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Abstract. The most severe limitation of the standard Lattice Boltzmann Method is the
use of uniform Cartesian grids especially when there is a need for high resolutions near
the body or the walls. Among the recent advances in lattice Boltzmann research to han-
dle complex geometries, a particularly remarkable option is represented by changing
the solution procedure from the original ”stream and collide” to a finite volume tech-
nique. However, most of the presented schemes have stability problems. This paper
presents a stable and accurate finite-volume lattice Boltzmann formulation based on a
cell-centred scheme. To enhance stability, upwind second order pressure biasing fac-
tors are used as flux correctors on a D2Q9 lattice. The resulting model has been tested
against a uniform flow past a cylinder and typical free shear flow problems at low and
moderate Reynolds numbers: boundary layer, mixing layer and plane jet flows. The
numerical results show a very good accuracy and agreement with the exact solution
of the Navier-Stokes equation and previous numerical results and/or experimental
data. Results in self-similar coordinates are also investigated and show that the time-
averaged statistics for velocity and vorticity express self-similarity at low Reynolds
numbers. Furthermore, the scheme is applied to simulate the flow around circular
cylinder and the Reynolds number range is chosen in such a way that the flow is time
dependent. The agreement of the numerical results with previous results is satisfac-
tory.
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1 Introduction

Computational fluid dynamics, in its conventional meaning, computes pertinent flow
fields in terms of velocity, density, pressure and temperature by numerically solving the
Navier-Stokes equations in time and space. At the turn of the 1980s, the Lattice Boltz-
mann Method (LBM) has been proposed as an alternative approach to solve fluid dy-
namics problems. The main philosophy of the LBM is to compute the physical real-
ity of a flow field through a microscopic kinetic approach that preserves the hydrody-
namic conservation laws [1, 2]. As a different approach from the conventional computa-
tional fluid dynamics, the LBM, initially developed from its predecessor the Lattice Gas
Automata (LGA) [3], has rapidly evolved into a self-standing research subject and has
proven to be an efficient tool for simulating a variety of nontrivial transport phenomena
and fluid dynamics problems such as hydrodynamics in porous media, multi-phase or
multi-component flows, reactive chemical flow, magneto-hydrodynamics, etc. [4–8]. Be-
cause of the broad scope and great potential of its applications, the LBE method has been
viewed not only as a novel technique, but also as a new and general approach in the spirit
of kinetic theory for the study of complex systems.

The kinetic nature of the LBE leads to several advantages. Pressure field and stress
tensor are locally available, with no need of solving any (expensive) Poisson problem.
Moreover, non-linearities are local (quadratic dependence of the local equilibrium on the
flow field) and the non-localities are linear because advection proceeds along constant,
straight lines defined by the discrete particle speeds. This is a very useful property, not
shared by the Navier-Stokes equations, in which non-linearity and non-locality come to-
gether into the same term, that is, the fluid moves its own momentum along a space-time
changing direction defined by the flow speed itself. Finally, the LBE method, the consti-
tutive relations emerge as a result of proper modeling of inter-particle potentials. Several
references are available to obtain an entry to the theory and methodology of LBE [9, 10].

One of the crucial ingredients which concurs to the LB efficiency is that particles live
on a discrete lattice, thus greatly simplifying the dynamics and the bookkeeping of the
method. However, this leads to geometrical stiffness, resulting into a uniform spatial
grid. This represents a very severe limitation for many practical applications, particu-
larly for multiscale-type calculations, where selective distribution of the computational
degrees of freedom in the ”hot” regions is necessary.

Such difficulty may be overcome by decoupling the numerical mesh from the lattice
structure, and taking recourse to, one of finite difference or finite element approaches. He
et al. [11] proposed an algorithm that adds an interpolation step to the standard LBM and
Succi et al. [12] were the first to propose a finite-volume formulation of the lattice Boltz-
mann equation. Both of these methods require a topologically structured mesh, though
the grid points do not have to form a square lattice. Peng et al. [13, 14] proposed a cell-
vertex finite volume scheme, which was further developed by Ubertini et al. [15]. This
method allows for an arbitrary decomposition of the computational domain into trian-
gular or quadrilateral elements, with otherwise no structural limitations for the mesh.
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However, the proposed method has several drawbacks with respect to numerical stabil-
ity and improved stability is needed [16].

The present work is aimed at making progress in the direction of developing a stable
finite volume formulation of the LBE with single time relaxation to equilibrium. A cell-
centered finite volume approach is used for space discretization and numerical stability
is improved by employing second order upwind biasing factors. The performance of the
formulation is systematically investigated by simulating three free shear flows, namely
1-boundary layer, 2-mixing layer and 3-plane jet flow. For each of these flows, the present
scheme is validated with the exact solution of the Navier-Stokes equation and literature
results. It is shown that the scheme has very high accuracy and is robust and accurate for
the different test problems studied.

The paper is organized as follows. In Section 2 a short summary of the discrete LB
equation and the proposed cell-centered finite-volume scheme are discussed. In Section 3
viscosity calculation and error analysis are performed through the simulation of a Taylor
vortex flow. Sections 4 and 5 contain simulation results of free shear flows and uniform
flow past a cylinder, respectively. Finally, concluding remarks are presented.

2 The numerical model

2.1 Discrete Boltzmann equation

The lattice Boltzmann equation can be directly derived from the Boltzmann equation by
discretization in phase space without borrowing the concept of particles jumping from
site to site as in the LGA model [3]. A popular kinetic model is the single relaxation time
approximation, the so-called Bhatnagar-Gross-Krook (BGK) model [1]

∂ fi

∂t
+~vi ·∇ fi =− 1

τ

(

fi− f
eq
i

)

, i=1,··· ,n, (2.1)

where n is the number of different velocities in the model, f eq is the particle equilibrium
distribution function (the Maxwell-Boltzmann distribution function) associated with mo-
tion along the ith direction in velocity space, ~vi the velocity in the ith direction, τ is the
relaxation time and the right hand side of the equation is the collision operator.

In the LBM, only a small set of discrete velocities are used to approximate the Boltz-
mann kinetics of the continuum velocity. So, to solve for f numerically, Eq. (2.1) is first
discretized in the phase space using a finite set of velocities without violating the conser-
vation laws. It should be pointed out that in the phase space the space variable x and the
velocity variable v are independent [17]. In the present work we shall refer to the nine
velocities model denoted as D2Q9, in which the nine discrete velocities are defined as
follows:
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where c is an arbitrary constant related to speed of sound by cs = c/
√

3, see [17]. The
equilibrium distribution for D2Q9 model is given by:

f
eq
i (~x,t)=wiρ

[

c1+c2(~vi ·u)+c3(~vi ·u)2+c4(u·u)
]

, (2.3)

where c1=1, c2=1/2c2
s , c3 =1/2c4

s , c4=−1/2c2
s and also ρ=∑i fi and ρu=∑i fi~vi are the

macroscopic mass density and momentum density respectively, and wi is the weighting
factor and equals 4/9 for i = 0, 1/9 for i = 1−4 and 1/36 for i = 5−8. Note that the
corresponding kinematic shear viscosity is related to the relaxation time by v= c2

s τ and
macroscopic pressure is given by p= c2

s ρ, see [13–19].

2.2 Cell-centered finite volume scheme

The approach to numerically solve Eq. (2.1) is a cell-centred finite-volume scheme based
on a space discretization into quadrilateral elements (see Fig. 1). For sake of simplicity
the scheme is illustrated for a structured grid, but the method could be easily extended to
unstructured grids. According to Fig. 1, the integration of the first term of the left-hand
side of Eq. (2.1) is performed as follows:

∫

abcd

∂ fi

∂t
dA≈

[∂ fi

∂t

]

I,J
·AI,J , (2.4)

where AI,J is the area of abcd. In the above equation, fi is assumed to be constant over
the area abcd, thus avoiding a set of equations to be solved. This is a common practice in
the finite volume methods [14].

A standard integration of the second term of the left-hand side of Eq. (2.1) gives the
flux associated to the streaming operator of the ith particle distribution function through

 

Figure 1 - Schematic of the FV discretization with cell-centered lattice 
Figure 1: Schematic of the FV discretization with cell-centered lattice.
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the four edges ab, bc, cd and da:

∫

abcd
vi ·∇ fidA=

∫

abcd

{

vix
∂ fi

∂x
+viy

∂ fi

∂y

}

dA. (2.5)

As vix and viy are constant, the following equation is obtained after applying the Green’s
theorem:

∫

abcd
vi ·∇ fidA=

∫

abcd

{∂(vix · fi)

∂x
+

∂( fi ·viy)

∂y

}

dxdy=
∮

around I,J
(vix fidy−viy fidx)

≈ [ fi]I,J+[ fi]I+1,J

2
vi ·Nab+

[ fi]I−1,J+[ fi]I,J

2
vi ·Nbc

+
[ fi]I,J+[ fi]I,J+1

2
vi ·Ncd+

[ fi]I,J−1+[ fi]I,J

2
vi ·Nda. (2.6)

In the above equation Nk=
(

∆y~i−∆x~j
)

k
is the outward unit vector normal to the edge and

k= ab,bc,cd,da. This formulation is named flux averaging scheme which would diverge
if the flux term is weak [20].

This could be avoided by using the divergence theorem and applying an upwind
scheme. In this case the integration of the second term of the left-hand side of Eq. (2.1)
results as follows [17]:

∫

abcd
vi ·∇ fidA=

∫

abcd

[∂(~vix · fi)

∂x
+

∂(~viy · fi)

∂y

]

dxdy

=

{

[ fi]I,Jvi ·Nab, if vi ·Nab≥0

[ fi]I+1,Jvi ·Nab, if vi ·Nab<0
+

{

[ fi]I,Jvi ·Nbc, if vi ·Nbc≥0

[ fi]I,J+1vi ·Nbc, if vi ·Nbc<0

+

{

[ fi]I,Jvi ·Ncd, if vi ·Ncd≥0

[ fi]I−1,Jvi ·Ncd, if vi ·Ncd<0
+

{

[ fi]I,Jvi ·Nda, if vi ·Nda≥0

[ fi]I,J−1vi ·Nda, if vi ·Nda<0

≈∑
k

~vi ·Nk( fi)k. (2.7)

Now, the following second order pressure-based biasing factors are employed in the con-
vective fluxes of Eq. (2.1):

ξab−Le f t=
pI−1,J

pI−1,J+pI,J
, ξab−Right =

pI,J

pI,J+pI+1,J
→ ξab =

ξab−Le f t+ξab−Right

2
, (2.8a)

ξbc−Bottom=
pI,J−1

pI,J+pI,J−1
, ξbc−Top=

pI,J

pI,J+1+pI,J
→ ξbc =

ξbc−Bottom+ξbc−Top

2
, (2.8b)

ξcd−Right =
pI+1,J

pI,J+pI+1,J
, ξcd−Le f t=

pI,J

pI,J+pI−1,J
→ ξcd=

ξcd−Right+ξcd−Le f t

2
, (2.8c)

ξda−Top=
pI,J

pI,J+pI,J+1
, ξda−Bottom=

pI,J

pI,J+pI,J−1
→ ξda =

ξda−Top+ξda−Bottom

2
. (2.8d)
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The idea of introducing these factors to improve numerical stability without adding ar-
tificial viscosity is related to the fact that the macroscopic pressure, p, acts as a driving
force for the flow between the two cells. So, according to above relations, the convective
fluxes may be written as follows [21]:

Si=
∫

~vi ·∇ fidA≈~vi ·Nab

(

ξab[ fi]I,J+(1−ξab)[ fi]I+1,J

)

+~vi ·Nbc

(

ξbc[ fi]I,J+(1−ξbc)[ fi]I,J+1

)

+~vi ·Ncd

(

ξcd[ fi]I,J+(1−ξcd)[ fi]I−1,J

)

+~vi ·Nda

(

ξda[ fi]I,J+(1−ξda)[ fi]I,J−1

)

. (2.9)

The heuristic meaning of these coefficients is to enhance transport downhill the pressure
gradient and reduce it uphill. Assuming a linear behavior of fi, f

eq
i within internal cells,

the integration of the collision term (right-side term of Eq. (2.1)) is performed through the
following formulation:

Qi=−
∫

abcd

1

τ

(

fi− f
eq
i

)

dA=−AI,J

τ

[

1

4
[ f ne

i ]I,J+
1

8

(

[ f ne
i ]I+1,J+[ f ne

i ]I,J+1+[ f ne
i ]I−1,J

+[ f ne
i ]I,J−1

)

+
1

16

(

[ f ne
i ]I+1,J−1+[ f ne

i ]I+1,J+1+[ f ne
i ]I−1,J+1+[ f ne

i ]I−1,J−1

)

]

, (2.10)

where f ne
i = fi− f

eq
i is the non-equilibrium component of the distribution function. Note

that the integration of the collision terms in boundary cells takes the following form:

−
∫

abcd

1

τ
f ne
i dA=−AI,J

τ

[

( fi)I,J−
(

f
eq
i

)

I,J

]

. (2.11)

As we know truncation or round-off causes error in numerical solution of partial differ-
ential equations. So, the solution may go unstable in typical cases (such as flows with
strong gradients) unless artificial dissipation is explicitly added to the calculation. Note
that artificial dissipation is the direct result of even order derivatives in modified equa-
tion [22]. So, in flux modeling, especially at high Reynolds numbers or in the presence
of strong gradients, the addition of artificial dissipation is inevitable to perform a sta-
ble simulation. Therefore, in order to damp out spurious oscillations the fourth-order
artificial dissipation takes the following form:

[

D(4) fi

]

I,J
= εx ·(∇∆)2

x ·[ fi]I,J+εy ·(∇∆)2
y ·[ fi]I,J , (2.12)

where εx and εy are damping factors in x and y directions, respectively and the integration
over each cell is the sum of flux and collision contributions in the time updating. These
damping factors were adjusted to achieve desired numerical stability and convergence.
In Eq. (2.12), the fourth-order gradient operator (Nabla-Delta) was discretized in x and y
directions as follows:

(∇∆)2
x ·[ fi]I,J =[ fi]I+2,J−4[ fi]I+1,J+6[ fi]I,J−4[ fi]I−1,J+[ fi]I−2,J , (2.13a)

(∇∆)2
y ·[ fi]I,J =[ fi]I,J+2−4[ fi]I,J+1+6[ fi]I,J−4[ fi]I,J−1+[ fi]I,J−2. (2.13b)
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2.3 Time marching

A modified, fifth order, Runge-Kutta time differencing scheme is used to advance the
computations in time

f n+1
i = f n

i +αl∆ f l−1
i , (2.14a)

α1=0.0695, α2=0.1602, α3=0.2898, α4=0.5, α5=1, l=1,2,··· ,5. (2.14b)

In the above equation n denotes the time step and

∆ f l−1
i =

∆t·(Sl−1
i +Ql−1

i )

AI,J
. (2.15)

Therefore, the new-time particle distribution function is calculated as follows:

f n+1
i = f n

i +αl
∆t

AI,J
(Sl−1

i +Ql−1
i ) (2.16)

based on the CFL (Courant-Friedrichs-Lewy) criterion, the time step is given by:

∆t=CFL×
(

min
(

√

∆x2
I,J+∆y2

I,J

)

)/(

max
(

√

u2
I,J+v2

I,J

)

)

, (2.17)

where the term CFL is set less than 0.7 for enhanced stability and ∆xI,J , ∆yI,J are the
projected lengths of the minimal area cell along the x and y directions, respectively.

2.4 Boundary conditions

One of the most critical issues of Lattice Boltzmann techniques is the implementation of
the boundary conditions. In fact, the unknowns in the LBM are the particle distribution
functions, while boundary conditions are defined as functions of the macroscopic fluid
dynamics variables (i.e., velocity and pressure) or their derivatives. Therefore, boundary
conditions must be defined in terms of the density distribution functions, while maintain-
ing their physical meaning. Moreover, those well-established treatments of the bound-
ary conditions used in the traditional BGK cannot be directly extended to finite volume
formulations. In this section, various types of boundary conditions and their implemen-
tation with the present approach are discussed.

In order to transform hydrodynamic boundary conditions to the boundary conditions
for the distribution functions, additional lattices at the edge of each boundary cell are
introduced. Then, boundary nodes are treated like internal nodes, except that the fluxes
over boundary edges also have to be evaluated.

As indicated in Fig. 2, physical boundaries of the computational domain are defined
to be aligned with the lattice grid lines (on-grid formulation). The inlet boundary condi-
tions at I=1 are given by:

f1= f3+
2uin

3
, f5 = f7+0.5( f4− f2)+

uin

6
, f8 = f6+0.5( f2− f4)+

uin

6
. (2.18)
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Figure 2 - Physical boundaries of the solution domain and lattice model on typical boundaries. Figure 2: Physical boundaries of the solution domain and lattice model on typical boundaries.

The above described scheme is also known as Zou and He boundary conditions, sug-
gesting the name of the original authors proposing this idea [23]. The other distribution
functions are computed as follows:

fi(I=1, J)=1.5 fi(I=2, J)−0.5 fi(I=3, J), i=0,2,3,4,6,7. (2.19)

At the outlet boundary i.e., I = Nx, the distribution functions are extrapolated as fol-
lows [24, 25]:

fi(I=Nx, J)=1.5 fi(I=Nx, J)−0.5 fi(I=Nx−2, J). (2.20)

Free-slip boundary conditions apply to the case of smooth boundaries with negligible
friction exerted upon the flowing fluid. In this case, the tangential motion of the fluid flow
on the boundary is free and no momentum is to be exchanged with the boundary along
the tangential component. For free sleep boundary conditions (Fig. 2) the distribution
functions are calculated as follows:

f8= f5, f4= f2, f7= f6. (2.21)

This implies no tangential momentum transfer to the boundary, as required for a free
sleep fluid motion. The condition f4 = f2 implies that the component of the flow speed
normal to the wall is null. The other distribution functions (i.e., i=0,1,3,5,2,6) are com-
puted by extrapolation scheme.

Wall boundary conditions are in lattice Boltzmann simulations usually implemented
by applying so-called bounce-back rule or no-slip boundary conditions in the case when
a solid obstacle imposes friction (Fig. 3). During propagation, the component of the dis-
tribution function that would propagate into the solid node is bounced back and ends up
back at the fluid node, but pointing in the opposite direction. This means that incoming



50 A. Zarghami et al. / Commun. Comput. Phys., 12 (2012), pp. 42-64

Figure 3: Schematic of bounce-back algorithm for straight wall.

 

Figure 4: Schematic of complex wall.

particle portions are reflected back towards the nodes they came from. In this study the
halfway bounce-back scheme is applied, which gives second-order accuracy for straight
walls [24]:

f6= f8, f2= f4, f5= f7. (2.22)

As we mentioned before, the used scheme is capable to develop for unstructured rect-
angular meshes. On the arbitrary shaped solid walls (Fig. 4) we can apply the halfway
bounce-back scheme [25]. The numerical results have shown that scheme has high ac-
curacy for solid walls especially in the concave and convex corners [26]. For arbitrary
shaped solid walls, the θ (Fig. 4) suggests the selection of appropriate fi is for extrapola-
tion purposes.

Periodic boundary condition can be used as inflow/outflow boundary conditions and
is applied directly to the PDFs, and not to the macroscopic flow variables, which means
the PDFs coming out of one boundary will enter into the opposite boundary. Periodic
boundary conditions are applied to a boundary and a corresponding boundary counter-
part.

Consider the domain illustrated in Fig. 2, a possible application of periodic boundary
condition could be to link parallel the west boundary with the east one as well as the
north with the south one.
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The boundary values at the west end of the region (x = 0; y) are implemented by
transferring the densities with positive x component of velocity from the east boundary
(x=nx; y):

f1,inlet= f1,outlet, f5,inlet= f5,outlet, f8,inlet= f8,outlet. (2.23)

Note that it is only necessary to transfer three of the 9 densities that will then flow into
the region.

3 Numerical viscosimeter

In order to measure the numerical viscosity, we simulate the evolution of the two-dimensional
Taylor-Vortex flow in a square domain of width W and length L with periodic boundary
conditions. The numerical results are compared to the analytical solution:

u(x,y)=−u0cos(p1x)sin(p2y)·e−v(p2
1+p2

2), (3.1a)

v(x,y)=−u0 sin(p1x)cos(p2y)·e−v(p2
1+p2

2). (3.1b)

In the Taylor-Vortex flow, the vortex field will decay with exponential rate −v(p2
1+p2

2)·t.
In Eq. (2.23), v is the kinematics viscosity of the fluid and p1=0, p2=2π/W are the wave
numbers along x and y directions, respectively. The velocity u0 was chosen to be 0.1
and we set the W = 10, c2

s = 1/3 and time step dt= τ/2. The computational domain is a
Nx×Ny =50×50 regular mesh.

We have found from this simulation that for different values of relaxation time τ, the
kinematics viscosity is equal to v= c2

s τ = τ/3. Fig. 5(a) shows the comparison between
numerical and analytical solutions for the Taylor-Vortex flow for two different values of
the relaxation time. Also Fig. 5(b) shows the results at different times for τ=0.01. As one
can see the agreement between numerical and analytical results is very good.

Taylor vortex flow in Time=200
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Figure 5: Analytical and calculated streamwise velocity profiles for the Taylor-Vortex flow simulation for τ =
0.1,0.01 and time t=5,250.
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Table 1: Numerical errors for the Taylor-Vortex flow (t=200).

Time (t) Iteration uexact maximum unumerical maximum E1

τ=0.1 4000 0.007194203 0.007219020 0.34%
τ=0.01 40000 0.076859628 0.077255092 0.51%

Table 2: Numerical viscosity error for the Taylor-Vortex flow in (t=200, ∆t=τ/2).

Time (t) Calculated Viscosity Numerical Viscosity Error (E2)
τ=0.1 0.03328972 0.13%

τ=0.01 3.268E-03 1.96%

The numerical error relative to the exact solution, defined as E1=|(u−uexact)/Umax|×
100, shown in Table 1. For this purpose, maximum error among all nodes of x=w/2 is
calculated. Numerical viscosity error defined as E2=(|vnumerical−vtheoretical|/vtheoretical)×
100 were also calculated. Results for different values of relaxation time are shown in
Table 2.

4 Free shear flows simulation results

The computer code with the cell-centered FV-LBE formulation has been used to simulate
three free shear flows namely 1-boundary layer flow over flat plate, 2-mixing layer and
3-free plane jet flow. The results are presented and discussed in this section.

As already mentioned, the present scheme could be applied to unstructured meshes
too, but in this paper we limit our analysis to structured meshes with a regular rectan-
gular tessellation. In this study, the computational domain is Lx = Ly = 80δth, where δth

is the theoretical thickness of the layer in x= Lx. This theoretical thickness is calculated

 

Figure 6: Used geometry in the jet/mixing layer flow simulation.
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according to analytical solution for the boundary layer, flow and is estimated on the basis
of the inlet velocity profile for jet and mixing layer flows. For the boundary layer flow
Ly=40δth has been chosen.

The computational domain employed for jet and mixing layer flows (Nx×Ny=261×
521) is shown in Fig. 6. The center of the jet/mixing layer is located at xc=0 and yc=40δth.

In the cross-stream direction y, an equally spaced grid is used in the jet/mixing layer
vorticity thickness i.e., for 35δth < y< 45δth, and then the grid is stretched on both sides.
Also, in the stream-wise direction x, the grid is uniform between 0< x < 5δth and then
stretched. A similar selection is used for the boundary layer flow.

4.1 Laminar boundary layer

Two dimensional boundary layer flow is a simple benchmark for flows with open, no-slip
and free slip boundaries. Fig. 7 represents diagrammatically the velocity distribution in
boundary layer and boundary conditions at the plate, with the dimensions across it con-
siderably exaggerated. In front of the leading edge of the plate the velocity distribution
is uniform. With increasing distance from the leading edge in the downstream direction,
the thickness, δ, of the retarded layer increases continuously.

Fig. 8 shows a part of the computational domain and velocity vectors in which the
LBE equations for the incompressible laminar boundary layer flow are solved. The results
of the simulation display essentially laminar growth at the low Reynolds numbers.

 

Figure 7: Sketch of boundary layer on a flat plate.

 

Figure 8: Velocity vectors of boundary layer flow at Re=25.
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(a) 

 

(b) (a) (b)

Figure 9: (a) Velocity and (b) vorticity distribution in the boundary layer along a flat plate.

Results in self-similar coordinate were also investigated. The mean field statistics
for the streamwise velocity component are illustrated in Fig. 9(a) and compared with
analytical solution of Blasius [27]. All quantities are non-dimensionalized by the ap-
propriate characteristic scales of the flow. Specially, all lengths are normalized by the
boundary layer thickness, δ and velocities are normalized by U∞, where U∞ is the free
stream streamwise velocity. The vorticity component ω = ∂u/∂y+∂v/∂x is also calcu-
lated. Fig. 9(b) shows the mean field statistics results of vorticity. Clearly, these results
are representative of a self-similar layer. Fig. 10 shows the growth of the boundary layer
thickness which has an excellent agreement with the analytical solution.

 

Figure 10: Growth of the boundary layer thickness.

4.2 Mixing layer

The plane mixing layer is characterized by the merging of two co-flowing fluid streams
with different velocities. Typically, the two streams are separated by an impermeable ob-
ject upstream of the confluence of these streams. The flow geometrical sketch is reported
in Fig. 11. Downstream of the confluence, the two streams exchange momentum as they
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Figure 11: Schematic of plane mixing layer.

come into intimate contact with each other. The mixing layer itself is defined by the re-
gion in which this merging process is occurring. Being such a simple configuration, the
mixing layer is one of the most common flows experienced in nature. Mixing layer are
encountered in many application such as combustion furnaces, chemical lasers, the lip of
an intake valve in an internal combustion engine and the trailing edge of a turbine blade.

In this flow, two initially unperturbed parallel flow streams with velocities U1, U2

interact each other as a consequence of friction from the position x=0 to downstream [27].
Due to the low viscosity, the transition from velocity U1 to velocity U2 takes place in a thin
mixing zone, in which the transverse component v of the velocity is small if compared to
the longitudinal velocity component u.

The flow is initially at rest (zero speed) and is impulsively started by forcing a hyper-
bolic profile such as Uinlet(y)=0.5{(1/λ)+tanh(y)} at inlet where λ=[U1−U2]/[U1+U2]
represents a measure for the intensity of the layer shearing. The flow has been numeri-
cally simulated for a Reynolds number equal to 300 defined as Reδω0

=∆Uδw0/v, being
δω0 the vorticity thickness of the reference (inlet) velocity profile and ∆U=U1−U2.

When the flow gets steady, the results of the simulation essentially display a laminar
growth of the boundary layer. Fig. 12(a) illustrates the streamwise growth of the vorticity
thickness, δω = 1/(∂Ū/∂y)max at Re = 300. In this case, the average layer speed, Ū =
0.5(U1+U2), is set at 1.5 in lattice units. A square-root relationship fit to these computed
results is shown in the graph reported in Fig. 12(a). The layer is responded with the
classical laminar, square-root growth characteristics [28]. This is evident by the close
agreement indicated by the computed results. Fig. 12(b) shows velocity profiles for the
mixing of the two uniform laminar streams at different velocities.

Results in self-similar coordinates for the mixing layer were also investigated. The
principle of self similarity as a representation of moving equilibrium was introduced by
Townsend [29]. Free shear layers provide an excellent example of this equilibrium, and
they form one class of canonical laminar and turbulent flow fields. A dimensionless
variable that is written as a function of a dimensionless transverse coordinate is called
”self-similar” if the function does not change with the downstream position.

In order to verify our results, present numerical results are compared to the experi-
mental data of Oster and Wygnanski [30]. Non-dimensional time-averaged streamwise
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Figure 12: (a) Streamwise growth of the vorticity at Re=300. Curve fit using δω =0.2875
√
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Velocity profiles for the mixing layers at different velocities.
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Figure 13: The cross-stream variation of the normalized (a) u-component velocity, (b) vorticity.

velocities and vorticities obtained by a statistical method at different stations are shown
in Fig. 13. These results clearly show that self-similarity of the mixing layer is caught by
the simulation and indicates that mixing layer is a flow with a self-preserving state. The
quantitative agreement between numerical and experimental mean streamwise velocity
and vorticity is satisfactory.

4.3 Jet flow

In this section, the simulation of a two-dimensional plane jet presented. A jet is formed
by a flow issuing from a nozzle into an ambient fluid, which is at a different velocity. If
the ambient fluid is at rest the jet is referred to as a ”free jet”; if the surrounding fluid is
moving, the jet is called a ”co-flowing jet”. A jet is one of the basic flow configurations
which has many practical applications such as in jet engines, combustors, chemical lasers,
ink-jet printer heads, among others. Fig. 14 illustrates features of a free jet flow.

In [27] it is shown that the layer thickness of a free jet flow grows and the local maxi-
mum velocity decays with the downstream distance as x2/3 and x−1/3, respectively, being
x is the distance downstream from the jet nozzle.
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 Figure 14: The laminar 2D free jet flow.

The central portion of the jet, a region with an almost uniform mean velocity, is called
the ”potential core”. Because of the shear layer spreading, the potential core eventually
disappears at a distance of about four to six diameters downstream from the nozzle. The
entrainment process continues further beyond the end of the potential core region such
that the velocity distribution of the jet eventually relaxes to an asymptotic bell-shaped
velocity profile as illustrated in Fig. 14.

Here, we assume that the flow is initially at rest and is started by forcing a hyperbolic
profile, Uinlet(y)= 1/cosh2(y), after the potential core [27]. Moreover, the half-width of
the jet, δ1/2, is defined as the distance between the axis and the location where the local
velocity equals half of the local maximum or centerline velocity, Um.

The increase in the jet half-width with the downstream distance provides a measure
of the spreading rate of the jet. Fig. 15(a) shows the growth of the jet half width thickness
at Re=300. This thickness grew with the downstream distance as a function of x2/3 and
δ= 0.889(x+0.949)2/3 fit to these simulation results. Due to the spreading, the jet cen-
terline velocity, Um, decreases downstream beyond the potential core region. Fig. 15(b)
illustrates the centerline velocity of the free jet which decays as x−1/3. A curve fit to
these computed results is shown in the graph of Fig. 15(b). This is evident by the close
agreement indicated by the computed results.

The jet similarity characteristics in the transition process have been studied in [27] as
well. The velocity profiles in various regions of the jet flow are plotted non-dimensionally
and compared with analytical solutions in [27]. The streamwise mean velocity and vor-
ticity distributions are presented in Fig. 16(a) and (b) respectively, where the velocities are
normalized by the centerline velocity, and the jet discharging distance is normalized by
the jet half-width thickness, shown as U/Um and y/δ1/2, respectively. Fig. 16(a) presents
mean velocity profiles measured at several streamwise locations in the jet. The collapse
of the profiles in the similarity coordinates U = UM versus y = δ1/2 is clearly evident.
Fig. 16(b) reports the normalized time averaged vorticity profiles at different stations.
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Figure 15: (a) Growth of the jet half-width, (b) decay of the centerline velocity of free jet.
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Figure 16: The cross-stream variation of the normalized (a) u-component velocity, (b) vorticity.

These figures show that the profiles express self-similarity at low Reynolds numbers.
Most of the data could fit the analytical curve quite well, except very close to the jet inlet.
A high degree of similarity is found in the downstream regions.

5 Uniform flow over 2D circular cylinder

The efficiency of the used scheme for curved boundaries was studied with reference to a
uniform flow past a circular cylinder, that has been both numerically and experimentally
studied extensively in the past, thus becoming a standard benchmark problem. The flow
has been numerically simulated for Reynolds number ranging between 20 and 100. The
Reynolds number is calculated as Re=UD/v, being U the inlet uniform velocity and D
the cylinder diameter.

Fig. 17(a) shows a schematic of the flow configuration and boundary conditions that
has been simulated here. The symmetry boundary conditions were used for top and
bottom walls. All the simulations have been performed in a large 32D×16D domain
so as to minimize the effects of the boundaries on the development of the wake. Grid
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(a) 
 (b) 

Figure 17 - Flow configuration for simulation of flow past a cylinder placed symmetrically in a planar channel (a) (b)
Figure 17: Flow configuration for simulation of flow past a cylinder placed symmetrically in a planar channel
and (b) mesh grids around circular cylinder.
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(a) (b)

Figure 18: Streamlines at (a) Re=20 and (b) Re=40.

independence for non-dimensionalised wake length L was shown at Re = 30 in Table
3. The 200×120 non-uniform mesh reported in Fig. 17(b) has been used in the present
simulations for Re=20 and 40.

Table 3: Non-dimensionalised wake length versus grid size at Re=30.

Number of grids 120×70 150×80 180×100 200×120
L/d 2.88 3.06 3.1 3.1

The flow is impulsively started by forcing a uniform profile at inlet and after the fully
periodic solution is reached, we measure and report the length of the wake behind the
cylinder, the separation angle and the drag coefficient:

CD =
FD

(0.5ρUD)
, (5.1)

where FD is the drag force, which is the component of the aerodynamic force parallel to
the free-stream velocity.

Details of the flow path behind the cylinder at the Re=20 and 40 are shown in Fig. 18.
As expected the cylinder wake is steady and no vortex shedding is observed. Table 4
compares the present numerical results with previous experimental and computational
results [31–39]. In particular the length of the wake behind the cylinder, the separation
angle and the drag coefficient computed with the present method are in good agreement
with the correspondent values available in literature.
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Table 4: Comparison of geometrical and dynamical parameters: L= length of wake, d= cylinder radius, θs =
separation angle.

Re Authors L/d θs CD

20 Coutanceau and Bouard [31] 1.86 44.8 –
Dennis and Chang [32] 1.88 43.7 2.045
Nieuwstadt and Keller [33] 1.786 43.37 2.053
He and Doolen [34] 1.842 42.96 2.152
Patil and Lakshmisha [35] 1.884 42.81 1.949
Fornberg [36] 1.82 – 2
Calhoun [37] 1.82 – 2.19
Ye et al. [38] 1.84 – 2.03
Ubertini et al. [39] – – 2.09
Present 1.82 42.5 2.205

40 Coutanceau and Bouard [31] 4.26 53.5 –
Dennis and Chang [32] 4.69 53.8 1.552
Nieuwstadt and Keller [33] 4.357 53.34 1.550
He and Doolen [34] 4.49 52.84 1.499
Patil and Lakshmisha [35] 4.284 52.74 1.558
Fornberg [36] 4.48 – 1.5
Calhoun [37] 2.18 – 1.62
Ye et al. [38] 2.27 – 1.52
Ubertini et al. [39] – – 1.56
Present 4.47 52.8 1.551

Table 5: Comparison of Strouhal number and drag coefficient for unsteady flow at Re=100.

Authors Strouhal Number CD

Calhoun [37] – 1.33
Ding et al. [40] 0.166 1.391
Liu et al. [41] 0.164 1.350
Braza et al. [42] – 1.364
Present 0.161 1.310

It is generally accepted that the wake of a cylinder immersed in a free-stream first
becomes unstable to perturbations at a critical Reynolds number of about Re = 46±1
see [38]. Above this Reynolds number, a small asymmetric perturbation in the near wake
will grow in time and lead to an unsteady wake and Von Karman vortex shedding. This
is indeed what we find for our simulation at Re = 62 which has been carried out on a
320×240 non-uniform mesh with a structure similar to the grid shown in Fig. 17(b).

Fig. 19(a) shows the behavior of residual of velocities (Eq. (3.1)) at Re=60, 65 and 100.
Also Fig. 19(b) shows the variation of drag coefficient with time at Re=100 and it shows
how vortex shedding develops to a periodic state in time.

The vortex shedding Strouhal number defined as St= fsD/U, where fs is the shedding
frequency, is one of the key quantities that characterizes the vortex shedding process.
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Figure 19: (a) Behavior of velocities residuals at Re=60, 65 and 100 and (b) variation of drag coefficient with
time at Re=100.
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Figure 20 - Plot of streamlines (a,b) and vorticity (c,d) at two times for Figure 20: Plot of streamlines (a, b) and vorticity (c, d) at two times for Re=100.

Here we have estimated the Strouhal number from the periodic variation of the drag
coefficient. Table 5 lists the quantitative comparisons for the Strouhal number, as well as
the drag coefficient. Fig. 20 shows a plot of the streamline pattern and spanwise vorticity
contour at two times instant for Re=100. Clearly, plots show the classical Karman vortex
street.

6 Conclusions

This paper presents an accurate and stable cell-centered finite-volume formulation of
the D2Q9 lattice Boltzmann equation with single time relaxation. An upwind scheme
based on a least squares linear reconstruction of the populations in each control volume
and upwind-biased second-order pressure-based flux weighting factors are used. In flux
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modeling, we added an artificial dissipation to damp out the spurious oscillations, to
increases the stability and accuracy of the numerical scheme. Boundary treatments have
been extensively described. Time marching is performed through a fifth-order Runge
Kutta method.

It has been provided numerical evidence that the corresponding kinematic shear vis-
cosity is related to the relaxation time by v= c2

s τ, with small numerical viscosity. Then
some numerical tests against well-known free shear flow problems are presented to en-
sure the validity of the proposed numerical method. Namely a boundary layer flow
over flat plate, a mixing layer flow and a free plane jet flow are simulated. An excellent
agreement between present results and analytical solutions is observed, as well as the
capability of the method to reveal the self-similar property of free shear layers.

Finally, the numerical procedure is applied to a uniform flow past a circular cylinder.
This test enables to highlight the potentiality of a finite volume method with respect to
traditional LBM, as grid refinement can be performed close to the body. Moreover, the
simulation could be successfully performed also for unsteady flow, at Re = 100, where
numerical instability was experienced by other finite volume formulations available in
literature.
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