2k1k2

(

2k12
∂h

∂x

)

, m5=
1

g3h2k1k2

(

k22
∂h

∂x

)

, m6=
1

g3h2k1k2

(

k11
∂h

∂x

)

. (3.18d)

Simply by replacing ∂/∂x in (3.17) and (3.18) with ∂/∂t, ∂g/∂t is obtained. For the afore-
mentioned derivatives, the flow variables Wi(xi+1/2) and ∂Wi(xi+1/2)/∂x are substituted
for ∂gl

0/∂x and W̃i(xi+1/2), ∂W̃i(xi+1/2)/∂x are for ∂g̃l/∂x in the ith cell. Similarly, the
flow variables in the (i+1)th cell are applied for the derivatives at the immediate right
side of the interface and W̃i+1/2(xi+1/2), ∂W̃i+1/2(xi+1/2)/∂t are applied for ∂g̃/∂t on the
interface. The above abbreviated details conclude the calculation of the derivatives.

4 Numerical examples

Numerical calculations based on the gas kinetic scheme are presented in this section.
They are sequentially arranged to illustrate: 1. verification of the gas kinetic scheme; 2.
demonstration of the coordinate-dependent Savage-Hutter (SH) equation; 3. axisymmet-
ric dam break of the anisotropic SH equation; and 4. further influence of the anisotropic
SH equation by a sliding mass example. Because the anisotropic properties of the SH
model can only be demonstrated using two-dimensional examples and to focus on these
properties, the fundamental one-dimensional cases as well as the advantages of the gas
kinetic scheme are relegated to Appendix B for the interested readers.

4.1 Shallow water dam break

The accuracy of the scheme is first checked using an axisymmetric dam break flow. This
example is taken from Chap. 21, page 484 in LeVeque [5] and it is a dam break flow of
a cylindrical Eulerian fluid column on a frictionless horizontal basal surface. The fluid
column is centered at the origin and the ambient is a resting flow at uniform depth. The
initial condition is

(h(x1,x2),u1(x1,x2),u2(x1,x2))=

{

(1.0,0,0), r≥0.5,
(2.0,0,0), r<0.5,

where r = (x2
1+x2

2)
1/2. The computational domain is x1 ∈ [−2.5,2.5] and x2 ∈ [−2.5,2.5].

The domain is discretized into a 250×250 mesh. The out-flow condition is applied on the
domain boundaries.

Fig. 2 shows the contour plot of the flow depth and the scatter plots of the radial depth
and momentum of the flow. The simulated result is compared to that obtained by 1drad

(CLAWPACK, http://www.amath.washington.edu/~claw/). The time instance is t=1.5.
The minor discrepancies and the smear of the shock wave are because the mesh in the
gas kinetic scheme is much coarser than that used in 1drad, (250 compared to 2000). It is
confirmed that the simulation converges to 1drad when the number of grids is increased.
The scatter plots show that the axisymmetry of the flow is preserved.
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Figure 2: The snapshot of the axisymmetric dam break flow at t=1.5. (a) Flow depth contour. Contour levels
are from 0.61 to 1.31 at a spacing 0.02. (b) The radial scatter plot of the flow depth. (c) The radial scatter
plot of the radial momentum. The red solid line in the scatter plot is the 1D solution of CLAWPACK and the
blue circle points are the 2D result of the present scheme.

4.2 Coordinate dependence of the Savage-Hutter model

The second example is to demonstrate the intrinsic coordinate dependence of the Savage-
Hutter model. In the model, it is assumed that the primary earth pressure coefficient (k1)
is applied in the main direction of the flow, say x1-direction, and the secondary earth
pressure coefficient (k2) is in the transverse (x2-) direction. The off-diagonal earth pres-
sure coefficients are neglected. While this approach achieved substantial successes for
avalanche flows [13, 19], the role of the neglected off-diagonal shearing components re-
mains largely unnoticed. The negligence of the shearing components leads to a coordi-
nate dependent property of the model. This property can be seen clearly in a collapsing
flow on a horizontal plane because no preferred flow direction is present. This exam-
ple is an exaggerated scenario because for theoreticians under this circumstance a polar
coordinate system will be the natural choice and the presently addressed coordinate de-
pendence will be removed automatically in the polar coordinates.

To illustrate this coordinate dependent property, a collapsing flow of an initially ax-
isymmetric top-hat shaped fluid column is simulated. The radius and height are set equal
to 2.0 and 3.0 and the external ambient is a dry field. The initial condition reads

(h,u1,u2)=

{

(0,0,0), r≥2.0,
(3,0,0), r<2.0.

The basal surface is a horizontal flat plane. Because this flow is an expanding flow and no
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Figure 3: Coordinate dependent Savage-Hutter model. The flow snapshot is taken at t = 1. The primary
principal axis is x1. (a) Contour of flow depth. The contour level monotonically decreases from a depth value
2.4 (innermost) at a level step −0.2. Comparison of the Savage-Hutter (SH) model and the shallow-water (SW)
equation on (b) x1-axis and (c) x2-axis.

shock waves are formed, the active earth pressure coefficients, i.e. taking the minus signs
in (2.5) and (2.6), are chosen. The internal friction angle φ and the basal friction angle δ are
both set to 30◦ in the simulation. These values lead to the two earth pressure coefficients
k1 =1.67 and k2 =0.45. The computational domain is x1∈ [−20,20] and x2∈ [−20,20] and
it is discretized into 400 cells in each direction.

The numerical result is sketched in Fig. 3 and the axes are set to [−5,5] for clarity.
The simulation of the shallow water equation on the x1 and x2 profiles have also been
plotted for comparison. The striking finding is that the fluid column turns into an oval
shape and the primary axis coincides with the x1 axis. The cause of the shape is because
of the alignment of the earth pressure coefficients and the coordinates. In this example,
the principal earth pressure coefficient is aligned in the x1-direction and the secondary is
in the x2-direction. This difference between the principal and secondary earth pressure
coefficients leads to different wave speeds in the coordinate directions. Because the wave
speeds are roughly proportional to

√

k1g3h and
√

k2g3h along the two coordinates, the
ratio between the wave speeds is estimated about 1.93. The larger wave speed occurs
in the x1-direction and it subsequently affects the aspect ratio of the flow depth outline.
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The orientation of the oval shape depends on the direction in which k1 is chosen and the
Savage-Hutter model is, therefore, coordinate dependent. It can, however, be thought
that the motion starts from an anisotropic structure of the deposit with different k1 and k2

values in the radial and azimuthal directions. This association with the material property
is not further pursued.

This coordinate dependence leads to a non-objective property of the Savage-Hutter
model. It is an important intrinsic property of the model which manifests itself when
the flow has no preferred direction of motion. This coordinate-dependent non-objective
property can be resolved by including the tangential shear stresses, i.e. via the off-
diagonal earth pressure coefficients. A few theoretical alternatives have been proposed
for this purpose in the literature. For example, De Toni and Scotton [15] assume that the
primary principal axis is parallel to the local flow velocity and Luca et al. [12] suggest
that the principal axes coincides with those of the local strain rate. In the present pa-
per, the former approach is adopted without loss of generality and two examples will be
presented to illustrate the effects of the anisotropic stresses.

4.3 Axisymmetric dam break flow

In this section, an axisymmetric dam break of the Savage-Hutter model is investigated.
Because of the axial symmetry, the primary principal axis is in the radial direction. For the
discretized numerical simulation, it is found that the orientation of the principal axes in
the adjacent computation cells surrounding the axisymmetric center varies dramatically
and it produces a mild numerical singularity at the center. Without being digressed from
the singularity in the present paper, an inward axisymmetric dam break is simulated
instead. The initial condition (dimensionless) is defined as

(h,u1,u2)=

{

(0.27,0,0), r≥1.5,
(0,0,0), r<1.5.

The basal surface is a horizontal flat plane. The basal and the internal friction angles are
28◦ and 34◦, which yield the earth pressure coefficients kact

1 =0.91 in the radial direction
and kact

2 = 0.42 in the circumferential direction. The computational domain is x∈ [−2,2]
and y∈ [−2,2] and is discretized into 200 cells in each direction.

Because the orientation of the primary principal axis is in the radial direction, the
rotation matrix T(θ) defined in obtaining (3.3) is determined accordingly,

T(θ)=

(

cosθ −sinθ
sinθ cosθ

)

,

where θ here is the angular coordinate of the position vector. In this example, the sim-
ulation continues till the flow ends. To ensure the terminal resting deposit, a numerical
stationary condition, similar to Chap. 4 [28], is used. The minor difference is that the fric-
tion force is limited by the rate of momentum in the present scheme instead by the rate
of energy.
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Figure 4: Axisymmetric inward dam break flow. The flow snap is taken at t= 2.0. (a) Contour lines of flow
depth. The axisymmetry is resumed by bringing in the effect of the principal axis orientation. Contour levels
are from 0.02 (innermost) to 0.26 at a level step 0.03. (b) Comparison of numerical results and experiments.

Fig. 4 shows the numerical result of the deposit. The contour of the deposit depth in-
dicates that the axisymmetric shape is retained. In Fig. 4(b), the simulation is compared
to the experimental measurement. The simulation spreads wider than the experiment,
as seen in [22]. This discrepancy can be expected because in the Savage-Hutter model
the flow is assumed to have a uniform velocity profile while in the experiments a full
three-dimensional flow develops, especially around the edge of the initial flow. In sum-
mary, this example demonstrates that the coordinate objectivity is preserved by properly
including the orientation of the principal axes of the anisotropic tangential stresses.

4.4 Finite mass sliding down an inclined plane chute

In the last example, the sliding of a finite mass of granular material is calculated. The
mass has an initially resting semi-spherical shape. The base radius is r0 = 1.85 (dimen-
sionless), centered at x1 = 4 and x2 = 0. At t= 0, the mass is released and slides down a
plane chute, inclined at 35◦. The initial condition of the initial shape is

(h,u1,u2)=

{

(0,0,0), r≥ r0,

((r2
0−r2)1/2,0,0), r< r0.

Both the internal and basal friction angle are 30◦, which yields k1=1.67 and k2=0.45. The
initial primary principal axis is assumed in parallel with the inclination direction, the x1-
axis. The computational domain is set x∈ [0,60] and x2 ∈ [−20,20] divided into 600 and
400 cells respectively. This domain is set sufficiently large to observe the development of
the principal axes of the stresses of the sliding flow.

Shortly after the mass being released, the flow starts spreading laterally and the pri-
mary principal axis shifts accordingly. The orientation of the primary principal axis and
the flow contour at t=9.0 is sketched in Fig. 5. In the figure, the orientation of the prin-
cipal axis is symmetric with respect to the central line at a maximum deflected angle of
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Figure 5: Orientation of the primary principal axis of the anisotropic Savage-Hutter model. The flow is a finite
mass sliding down an inclined plane chute and the flow snap is taken at t=9. The orientation of the principal
axis is defined by the angle from the x1-axis. Contour lines are for the flow depth with levels from 0.02 to 0.16
at 0.02.
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Figure 6: The mass conservation of the sliding mass. The line shows the mass loss from the start of the
simulation. The vertical solid arrow in the inset figure indicates the instance of which that the flow starts to
leave the computation domain.

about ±4◦ near the widest flanges of the flow. Mass conservation is also checked. The
mass loss from the start of simulation is plotted in Fig. 6. Before the sliding material be-
gins to leave the computation domain, it is seen that the mass loss is well confined within
10−8 (actually 10−10, relative to the total mass), i.e. within the margin of the numerical
round-off error.

Finally, the simulation of the anisotropic Savage-Hutter (SH) model is compared with
those of the original (coordinate-dependent) SH equation and the shallow water equa-
tion. The outlines and flow profiles of the sliding flow at the same time instance, t=9.0,
as in Fig. 5 are plotted in Fig. 7. With the original SH equation, the primary earth pres-
sure coefficient k1 is assumed in the x1-direction and its large value (1.67) leads to the
faster traveling speed of the flow front than the other models in the down chute direc-
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made among the anisotropic Savage-Hutter (SH) model, the original coordinate-dependent SH equation and
the shallow water (SW) equation. (a) Flow outlines, (b) depth profile on the x1-axis and (c) transverse depth
profile at x1 =15.

tion. In addition to the small secondary earth pressure coefficient k2 in the x2-direction,
the original SH equation yields the most slender flow outline at the time instance.

If the earth pressure coefficient matrix is set to an identity matrix, the Savage-Hutter
equation degenerates into the isotropic shallow water equation. In this case, the flow
spreads more uniformly in every direction as seen from the more roundish outline. The
anisotropic SH model, on the other hand, lies between the other two alternatives. The
reason is plausible now because the change of the orientation of the stress principal axes
towards the flow velocity in the anisotropic SH model leads to higher lateral spreading
speed and lower flow front speed than the original SH equation. The depth profiles in
Fig. 7(b,c) indicate that the shallow water equation has the highest overall spreading rate
(measured by the spreading area divided by the maximum flow height).

5 Conclusion

In this paper, the gas-kinetic scheme is applied to the general anisotropic Savage-Hutter
equation for modeling the avalanche flows. The solid properties of the landslide mate-
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rials are modeled by the anisotropic tangential stress which is related to the flow depth
via the matrix of the earth pressure coefficients. With the anisotropic stress and under
the maximum entropy condition, the equilibrium distribution of the pseudo particles is
found to be bi-Maxwellian. Assuming that the distribution of the pseudo particles satis-
fies the Bhatnagar-Gross-Krook equation, the continuum Savage-Hutter equation can be
obtained by carrying out the kinetic moment integration over the particle motions and
hence a discretized numerical scheme is developed.

The coordinate dependence of the original Savage-Hutter model is first demonstrated.
This non-objectivity results from the neglect of the tangential shear stress. By incorporat-
ing the principal stress states, i.e. the effect of the shear stress, the deposit of the inward
axisymmetric dam break flow resumes axisymmetry, and, hence, the coordinate depen-
dence property is removed. Finally, the simulation of a finite mass sliding down an in-
clined plane chute is performed. The results of the anisotropic Savage-Hutter model, the
original SH equation and the shallow water equation are compared. It is found that the
spreading of the sliding flow significantly depends on the effect of the stress states. The
benefits of this scheme: the capability to resolve the shock discontinuities sharply and to
handle the vacuum state, are also successfully retained for the anisotropic Savage-Hutter
model.

There are many modified alternatives derived from the Savage-Hutter model, e.g.
the cited works in the main text. Most notably the earth pressure coefficients are in gen-
eral functions of the flow strain rate (stretching/compaction). The influences of the flow
strain rates on the earth pressure coefficients are not elaborated in the present paper be-
cause, rigorously speaking, the maximum entropy condition is violated for these non-
constant earth pressure coefficients. Nevertheless, we found that the simulation can be
performed smoothly with the present scheme even if these earth pressure coefficients are
specified in their general form. Research into the strain rate effects with proper mathe-
matical treatments has been initiated and will be reported in due course.

A Bi-Maxwellian distribution

We assume that the process of a collection of pseudo-particles from an non-equilibrium
state to the equilibrium state follows the BGK equation, (3.1), where f and g correspond to
the non-equilibrium and equilibrium distributions of the pseudo-particles, respectively.
When the particles reach equilibrium, we have f =g and D f /Dt=0, i.e. the collision term
on the right hand side of (3.1) vanishes.

The continuum physical quantities are the collective resultants of the pseudo-particles,
which include the flow depth, h, momentum, hu, momentum flux, h(u⊗u−g3Kh/2), and
the entropy S, and they are

h=
∫

f dc, (A.1)

hu=
∫

c f dc, (A.2)
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hu⊗u− 1

2
g3Kh2=

∫

c⊗c f dc, (A.3)

S=−
∫

f ln(A f )dc, (A.4)

where A is a normalizing constant. Note that matrix K is a 2×2 diagonal matrix, as
defined in Section 2 and its diagonal elements are the earth pressure coefficients k1 and
k2 defined in (2.5), (2.6) in the Savage-Hutter model.

According to the second law of thermodynamics, the entropy S monotonically in-
creases with time and reaches the maximum value in equilibrium. This is to say

DS

Dt
≥0, for all f , and δS=0 when f = g, (A.5)

where δS is the variation of the entropy. The maximization of S, subjected to constraints
from (A.1) to (A.3), is performed with the aid of Lagrange multipliers. This yields

S=−
∫

(

f ln(A f )+λ0 f +λ·c f + f (c−u)T
Γ(c−u)

)

dc

+λ0h+λ ·uh− g3 h2

2
Γ : K,

where λ0, λ and Γ are the scalar, vector, and tensorial multipliers. Operators · and : are
the inner product of vectors and contraction product of square matrices, respectively.
Following the same procedures as in [29], we obtain the bi-Maxwellian equilibrium dis-
tribution

g=
1

A
exp(−1−λ0)exp

[

−(c−u)T
Γ(c−u)

]

, (A.6)

where the Lagrange multipliers and the normalizing constant are

λ0=−2, λ=0,

Γ=
1

g3h
K−1, A=πg3

√

k1k2exp(1).

B One-dimensional numerical tests

We verify the kinetic scheme and demonstrate the effect of the earth pressure coefficient
for one-dimensional flows in this section.

B.1 Inviscid dam break flows

The shallow water (SW) equation on a horizontal flat bed is solved. The water flow is
inviscid and frictionless on the basal surface. Two test problems are calculated and their
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Figure 8: Analytical and numerical solutions of (a) the flow depth h, and (b) the momentum hu at t=1.0 of the
SW model on a wet-dry bed, (B.1). The computation domain is discretized into 500 cells. The basal surface is
a horizontal flat plane.
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Figure 9: Analytical and numerical solutions of (a) the flow depth h, and (b) the momentum hu at t=1.0 of the
SW model on a wet-wet bed, (B.2). The computation domain is discretized into 500 cells. The basal surface
is a horizontal flat plane.

initial conditions are, respectively,

(h,u)=

{

(3,0), x≤0,
(0,0), x>0,

(B.1)

(h,u)=

{

(3,0), x≤0,
(1,0), x>0.

(B.2)

The computational domain is set between −5≤x≤5 and discretized into 500 grid points.
The constant depth condition and the outflow condition are applied to the upstream and
downstream ends of the calculation domain. The solution of h and hu at t=1.0 is shown
in Fig. 8 and Fig. 9, where the solid lines are the analytical solutions and the circles are
the numerical simulation.

The first example corresponds to a dam break flow into a dry (vacuum) domain. It
is confirmed that the solution of the gas-kinetic scheme converges to the analytical solu-
tion and the scheme handles the dry state intrinsically without the need of any special
modifications.

The second example is similar to the classical shock tube problem in gas dynamics.
After dam break, the flow generates two waves: one downstream propagating shock
wave, as the weak solution of the SW equations, and one upstream propagating expan-
sion wave, as shown in Fig. 9. The discontinuous shock is also resolved accurately with
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the scheme of second order accuracy. These two examples demonstrate the advantages
of the gas kinetic scheme: vacuum handling and shock capturing. In addition, the posi-
tiveness of the flow depth is theoretically ensured, Tang et al. [30].

B.2 Effect of earth pressure coefficient

We now simulate the dam break flows of the Savage-Hutter model and compare with the
shallow water model. The main purpose is to illustrate the effect of the earth pressure
coefficient. In the one-dimensional flow, only the primary coefficient, (2.5), is needed.
Two test examples are calculated and they are arranged similarly to those in Section B.1:
an expansion flow into the dry state and a shock wave dam break. Both the internal and
basal friction angles, φ and δ, are set to 30◦, which yields kact

1 = k
pass
1 ≈1.67. The flat basal

surface is tilted at an inclination angle ζ=35◦ to let gravity drive the flow. The initial flow
profiles of the two cases are given as follows

(h,u)=

{

(5,0), x≤0,
(0,0), x>0,

(B.3)

(h,u)=

{

(5,0), x≤0,
(1,0), x>0.

(B.4)

In the corresponding shallow water model, the same basal friction force is applied, such
that the only difference between the two models is the earth pressure coefficient. The
computational domain is set equal to the same as in Section B.1 but is discretized into
1000 grid points. The constant depth condition and the outflow condition are applied to
the upstream and downstream ends of the calculation domain.

The flows at t=1.0 are shown in Figs. 10 and 11. These results exhibit similar behav-
iors as those in the previous section. For comparison, the solutions of the shallow water
model is plotted as the dash-dot lines. It is clearly seen from the position of the wave
fronts that the shock and expansion wave speeds are both higher in the Savage-Hutter
model than those in the shallow water model. This is because the large earth pressure
coefficient, 1.67, leads to a higher wave speed compared to the shallow water equation.
The wave speed of a 1D surface wave of the Savage-Hutter equation can be found to be
√

g3k1h following the same procedures as in the shallow-water equations. Accordingly,
the spans of the expansion waves are wider than the shallow water counterpart which
leads to the milder surface slope. Interestingly, in the intermediate zone between the
shock and the expansion wave, Fig. 11, the flow depth does not change.
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