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Abstract. The paper is devoted to the development of an efficient deterministic frame-
work for modelling of three-dimensional rarefied gas flows on the basis of the numer-
ical solution of the Boltzmann kinetic equation with the model collision integrals. The
framework consists of a high-order accurate implicit advection scheme on arbitrary
unstructured meshes, the conservative procedure for the calculation of the model colli-
sion integral and efficient implementation on parallel machines. The main application
area of the suggested methods is micro-scale flows. Performance of the proposed ap-
proach is demonstrated on a rarefied gas flow through the finite-length circular pipe.
The results show good accuracy of the proposed algorithm across all flow regimes and
its high efficiency and excellent parallel scalability for up to 512 cores.
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1 Introduction

Past few years have seen rapid development of numerical methods and associated com-
puter codes for solving the Boltzmann kinetic equation with the exact or model collision
integrals for three-dimensional problems. The accurate numerical solution of this equa-
tion is important in mathematical modelling of gaseous flows inside micro-scale systems,
for which popular statistical methods [8] are inefficient. In existing approaches for solv-
ing three-dimensional kinetic problems in complex geometries time marching methods
are typically used for both steady-state and unsteady calculations, with the only excep-
tion reported in [5] for plasma thruster modelling. In [27, 28] a second-order accurate
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structured finite-difference solver for the model kinetic equations was reported. In a
series of publications [6, 22, 23] a semi-unstructured Cartesian solver for the Boltzmann
equation with both exact and several model collision integrals was developed. Another
first-order accurate unstructured-mesh solver was presented [2,18,19]. The performance
of these methods has been illustrated by computing a number of rarefied gas flows.

Although the above-mentioned methods and associated computer codes represent a
significant advance in computational rarefied gas dynamics, there is still much room for
improvement. Firstly, the cited three-dimensional methods [2,6,18,19,22,23,27,28] use ex-
plicit time evolution with splitting with respect to processes and are thus not efficient for
computing steady-state solutions. Existing one- and two-dimensional implicit methods
for single-block structured meshes [31,54,56] are not easily extendable to complex three-
dimensional geometries. Secondly, with the exception [27, 28] their spatial discretization
methods do not allow for an accurate and economical resolution for the near-wall layers,
which is important in the transitional and near-transitional regime. Thirdly, the scalabil-
ity of the methods on modern massively parallel clusters has not been properly demon-
strated. Since the computational problems associated with the direct numerical solution
of the Boltzmann equation are typically large, good parallel performance is very impor-
tant. Therefore, the development of more effective and universal methods for solving
three-dimensional kinetic applications is still an open problem.

The present paper is devoted to the development of a new numerical framework for
obtaining three-dimensional solutions of the Boltzmann kinetic equation with the model
collision integrals, which circumvents the deficiencies of the existing methods, outlined
above. The framework consists of the three main blocks: high-order accurate implicit
advection scheme on hybrid unstructured meshes, conservative procedure for the cal-
culation of the model collision integral and a simple and efficient implementation on
modern high-performance clusters. The use of unstructured meshes in physical space
simplifies the computations in three-dimensional domains of complex geometry and al-
lows for efficient and accurate resolution of near-wall layers. The high-order accurate
total variation diminishing (TVD) advection scheme works well for both large Knud-
sen numbers, when discontinuities of distribution function play an important role, and
for moderate and small Knudsen numbers, for which the high order of accuracy is im-
portant. The one-step implicit time discretization method accelerates convergence to a
steady state by at least an order of magnitude as compared with explicit time evolution
methods. Finally, good scalability of the method makes it possible to use relatively fine
meshes with moderate computational time required.

The performance of the proposed method is demonstrated on the problem of a rar-
efied gas flow through a circular micro-scale pipe of finite length driven by pressure
difference between the reservoirs attached to the ends of the pipe. The gas flow through
a circular orifice (channel of zero length) was studied as early as in 1974 in [38] using a
finite-difference method. More recently, flow through a finite-length tube was studied on
the basis of the statistical modelling techniques [52]. In the present work the gas flow in
the finite-length tube with length to diameter ratio of 10 is used as a relevant computa-
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tional problem to analyze the performance of the developed method in the wide range
of flow regimes. The numerical solution is computed for both small and large pressure
jumps using the linearised and non-linear formulations of the kinetic equation, respec-
tively. The calculations are carried out on the basis of S-model kinetic equation [34, 35],
but other kinetic models can be easily incorporated. For each case the mass flow rate
through the channel is calculated for a wide range of the Knudsen numbers. The three-
dimensional results are compared with the asymptotic Poiseuille solution, which corre-
sponds to the assumption of the infinitely long tube. The results include estimates of
accuracy, demonstration of the gains of the efficiency due to the implicit time marching
as well as the analysis of parallel scalability.

The rest of the paper is organized as follows. In Section 2 the formulation of the test
problem and the governing equations are presented, including the non-linear, linearised
and Poiseuille formulations. In Section 3 the general method of solution is outlined.
Computational results are presented in Section 4. Conclusions are drawn in Section 5.

2 Formulation of the problem

Consider two three-dimensional reservoirs (volumes) filled with the same monatomic
gas and connected by a microchannel (tube) of length 2l and circular cross section of
radius a. Inside the reservoirs away from the channel the gas is at rest with pressures
p1 > p2, respectively, and the same temperature T0. It is assumed that reservoirs are sig-
nificantly larger than the micro channel and the gas is in equilibrium far away from the
ends of the latter. The actual form and size of reservoirs are thus of no importance. The
complete accommodation of momentum and energy of molecules occurs at the channel
surface, which is kept under the same constant temperature T0. The positive pressure dif-
ference ∆P=p1−p2 between reservoirs causes the gas movement through the connecting
channel. The main quantity of interest is the resulting mass flux through the channel as
the function of the pressure difference and degree of gas rarefaction.

Below only channels with l/a=10 are considered. Let us introduce a Cartesian coor-
dinate system (x,y,z) with the centre located in the middle of the channel x = y= z= 0
and the Oz axes directed along the channel. Due to the spatial symmetry of the problem
only quarter of the spatial domain needs to be considered. The sketch of the resulting
flow domain for the circular channel is presented in Fig. 1 with reservoirs schematically
shown to be of cylindrical shape. The non-dimensional mass flow rate M to be calculated
is given in terms of dimensional gas density ρ and z component of velocity w as

M=

√
2RT0

p0|A|
∫

A

ρ(x,y,z)w(x,y,z)dxdy, p0 =
1

2
(p1+p2), −l≤ z≤ l, (2.1)

where A is the cross-sectional area; for the domain shown on Fig. 1 it is equal to πa2/4.
Note, that mass flow rate M is constant along the channel.
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Figure 1: Geometry of the micro channel and reservoirs (volumes) for circular cross section.

2.1 S-model kinetic equation

A steady three-dimensional state of the rarefied gas is determined by the velocity dis-
tribution function f (x,ξ), where x = (x1,x2,x3) = (x,y,z) is the spatial coordinate, ξ =
(ξx,ξy,ξz) is the molecular velocity vector. For the rest of the paper, the non-dimensional
formulation is used, in which spatial coordinates x, mean velocity u=(u,v,w)=(u1,u2,u3),
number density n, temperature T, heat flux vector q=(q1,q2,q3) and viscosity µ are scaled
using the following quantities:

a,
√

2RT0, n0, T0, mn0(2RT0)
3/2,

5

16
mn0

√

2πRT0λ0.

Here n0= p0/mRT0 is the average number density, λ0 is the mean free path, correspond-
ing to n0, T0. Below, the non-dimensional variables are denoted by the same letters as the
dimensional ones.

The distribution function f is assumed to satisfy the Boltzmann equation with the
S-model collision integral [34, 35], which is widely used in calculating micro-channel gas
flows, see e.g. [41, 42] for a review of the recent results. In the non-dimensional variables
the equation takes the form

ξx
∂ f

∂x
+ξy

∂ f

∂y
+ξz

∂ f

∂z
=ν( f (S)− f ), ν=

8

5
√

π

nT

µ

1

Kn
, (2.2a)

f (S)= fM

[

1+
4

5
(1−Pr)Sc

(

c2− 5

2

)]

, fM =
n

(πT)3/2
exp

(

−c2
)

, (2.2b)

vi = ξi−ui, ci =
vi√

T
, Si=

2qi

nT3/2
. (2.2c)

Here the Knudsen number Kn=λ0/a defines the degree of gas rarefaction; for a monatomic
gas the Prandtl number Pr=2/3. The non-dimensional gas viscosity is related to gas tem-
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perature as µ =
√

T, which corresponds to the hard-sphere intermolecular interaction.
The non-dimensional macroscopic quantities are defined as the integrals of the velocity
distribution function with respect to the molecular velocity:









n
nu

n( 3
2 T+u2)

q









=
∫









1
ξ

ξ2

1
2 vv2









f dξ. (2.3)

The non-dimensional pressure is given by p=nT.
The kinetic equation (2.2) has to be augmented with the boundary conditions on the

channel and reservoir walls. Let n = (nx,ny,ny) be the inward unit normal vector to a
boundary surface. The condition of diffuse molecular scattering on the channel surface
with complete thermal accommodation to the surface temperature T0 is given by:

f (x,ξ)= fw =
nw

(πT0)3/2
exp

(

− ξ2

T0

)

, ξn =(ξ,n)>0. (2.4)

The density of reflected molecules nw is found from impermeability condition stating that
the mass flux through the walls is equal to zero:

nw =Ni/Nr , Ni =−
∫

ξn<0

ξn f dξ, Nr =+
∫

ξn>0

ξn
1

(πT0)3/2
exp

(

− ξ2

T0

)

dξ. (2.5)

The same condition (2.5) is used for the parts of the reservoir walls directly adjacent to the
micro channel; these are located at z=±l. At the rest of the reservoir wall the distribution
function of the incoming molecules ξn >0 is specified as

f = f1=
n1

(πT0)3/2
exp(−ξ2/T0), z→−∞, (2.6a)

f = f2=
n2

(πT0)3/2
exp(−ξ2/T0), z→+∞. (2.6b)

Boundary condition (2.6) is essentially an evaporation boundary condition for the molecules
entering the flow domain and is meant to model the indefinitely large reservoirs.

On the symmetry planes Y0Z and X0Z the reflective boundary condition is applied.
The distribution function fw(ξ) of the molecules moving from these planes inside the
flow domain is given by

fw(ξ)= f (ξ ′), ξ ′=ξ−2ξnn, ξn≥0. (2.7)

The expression for the non-dimensional mass flow rate (2.1) takes the form

M=
2

|A|
∫

A

ρwdxdy. (2.8)

The two-dimensional integral (2.8) can be calculated at any position z inside the micro
channel.
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2.2 Linearised kinetic equation

The nonlinear kinetic equation (2.2) is valid for arbitrary ratios of pressures in reservoirs.
However, if the pressure difference between reservoirs is small:

|∆P|
p0

≪1.

the problem can be simplified by linearizing the distribution function f around the Maxwellian
distribution f0 corresponding to average values of density and temperature n0, T0:

f = f0(1+h), h=h(x,ξ), |h|≪1, (2.9a)

f0=
n0

(πT0)3/2
exp(−ξ2/T0)≡

1

π3/2
exp(−ξ2). (2.9b)

The deviation of density n̂=n−n0 and temperature T̂=T−T0 from the average values as
well as gas velocity u and heat flux q can be expressed via the perturbation h as:

n̂=
∫

f0hdξ, u=
∫

ξ f0hdξ, (2.10a)

3

2
(n̂+ T̂)=

∫

ξ2 f0hdξ, q=−5

4
u+

1

2

∫

ξξ2 f0hdξ. (2.10b)

The evolution equation for the perturbation function h is obtained by first inserting (2.9)
in the nonlinear kinetic equation (2.2) and then using the assumption |h|≪1. The result-
ing linearised equation has the same form as (2.2), but differs by the constant collision
frequency ν0 and the function h(S) in the model collision integral in place of ν and f (S):

ξx
∂h

∂x
+ξy

∂h

∂y
+ξz

∂h

∂z
=ν0(h

(S)−h), ν0=
8

5
√

π

1

Kn
, (2.11a)

h(S)= n̂+2uξ+(ξ2− 3

2
)T̂+

8

5
(1−Pr)(ξ2− 5

2
)qξ. (2.11b)

It is worth noting that in the linearised problem the average quantities become p̂0= n̂0=
T̂0 = 0. The values of pressure inside the reservoirs at |z|→∞ can thus be expressed as
p1,2 =±∆P. The boundary conditions in the reservoirs (2.6) in terms of the perturbation
function h are given by

h=h1 =+
1

2
∆P, z→−∞,

h=h2 =−1

2
∆P, z→+∞.

The boundary condition on the surfaces is obtained by performing the linearization of
(2.4), (2.5) and reads as follows:

h=hw , (ξ,n)>0, hw = n̂w, (2.12)
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where n̂w is calculated as

n̂w =Ni/Nr , Nr =
∫

ξn>0

ξn f0dξ, Ni =−
∫

ξn<0

ξn f0hdξ. (2.13)

The reflective boundary conditions (2.7) remains unchanged.
The expression for the non-dimensional mass flow rate (2.1) takes the form

M=
2

|A|
∫

A

wdxdy. (2.14)

2.3 Poiseuille-type flow

Further simplification of the problem can be made if the channel length is assumed to be
infinite (l = ∞) so that the end effects can be neglected [41]. The gas flow is caused by
constant pressure gradient Kp acting along the channel axis, here z axis. The distribution
function is then linearized in a way similar to (2.9), but with the perturbation function ψ
depending on x and y spatial coordinates only:

f = f0(1+ψ), |ψ(x,y,ξ)|≪1.

The linearized S-model kinetic equation describing the resulting Poiseuille flow is given
by [41, 51]:

ξx
∂ψ

∂x
+ξy

∂ψ

∂y
=ν0(ψ

(S)−ψ)+Kpξz, ψ(S)=2ξzw+
8

5
(1−Pr)qzξz(ξ

2− 5

2
). (2.15)

The derivation of (2.15) is omitted and can be found in the cited references. Note, that the
new linearised equation (2.15) contains a source term, proportional to the acting pressure
gradient along the channel. Gas velocity and heat flux are calculated from the perturba-
tion ψ as

uz =
∫

ξz f0ψd¸, qz =
1

2

∫

ξz

(

ξ2− 5

2

)

f0ψdξ.

The problem can be further simplified by integrating with respect to ξz; details are omit-
ted. The mass flow rate through the channel is given by the same formula as for the
three-dimensional linearised solution (2.14). However, in the case of Poiseuille-type flow
(2.15) the perturbation function and thus mass flow rate are linearly proportional to the
prescribed pressure gradient Kp. Therefore, the mass flow rate M can be decomposed as

M=−KPMPois, (2.16)

where the coefficient MPois > 0 represents the mass flow rate due to the unit pressure
gradient. Its value is found by solving (2.15) with KP =1.
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3 Method of solution

The present work describes a computational framework for obtaining numerical solu-
tions of both nonlinear (2.2) and linearised (2.11) three-dimensional kinetic equations.
The framework consists of the three main parts: high-order accurate implicit advec-
tion scheme on hybrid unstructured meshes based on [49], conservative procedure for
the calculation of the model collision integral [45–47] and a simple implementation on
modern high-performance clusters. The resulting method and software work across all
flow regimes from free-molecular to continuum and allow modelling of rarefied flows in
arbitrary-shaped geometries. Below each part of the framework is described in detail.

3.1 Conservative discrete velocity framework

The steady-state solution is found by means of the implicit time-marching algorithm for
the kinetic equation in the non-stationary form. Both non-linear (2.2) and linearized (2.11)
kinetic equations can be written in the same form as

∂

∂t
g=−ξ∇g+ J(g), J=ν(g(S)−g), (3.1)

where g is the distribution function f for the nonlinear case and perturbation h in the
linearised case, ∇ is the gradient operator in the physical space (x,y,z); the collision
frequency for the linearised model is ν≡ν0.

The first step in the numerical solution procedure is to replace the infinite do-
main of integration in the molecular velocity space ξ by a finite computational domain
|ξx|,|ξy|,|ξz| ≤ ξ0, which is then discretized using the non-uniform Cartesian mesh with
Nξx

·Nξy
·Nξz

≡Nξ cells. The velocity distribution function is then defined in centers ξα of
the resulting velocity mesh so that gα = g(x,ξα). The kinetic equation (3.1) is replaced by
a system of Nξ advection equations for each of gα:

∂

∂t
gα =−ξα∇gα+ J(gα), (3.2)

which are connected by the macroscopic parameters in the function g(S) from the model
collision integral J.

The description of the method (3.2) is complete once the calculation of the model
collision integral and the advection scheme are described.

3.2 Approximation of the model collision integral

The evaluation of the model collision integral in the right-hand side of (3.2) requires the
knowledge of eight macroscopic quantities, namely, the density, temperature, velocity
and heat flux vectors. These are to be computed from the values of the distribution func-
tion gα in the molecular velocity cells ξα. The direct approximation of the expressions for
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these quantities yields a non-conservative numerical method that violates the discrete
mass, momentum, and energy conservation laws [47]. As a result, the computation of
the flow at small Knudsen numbers becomes difficult. A numerical illustration of this
can be found in [47].

There are several such methods for model kinetic equations in the current literature.
In [11] the author mentions a conservative algorithm to calculate macroscopic quanti-
ties in one space dimension based on conservation laws, although no details are given.
In [14, 25] a correction procedure for the function f (S) in the model collision integral was
proposed which is applicable to various monatomic and diatomic kinetic models. An-
other method for the BGK equation [7] is based on minimization of the entropy in the
discretized molecular velocity space [31, 32] and essentially results in a system of equa-
tions for density, velocity and temperature based on conservation laws only. It is shown
that the resulting numerical method for the BGK equation satisfies the conservation laws
and the entropy dissipation. See also [16]. However, it is unclear if the method [31, 32]
can be extended to models for which the H theorem has not yet been proven, such as
monatomic model of Shakhov [35, 35] (used in the present study) and diatomic model of
Rykov [26, 33]. For these models the use of the conservation laws alone is not sufficient
since the heat flux vector remains undefined.

The present work uses the most recent approach [45–47], which has been success-
fully applied to all above-mentioned models. Its key idea can be explained as follows.
Since the differential parts of the exact and model kinetic equations are the same, one
requires that first few moments of exact collision integral I( f , f ) coincide with the first
few moments of the model collision integral J( f ,a,ξ):

∫

φ(ξ)J( f ,a,ξ)dξ=
∫

φ(ξ)I( f , f )dξ, φ(ξ)=1, ξi, ξ2, ξiξ j, ξiξ jξk,··· . (3.3)

Here the unknown parameter vector a depends on the chosen model equation. It
is further assumed that the approximation conditions (3.3) should be satisfied for the
Maxwellian molecules only. Then the moments of the exact collision integral can be eval-
uated analytically and the vector a turns out to be the vector of macroscopic quantities,
which are expressed via the integrals of the velocity distribution function, e.g. for the
S-model equation one obtains (2.3). A conventional numerical approach is then to ap-
proximate these expressions by a numerical quadrature rule. However, this leads to the
non-conservative approximations caused by integration errors in velocity space.

To make the method conservative with the respect to the collision integral, it was
suggested in [45–47] to discretise (3.3) directly and solve the resulting nonlinear system
of equations for macroscopic quantities a. Obviously, such method does not need the
H theorem and can be applied to any kinetic model. In case of monatomic model of
Shakhov [35, 35] the use of (3.3) results in eight equations for gas number density, tem-
perature, three components of velocity and three components of the heat flux. In case
of the diatomic model of Rykov [33] there are six conservation equations and six addi-
tional equations representing relaxation of translational and rotational heat fluxes. For
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both models the method thus not only ensures conservation with respect to the model
collision integral, but also guaranties the correct relaxation of heat fluxes.

3.2.1 Nonlinear kinetic model

Let ωα be the weights of the second order composite quadrature rule used for integration
in ξ space. For the nonlinear model (g≡ f ) in order to compute the vector of primitive
variables

W =(n,u1,u2,u3,T,q1,q2,q3)
T

for each spatial cell the conservative procedure for the calculation of the macroscopic
quantities [45–47] gives the following system of equations

R=∑
α









1
ξ

ξ2

vv2









α

( f
(S)
α − fα)ωα+









0
0

0
2Prq









=0. (3.4)

Here subscripts i are n are omitted for simplicity. The eight equations (3.4) are solved
using the Newton iterations the initial guess for which is provided by the direct (non-
conservative) approximation for (2.3)









n
nu

3
2 nT+nu2

q









=∑
α









1
ξ

ξ2

1
2 vv2









α

fαωα.

Usually, one or two Newton iterations are sufficient for convergence. In the special case
Pr= 1 (BGK model [7]) the function f (S) no longer contains the heat flux vector making
last three equations for the heat flux in (3.4) not necessary. As a result, the procedure (3.4)
for macroscopic parameters coincide with the ones proposed in [31, 32].

3.2.2 Linearised kinetic model

For the linearised model (g ≡ h) the conditions (3.4) are simplified into the following
equations:

∫









1
ξ

ξ2

ξξ2









f0(h
(S)−h)dξ+









0
0

0
2Prq









=0. (3.5)

When re-written in the discrete form as

∑
α









1
ξα

ξ2
α

ξαξ2
α









f0,αh
(S)
α ωα+









0
0
0

2Prq









=b, b=∑
α









1
ξα

ξ2
α

ξαξ2
α









f0,αhαωα,
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it represents a linear system

HŴ =b, (3.6)

for the vector of the primitive variables

Ŵ =(n̂,u1,u2,u3,T̂,q1,q2,q3)
T.

No iteration is required to compute the macroscopic quantities. It should be noted that
system (3.6) is new. The constant matrix H has the size 8×8 and is computed numerically
using the same quadrature rule as for the macroscopic quantities. It is inverted and stored
in computer memory at the beginning of time marching. The vector b of integrals of the
function h in the right hand side is recalculated every time step.

3.3 Advection scheme

3.3.1 Framework

The next step is to describe a numerical method to solve each of the kinetic equations (3.2)
assuming the model collision integral is known. The method used in the present work is
a further evolution of unstructured-mesh solvers developed in a sequence of papers [48–
51]. Introduce in the physical variables x = (x1,x2,x3) = (x,y,z) a computational mesh
consisting of prismatic and hexahedral elements (spatial cells) Vi. The total number of
spatial cells is Nspace. Also denote by |Vi| the cell volume, |A|il area of face l. Let ∆t=
tn+1−tn, gn

α = g(tn,x,ξα), δn
α = gn+1

α −gn
α . The implicit one-step method for the kinetic

equation (3.2) has the following form:

(1+∆tνn+∆tξα∇)δn
α =∆tLn

α , Ln
α =−ξα∇gn

α+ Jn
α . (3.7)

Compared to a typical explicit method, the left-hand side of (3.7) contains two additional
terms. The advection term ∆tξα∇ may be viewed as an extension to the unstructured-
mesh case the implicit two-dimensional structured solvers from [17,54]. The second term
∆tνn corresponds to the semi-implicit approximation of the loss term (−νg) in the model
collision integral and explicit treatment of the gain term νg(S). This approach to the im-
plicit treatment of the model collision integral has been routinely used in the steady-state
iterative solvers, see e.g. [3,36,37,43]. It appears that in the time-marching methods such
treatment was first used in [54] in the context of a single-block structured solver. It is
also possible to consider the implicit treatment of g(S) as was done in [31,32] for the two-
dimensional BGK model. However, such approach results in a much more complicated
numerical scheme, which is also difficult to implement on shared-memory machines, and
is thus not used here.

In order to pass from the differential form (3.7) to the fully discrete scheme, spatial
integration over the cell Vi is carried out. The advection operator in the left-hand side of
(3.7) is discretized with first-order upwind spatial differences whereas the right-hand side
Ln

α is approximated using a second-order non-oscillatory method. Let gn
αi be the spatial
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average of the velocity distribution function in the cell Vi at time tn for the molecular
velocity ξα. Let σl(i) be the cell index of the cell adjacent to the face l of cell Vi. Then for
the given α the implicit finite-volume method based on (3.7) takes the form of a system
of Nspace linear equations for gn

αi:

(1+νn
i ∆t)δn

αi+
∆t

|Vi|∑l

ξαnlFl(δ
n
αi,δ

n
σl(i)

)|Ail|=∆tLn
αi, (3.8a)

δn
αi= gn+1

αi −gn
αi, Ln

αi=−(ξα∇gn
α)i+ Jn

αi, (3.8b)

where ξαnl is the projection of the vector ξα onto the unit normal to the face l of the cell Vi.
The quantity Fl in the left-hand side of the method corresponds to the upwind first-order
accurate approximation of the advection operator and is given by

Fl =
1

2
(δn

αi+δn
α,σl(i)

)− 1

2
sign(ξαnl)·(δn

α,σl(i)
−δn

αi),

if the face l of the cell Vi is adjacent to a computational boundary (either wall, reflection or
inflow/outflow), the corresponding value δn

α,σl(i)
=0. In the right-hand side of the scheme

the advection operator acting on the values of the velocity distribution function on the
lower time level, is approximated as a sum of fluxes through cell sides:

(ξα∇gn
α)i=

1

|Vi|∑l

Φn
αil , (3.9a)

Φn
αil =

1

2
ξαnl |Ail|

(

g−+g+−sign(ξαnl)(g+−g−)
)

, (3.9b)

g−= gn
αil , g+= gn

α,σl(i),l1
. (3.9c)

Here l1 is the number of the face of the cell σl(i), adjacent to the face l of the cell i, the face
averages gn

αil of the function g for each cell i are computed to high order of accuracy by
means of the reconstruction procedure, described in the next section.

The general formula (3.9) is modified if the face l is adjacent to a solid boundary and
ξαnl <0 by applying the boundary condition:

Φn
αil = ξαnlgw|Ail|.

In particular, the boundary condition of diffuse reflection (2.4), (2.5) is approximated in
such a way as to satisfy the impermeability condition exactly. Define

G= ∑
ξαnl≤0

ξαnl f0,αωα, f0,α=(πT0)
−3/2e−ξ2

α/T0 .

For the nonlinear kinetic model (2.2) the density of the reflected molecules in (2.5) for the
face l of the cell Vi is computed as

(nw)il =− 1

G ∑
ξαnl>0

ξαnl f n
αilωα. (3.10)
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For the linearized equation (2.11) the corresponding expression takes (2.13) the form

(nw)il =− 1

G ∑
ξαnl>0

ξαnlh
n
αil f0,αωα. (3.11)

Another type of the boundary condition is that of the specular reflection (2.7) and is
approximated in a straightforward manner owing to the Cartesian orientation of the re-
flection planes.

The description of the advection scheme is complete (3.8) once methods to compute
the numerical fluxes Φn

αil and the temporal increments of the distribution function δαi are
provided. The calculation of the model collision integral Jαi has already been described
in Section 3.2.

3.3.2 Spatial reconstruction procedure

The calculation of the numerical fluxes Φn
αil with high-order of accuracy requires the

knowledge of the face averages of the distribution function gn
αil . For the first-order ac-

curate method it is sufficient to set these face values equal to the cell value gn
αil = gn

αi. It
is well known, however, that the first-order method is quite inaccurate. In particular,
for kinetic equations first-order spatial approximation leads to highly inaccurate results
for transitional and nearly-continuum flow regimes; examples can be found in e.g. [50].
In the present method a piece-wise linear reconstruction of the solution in each spatial
cell is used, leading to the second-order accurate face values of the distribution function
and consequently second-order accurate spatial discretization method. The details of the
reconstruction procedure are outlined below.

In each spatial cell Vi the distribution function gα is approximated locally by the recon-
struction polynomial. The coefficients of the polynomial are computed using the values
of g in the cell Vi and a sufficient number of its neighbours, which form the so-called
spatial reconstruction stencil. For convenience, let us introduce for each cell Vi a local
numbering of cells with the index m=0,1,···; the cell Vi is referred to as Vi0, whereas the
rest of the cells from the stencil are named Vim, m=1,···Mi. Here Mi is the total number
of cells in the stencil, different from the cell Vi. Correspondingly, the values of the dis-
tribution function in these cells are named gn

αim, with gn
αi0 ≡ gn

αi. The aim is then to have
a method to form the piece-wise linear approximation of g inside Vi from cell-averaged
values gn

αim.
The reconstruction procedure can be carried out in the physical space (x,y,z). The

reconstruction stencil is constructed by adding a sufficient number of cells to the first cell
Vi, starting with direct neighbours and then if necessary neighbours of the direct neigh-
bours. Fig. 2 shows a typical reconstruction stencil around a hexahedral cell near the
channel’s surface in the physical coordinate system (x,y,z). The stencil consists of six
hexahedral cells and one prismatic cell. There is an evident stretching in one coordinate
direction due to the mesh clustering towards the channel surface. On the other hand,
in another coordinate direction the cell dimensions are quite large — this is the direc-
tion along the channel, z coordinate direction. The scaling effects associated with such
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X
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Figure 2: Reconstruction stencil in the physical coordinate system (x,y,z) for a hexahedral mesh.

elongated cells or simply with any cells of poor quality can result in badly conditioned
reconstruction matrixes and thus low accurate reconstruction. However, the use of elon-
gated hexahedral or prismatic cells is essential for modelling of flows in long channel as
it allows to reduce the total number of spatial cells and cannot thus be avoided.

In order to remove scaling effects, the reconstruction is carried out in the local coor-
dinate system [9]. Let (xk,yk,zk), k = 1,···4 be the coordinates of some four vertexes of
the cell Vi. The coordinate transformation from the global coordinate system to the local
one x̂=(x̂,ŷ, ẑ) is then defined as





x
y
z



=





x1

y1

z1



+ Ji





x̂
ŷ
ẑ



, Ji =





x2−x1 x3−x1 x4−x1

y2−y1 y3−y1 y4−y1

z2−z1 z3−z1 z4−z1



. (3.12)

The reconstruction stencil in the local coordinate system is obtained by applying the in-
verse transformation (3.12) from x to x̂ to each cell of the original stencil and consists of
the transformed cells V ′

im, m=0,··· ,M. Fig. 3 shows the resulting of applying this trans-

X

Z

Y

Figure 3: Reconstruction stencil from Fig. 2 in the reference coordinate system (x̂,ŷ, ẑ).
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formation to the stencil shown on Fig. 2. It is obvious that in the reference coordinate
system all cells in the stencils are now of similar size and close to unit shapes. The slight
curvature of the elements is due to the circular shape of the micro channel followed by
the spatial mesh.

The linear reconstruction polynomial pαi(x̂) is given by the expansion over the basis
functions eik(x̂):

pαi(x̂)= gn
αi+

3

∑
k=1

an
αikeik(x̂), eik ≡ x̂k−

1

|V ′
i0|

∫

V′
i0

x̂k dx̂. (3.13)

Note, that due to the choice of the basis functions the reconstruction is conservative. To
compute the unknown coefficients an

αik it is required that for each cell from the stencil the
cell average of the reconstruction polynomial be equal to the cell average of the function
g:

1

|V ′
im|

∫

V′
im

pαi(x̂)dx̂= gn
αi0+

1

|V ′
im|

3

∑
k=1

∫

V′
im

an
αikeik dx̂= gn

αim. (3.14)

The calculation of three coefficients an
αi1, an

αi2 and an
αi3 requires at least three equations of

the form (3.14). However, on tetrahedral meshes the use of only three cells (M=3) results
in an unstable scheme [9]. It appears that the same applies to other cells types, such as
hexahedral etc. Therefore in the present work the following stencils sizes are used: M=9
for tetrahedral and pyramidal cells, M= 5 for prismatic cells and M= 6 for hexahedral
cells. The resulting over-determined system of linear equations for ak is solved using the
least-square method so that the coefficients of the polynomial can be expressed directly
as the linear combination of the values of the distribution function in the stencil:





an
αi1

an
αi2

an
αi3



=Di ·













gn
α00

gn
α01

gn
α02

. . .
gn

α0Mi













, Di=







d00 d01 ··· d0Mi

···
d30 d31 ··· d3Mi






.

For the linear second-order method it is sufficient to set face values of the distribution
function gαil equal to the face averages pαil of the reconstruction polynomial. These aver-
ages are expressed in terms of the polynomial coefficients and face averages of the basis
functions eikl as

pαil = gn
αi+

3

∑
k=1

an
αikeikl .

Note that in calculations, the constant matrix Di and face averages of the basis functions
eikl are calculated and stored in memory for each cell Vi before the time marching begins.

It is well known that linear high-order methods are not monotone [13]. In order to
eliminate spurious oscillations [20, 21, 24, 44] the reconstruction procedure uses the so-
called slope limiter ψαi. This is equivalent to replacing the coefficients an

αik by the modified
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coefficients ãn
αik =ψαia

n
αik. A good choice of the slope limiter for steady-state calculations

is found in [53]. The face-averages of the distribution function gil , used in the actual
calculations, are given by

gn
αil = gn

αi+ψαi ·(pαil−gn
αi)= gn

αi+ψαi ·
3

∑
k=1

an
αikeikl . (3.15)

The first-order scheme is recovered by setting ψαi ≡ 0 whereas ψαi ≡ 1 leads to a linear
(oscillatory) spatially second-order method.

The described reconstruction procedure can be extended to polynomial reconstruc-
tions of any order of spatial accuracy. However, the test calculations have shown that
the piece-wise linear (second-order) representation is the best compromise between the
accuracy and computational cost. It appears as if the higher than second order recon-
structions should be used in the weighted essentially non-oscillatory (WENO) frame-
work only [9, 10, 55], whereas in the present framework the use of slope limiter affects
the performance of the third- and higher-order accurate methods, making them compu-
tationally unattractive as compared to the second-order accurate one.

3.3.3 Time evolution

The direct numerical solution of the linear system (3.8) is a very slow operation with the
computational cost proportional to N3

space. Therefore, an approximate factorization of the
system is carried out using the approach suggested (but not implemented) in [29, 30].
Regrouping of (3.7) yields

δn
αi+∑

l

∆tzi,σl (i)δ
n
ασl(i)

=
∆t

λi
Ln

αi, (3.16)

where the coefficients zi,σl(i) and λi are given by

bαi=∑
l

ξαnl(1+signξαnl)
|Ail|
2|Vi|

, cα,i,σl(i)= ξαnl(1−signξαnl)
|Ail|
2|Vi|

,

λαi=1+∆tνn
i +∆tbαi, zαiσl(i)=

1

λαi
cαiσl(i),

or in the matrix form

(I+∆tZα)·δn
α =∆tΛ−1

α ·Ln
α , (3.17)

where

δα=









δα1

δα2

···
δαNspace









, Ln
α =









Ln
α1

Ln
α2

···
Ln

αNspace









, Λα=









λα1 0 ··· 0
0 λα1 ··· 0
0 0 ··· 0
0 0 ··· λα1









.
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Next, the matrix Zα is approximately factorized into the product of a low-triangular Lα

and upper-triangular Uα matrices according to the expression

lij =

{

∆tzij , j< i,
0, j> i,

uij =

{

0, j< i,
∆tzij, j> i,

lii =uii=1,

so that
I+∆tZα = Lα ·Uα+O(∆t2).

The implicit method (3.7) takes its final form:

Lα ·Uα ·δn
α =∆tΛ−1

α ·Ln
α , gn+1

αi = gn
αi+δn

αi. (3.18)

The computational cost of solving (3.18) is linearly proportional to Nspace. As a result, the
cost of one time step of the implicit method is only 25% larger than the computational
cost of an explicit method with the same spatial reconstruction procedure and the con-
servative calculation of macroscopic parameters. If the computer memory allows to store
the matrices L, U and Λ from (3.18) rather than recalculate them at each time step, the
implicit method becomes practically as fast as the explicit one.

In calculations, the value of the time step ∆t is evaluated according to the expression

∆t=Cmin
i

di/ξ0,

where C is the prescribed CFL number, di the characteristic linear size of the cell Vi.

3.4 Convergence criteria

The convergence of the solution to the steady-state is verified by calculating the global
residual in the macroscopic conservation laws. For any spatial cell i the local vector resid-
ual Rn

i in conservation laws is defined as

Rn
i =∑

α





1
ξα

ξ2
α



Ln
iαsαωα,

where sα ≡ 1 for the nonlinear kinetic equation (2.2) and sα = f0,α for the linearized one
(2.11). The corresponding global L0 and L1 norms of residuals in the conservation laws
for time step n are given by

En
0 =max

i
∑

i

|Rn
i |, En

1 =
1

|V|∑
i

|Rn
i |·|Vi|, |V|=∑

i

|Vi|. (3.19)

The numerical solution is deemed as converged to the steady state if

En
0 ≤ǫ0, En

1 ≤ǫ1. (3.20)
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For single-precision calculations of the present paper the following values of the tolerance
parameters are usually applied: ǫ0=10−3, ǫ1 =10−5.

It should be noted that for large values of the CFL coefficient C the residual may not
drop below a certain value. This is due to the non-smooth behaviour of the slope limiter,
which does not depend continuously on the solution. To improve the convergence, the
values of the slope limiter are frozen once the L1 residual drops below 10−3.

3.5 Summary of the sequential algorithm

The calculation of one time step in the single-processor (sequential) version of the method
consists of the following stages.

1. Calculation of the polynomial coefficients aαik and application of the slope limiter ψαi; the
resulting values are stored in memory.

2. Calculation of integral sums in the boundary conditions (3.10), (3.11) and evaluation of the
density of reflected molecules for all cell faces belonging to boundaries.

3. For each α calculation of the face values (3.15), numerical fluxes (3.9), temporal update (3.7) and
addition to integral sums in the steady-state residual calculations (3.19) and for the macroscopic
parameters (3.4).

4. The time marching finishes once the convergence condition (3.20) is met.

The memory requirements of the second-order version of the method can be split
into two groups: memory for the advection scheme coefficients (such as reconstruction
matrix Di) and memory to store the solution. The memory requirements of the scheme
depend on the type of the spatial cells used. For the hexahedral cells the scheme needs
approximately 25 integers and 40 reals to store mesh data and 8 integers and 70 reals
to store reconstruction data. For the solution for each cell (xi,ξα) of the six-dimensional
mesh 5 real numbers need to be stored: value of g, three polynomial coefficients aαik and
value of the slope limiter ψαi. Additionally, for each of Nspace spatial cell the values of 8
macroscopic quantities and 5 components of the steady residual vector need to be stored.
For the non-linear kinetic model some additional quantities also need to be stored. Over-
all, for sequential runs the solution memory required to store the distribution function
accounts for the bulk of the computer memory used in the calculations.

3.6 Parallel implementation

The three-dimensional calculation of rarefied flows requires large computational meshes.
A coarse mesh for a single isolated micro channel can contain 105 spatial cells and typi-
cally 163 molecular velocity cells, so that the total number of cells in the six-dimensional
computation is at the order of 1010 ···1011. Such meshes put high demands on both com-
puting power and memory, which go beyond the limits of a typical single-processor ma-
chine. Therefore, single-processor solutions of such problems cannot be carried out.
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In order to circumvent the above-mentioned difficulties, the present numerical algo-
rithm is implemented on multi-core clusters using Message Passing Interface (MPI) pro-
gramming paradigm [15]. Unlike conventional approaches, in which the spatial mesh
(in physical coordinates) is split into blocks (see e.g. [10]), in the present work the de-
composition of the ξz and ξx directions of the rectangular molecular velocity mesh is im-
plemented. The present approach to parallel implementation is similar to the one used
earlier for the Boltzmann equation with the exact collision integral [4]. For each block
the kinetic equation is solved using the implicit method (3.7). The sequential algorithm
is then modified to include inter-processor communications in the calculation of integral
sums with respect to the molecular velocity mesh as well as data exchange for the reflec-
tive boundary condition (2.7).

The advantages of the present approach to parallelization over existing meth-
ods [18, 23] are three-fold. Firstly, it is relatively simple to implement since no spatial
domain decomposition is required. Secondly, it retains the main advantage of the im-
plicit method (3.7) — fast convergence to the steady-state solution. Finally, practically
ideal load balancing can be achieved since each of the processor will perform exactly the
same amount of calculations.

4 Results

The numerical method has been tested by calculating the solution to the problem for var-
ious values of the Knudsen number and pressure ratios. The summary of the computed
cases is given by Table 1, which lists the boundary data in the reservoirs. All calculations
are run on the high-performance computing facility ’Astral’ of the Cranfield university,
which is a Hewlett Packard machine comprising 856 Intel Woodcrest cores (3.0GHz).

Table 1: Description of test cases.

Pressure ratio Left reservoir Right reservoir
Linearized p̂1=1 p̂2=−1
p1/p2=1.1 p1=1.047619 p2=0.952381
p1/p2=2 p1=1.333333 p2=0.666667

In most of the published data the so-called rarefaction parameter is used instead of
the Knudsen number. In the present work this parameters coincides with the constant
collision frequency ν0 in the linearized equation (2.11). In order to make it easier for the
reader to compare our results with those, published in the literature, below ν0 is used
instead of the Knudsen number Kn. The collision frequency in the full nonlinear S-model
equation (2.2) is then related to ν0 as

ν=
nT

µ
ν0.
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The free-molecular regimes corresponds to ν0 =0 whereas the nearly-continuum flow is
obtained when ν0 ≫1.

4.1 Computational tests

Two sets of calculations have been performed in order to access the efficiency of the
implicit time marching as well as scalability properties of the algorithm when used on
multi-core systems. These are two key properties of the proposed numerical algorithms,
which are specific to the kinetic equation and represent a major improvement over ex-
isting methods. The study of the accuracy of the spatial reconstruction scheme and its
ability to handle general geometries are not included as it is fairly general method and
has been accessed in previous work, e.g. [49].

The first set of calculations is intended to study the influence of the CFL coefficient on
the convergence to the steady-state. Two spatial meshes were considered, which are sum-
marized in Table 2. The first spatial mesh is mixed-element and consisted for elements
of all types whereas the second mesh is purely hexahedral. A weak clustering towards
the surface of the tube was used for both meshes with the cells size of 0.04 normal to the
surface. Figs. 4-7 show the details of the spatial distribution of cells in both cases. The
molecular velocity mesh contained 163 cells with uniform spacing. The total number of
cells is thus ≈2×108.

Table 2: Description of spatial meshes for convergence runs.

Name Total number of cells Hexahedrons Tetrahedrons Prisms Pyramids
Mesh 1 53546 3840 28214 21212 280
Mesh 2 54900 54900 0 0 0

The solution of the nonlinear problem with pressure ration p1/p2 = 2 is computed
for ν0 = 1 using the linear distribution of pressure in the tube as the initial guess. The
calculation is run on 128 cores. Figs. 8-9 show the behaviour of the scaled L0 residual
e=En

0 /E1
0 as function of the time step number n for both meshes. It is seen that the use

of CFL= 10 results in a significant acceleration of the convergence as compared to both
explicit run (CFL=0.25) and implicit run with a lower CFL=1. The residual does not drop
below certain value due to the round-off errors associated with single-precision data. The
use of the explicit method is generally very inefficient.

The second set of calculations demonstrates the scalability of the method using the
hexahedral mesh 2 from Table 2. First, the so-called strong scaling test is performed in
which the problem size is fixed by using the same velocity mesh of 163 cells. Fig. 10
shows the speed up of the calculations as function of the CPU core used relative to the
performance on 16 cores. Both linearised and nonlinear equations are solved. The corre-
sponding number are provided in Table 3. It is seen that the parallel efficiency is around
85%. On 512 cores the largest communication overhead is associated with the calculation
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Figure 4: Mixed-element mesh 1 from Table 2.
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Figure 5: Cross-sectional view of the mesh from Fig. 4.
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Figure 6: Purely hexahedral mesh 2 from Table 2.
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Figure 7: Cross-sectional view of the mesh from Fig. 6.
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Figure 8: Convergence history for mixed-element
Mesh 1 from Table 2.
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Figure 9: Convergence history for hexahedral Mesh
2 from Table 2.
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Figure 10: Strong scalability of the method relative
to the 16-core run on the spatial mesh of 5×104

cells and molecular velocity mesh of 163 cells.
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Figure 11: Weal scalability of the method relative to
the 16-core run on the spatial mesh of 5×104 cells
and molecular velocity mesh of 163 cells.

Table 3: Speed up for the strong scaling analysis.

Number of cores 16 32 64 128 256 512
Linearized equation 1. 1.83 3.79 7.20 14.58 27.85
Nonlinear equation 1. 1.83 3.85 7.70 14.81 27.31

Table 4: Relative computing times for the weak scaling analysis.

Number of cores 8 16 32 64 128 256 512
Linearized equation 1. 1.00 1.02 1.03 1.06 1.05 1.07
Nonlinear equation 1. 1.00 1.02 1.06 1.06 1.07 1.07

of macroscopic parameters and accounts for 10% of computational cost. Other commu-
nication overheads are below 1% of the computational cost of the time step.

Next, the weak scaling of the method and the code was studied by increasing the
problem size with the increasing number of cores. The reference point in the study is
the 8-core run on the molecular velocity mesh with 162×12= 3072 cells. The size of the
velocity mesh is then doubled with increasing the number of cores so that on 512 cores it
is equal to ≈2×105 cells. Fig. 11 shows the computing times relative to the 8-core run. The
corresponding numerical values are provided in Table 4. The efficiency of the method in
this case is above 90%. On 512 cores the largest communication overhead is associated
with the calculation of macroscopic parameters and accounts for 5% of computational
cost.

Overall, the parallel efficiency of the method is very good up to 512 cores. The weak
scaling would be important for hypersonic blunt-body calculations which require very
large velocity meshes. For the slow micro-scale flows the strong scaling is more crucial as
the velocity mesh is generally not very fine, but the spatial mesh needs to be quite large.
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4.2 Mass flow rate calculations

The main computed integral characteristic of the flow is the non-dimensional mass flow
rate M, given by the formula (2.8) for the nonlinear model equation and (2.14). In order
to cancel out the influence of the pressure ratio and channel’s length, the computational
results are given in terms of the normalized mass flow rate Mp

Mp=− 2l

∆P
M. (4.1)

Eq. (4.1) is similar to the formula (2.16) for MPois in that the mean pressure gradient
∆P/(2l) resembles the imposed pressure gradient KP in the flow model (2.15).

For the main set of calculations three significantly finer meshes were considered, the
parameters of which were selected according to the following considerations. For the
fixed micro channel length the main flow parameter affecting the accuracy is the rar-
efaction parameter ν0 (or Knudsen number Kn). For ν0 ≪ 1 the distribution function is
discontinuous. The discontinuities originate from the exits of the channel (z =±l) and
propagate both inside the channel and into the reservoirs. Moreover, the distribution
function varies rapidly around ξ = 0. In order to account for these factors, a rather fine
molecular velocity mesh with clustering towards the origin is required. The spatial mesh
needs to be fine enough along the channel, but does not need to be refined towards its
surface. The opposite regime is a nearly continuum flow ν0≫1, which requires a second-
order accurate spatial discretisation scheme and a relatively fine spatial mesh; the molec-
ular velocity resolution can be course (typically with ∆ξ ≈ 0.4) as long as a conservative
integration procedure is used. For intermediate values 0.1≤ν0 ≤5 the resolution of both
meshes need to be carefully controlled.

In calculations, for ν0 ≤1 the spatial mesh contained 95200 hexahedral cells and was
constructed from the coarse mesh 2 used in the previous section by refining the resolution
in the z coordinate direction inside the channel. The molecular velocity mesh consisted
of 323 cells so that ∆ξ ≈ 0.07 near the origin. For ν0 ≥ 5 two much finer spatial mesh
were used with cells clustering towards the surface of the channel; cell size normal to
the surface is ≈ 0.005. The first of these meshes contained 366240 cells hexahedral cells
where the second, finer, mesh consist of Nspace=513520 cells, of which there were 206000
hexahedral in the near-surface layer and reservoirs and 307520 prismatic cells inside the
channel.. In the molecular velocity space a uniform mesh was used with 123 cells for the
linearised calculations and 163 cells for the nonlinear kinetic model runs.

Most of the calculations have been run on 128 cores. For the nonlinear kinetic model
one time step of the algorithm requires approximately 100 seconds of computer time for
the first mesh (Nspace = 95200, Nξ = 323) and around 50-55 seconds for the second mesh
(Nspace = 513520, Nξ = 163). The variation in the computing time for the second mesh is
due to the varying number of Newton iterations in the calculation of the macroscopic
quantities: larger values of ν0 in general require more iterations and thus incur more
communication overheads between cores and thus larger computational times.
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Table 5: Normalized mass flow rate Mp.

ν0 0 0.01 0.1 0.2 0.5 1 5 10 20
Linearized 1.2357 1.2326 1.2178 1.2167 1.2441 1.3151 2.1356 3.2293 5.3817
p1/p2=1.1 1.2335 1.2331 1.2208 1.2144 1.2401 1.3179 2.1537 3.2201 5.3370
p1/p2=2 1.2343 1.2347 1.2220 1.2165 1.2421 1.3183 2.1246 3.2091 5.2102

Table 5 contains the computed values of the normalized flux Mp for both linearised
and nonlinear solutions for the whole range of the constant collision frequency (rarefac-
tion parameter) ν0 (and hence the Knudsen number Kn). The corresponding curves can
be found in Fig. 12. It is seen that for considered ratio of the length to diameter of the
microchannel the mass flow rate curves have a weak minimum, called the Knudsen min-
imum, which is located around ν0≈0.2. There is overall a very good agreement between
the solutions for various pressure ratios for ν0 ≤10. For the largest ν0 =20 the calculated
Mp for p1/p2=2 diverges somewhat from the linearised solution and nonlinear solution
for p1/p2=1.1; however, the 2% difference is within the numerical error.
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p1/p2=2

ν0

Mp

Figure 12: Comparison of Mp for linearised and non-linear kinetic models for various pressure jump values.

4.3 Comparison with the asymptotic solution

Table 6 provides the comparison of the three-dimensional solution of the linearised equa-
tion (2.11) with the Poiseuille solution (2.15) taken from [51]. The corresponding graph-
ical illustration is found in Fig. 13. It is evident from Fig. 13 that the agreement is quite
poor and the curves only approach each other for ν0 ≥10. There are three reasons for the
observed disagreement. Firstly, the present length to diameter ratio of l/a=10 may not
be sufficiently large for the three-dimensional solution to agree well with the asymptotic
Poiseuille computation. The error is expected to be proportional to a/l≈10%. Secondly,
the considered computational meshes are quite coarse and thus the numerical error may
still be not negligible. It is suffice to say that in the Poiseuille calculations [51] the spatial
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Figure 13: Comparison of Mp for linearised 3D and
asymptotic 2D solutions.

0.01 0.1 1 10

1

2

3

4

5

6

Poiseuille solution
3D solution

ν0

Wp

Figure 14: Comparison of pressure-gradient scaled
values Wp for linearised 3D and asymptotic 2D so-
lutions.

Table 6: Comparison of the coefficient Mp from (2.8) with the Poiseuille solution from [51].

ν0 0 0.01 0.1 0.2 0.5 1 5 10 20
Mp 1.2357 1.2326 1.2178 1.2167 1.2441 1.3151 2.1356 3.2293 5.3817

MPois 1.5023 1.4765 1.4085 1.3893 1.3998 1.4731 2.3619 3.5674 6.0207

Table 7: Comparison of the coefficient Wp from (4.2) with the Poiseuille solution from [51].

ν0 0 0.01 0.1 0.2 0.5 1 5 10 20
Wp 1.4164 1.4123 1.3872 1.3754 1.3854 1.4549 2.3369 3.5193 5.8726

MPois 1.5023 1.4765 1.4085 1.3893 1.3998 1.4731 2.3619 3.5674 6.0207

mesh contained several times more cells than the two-dimensional mesh for the cross
section of the microchannel in the present work. Perhaps, the most important observa-
tion is that the actual pressure gradient in the middle section of the finite-length channel
is different from ∆P/2l due to the end effects caused by the finite length of the channel
and has to be found in calculations. As will be shown later, the pressure gradient along
the channel is constant in the large part of the channel |z|≤ l−δl, but varies in all three
coordinate directions near its ends z=±l.

Following the idea from [39,40], it is more appropriate to compare the Poiseuille data
with the mass rate from the linearised three-dimensional calculation normalized by the
actual (calculated) pressure gradient in the middle section of the channel

Wp=− 1

dp̂/dx
M̂. (4.2)

The results are presented in Table 6 and in Fig. 14. It is seen that there is an excellent
agreement between two solutions in the range 0.1≤ν0≤10. The disagreement for smaller
ν0 (nearly free-molecular regime) is expected [39, 40] as the Poiseuille solution becomes
invalid for (l/a)ν0 =O(1). The small (around 2%) divergence of the results for ν0 = 20
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may be due to both the insufficient resolution of the three-dimensional spatial mesh and
the effects of the finite channel length.

Overall, Table 6 and Fig. 14 demonstrate that the three-dimensional linearised solu-
tion exhibits linear dependence of the mass flow rate on the pressure gradient in the
middle of the channel. For the non-linear calculations with the finite pressure ratio the
similar comparison is difficult, if not impossible, to be made because both pressure gra-
dient and collision frequency vary along the micro channel.

4.4 Flow field

Figs. 15-16 show distributions of the normalized pressure p′

p′=
p−p0

∆P

and scaled mass flow rate 2l
∆P ŵ for ν0=1, 5 and linearized flow in the cross-section of the

channel in the polar coordinates r,z, where r2 = x2+y2. It is seen that in the large part of
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Figure 15: Normalized pressure p′=( p̂− p̂0)/∆P for different ν0 and the linearised solution.
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Figure 16: Normalized mass flux (2l/∆P)ŵ for different ν0 and the linearised solution.
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Figure 17: Normalized pressure p′=(p−p0)/∆P for different ν0 and p1/p2 =2.
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Figure 18: Normalized mass flux (2l/∆P)ρw for different ν0 and p1/p2 =2.

the micro channel the pressure gradient along the channel is constant whereas the mass
flux changes only in the radial direction. The linearised temperature T̂ does not exceed
10−2 in absolute value and is thus not shown. Near the ends of the channel the flow is
however essentially three-dimensional.

Figs. 17-18 show distributions of the normalized pressure and scaled mass flux 2l
∆P ρw

for the case p1/p2 = 2 and the same values of the collision frequency ν0 = 1, 5. It is seen
that the normalized pressure distributions are very similar to those in the linearised case,
compare with Fig. 15. The mass flux distribution is similar to the linearised case for
ν0=0.1 only, albeit with somewhat smaller magnitude. As ν0 increases (Knudsen number
decreases), the flow becomes nonlinear and the mass flux distribution is essentially multi-
dimensional.

5 Conclusions

A numerical framework for modelling the three-dimensional steady rarefied gas flows on
the basis of the Boltzmann kinetic equation with the model collision integrals has been
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proposed. It consists of a high-order accurate implicit discretization scheme, coupled
with the conservative procedure for the calculation of the model collision integral. The
application of the method to the rarefied gas flow through the finite-length circular pipe
has been carried out for both weakly nonlinear (linearized) and fully non-linear flows.
The results demonstrate good accuracy of the proposed algorithms across a wide range
of Knudsen numbers, high efficiency of the implicit time evolution method for arbitrary
unstructured meshes as well as good scalability for up to 512 cores on a modern HPC
machine. Future work include the application of the method to hypersonic re-entry flows
as well as extension to diatomic gases [33] and gas mixtures [1, 12].
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