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Abstract. In this paper, we investigate the dynamic process of liquid bridge forma-
tion between two parallel hydrophobic plates with hydrophilic patches, previously
studied in [1]. We propose a dynamic Hele-Shaw model to take advantage of the
small aspect ratio between the gap width and the plate size. A constrained level set
method is applied to solve the model equations numerically, where a global constraint
is imposed in the evolution [2] stage together with local constraints in the reinitializa-
tion [3] stage of level set function in order to limit numerical mass loss. In contrast
to the finite element method used in [2], we use a finite difference method with a
5th order HJWENO scheme for spatial discretization. To illustrate the effectiveness
of the constrained method, we have compared the results obtained by the standard
level set method with those from the constrained version. Our results show that the
constrained level set method produces physically reasonable results while that of the
standard method is less reliable. Our numerical results also show that the dynamic
nature of the flow plays an important role in the process of liquid bridge formation
and criteria based on static energy minimization approach has limited applicability.

AMS subject classifications: 76T99, 65M06
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1 Introduction

In recent years, rapid progresses have been made in miniature manufacturing and test-
ing processes to take advantage of the increasing portable computing power. In [1], an
experimental procedure is proposed for setting up a simple device for biomedical testing.
By filling the gap between two parallel plates with a prepared solution and subsequent
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formation of isolated liquid bridges between the plates, many tests can be preformed si-
multaneously. This was achieved by treating the two plates chemically to form circular
hydrophilic patches and displacing the water-based solution with a non-immersible sec-
ond fluid, e.g., silicon oil. A static model was used in [1] to predict the formation of these
liquid bridges, by minimizing equilibrium surface energy. Since the formation of liquid
bridges is a dynamic process, a more accurate model must go beyond the static approach.

In this paper, we adopt a dynamic Hele-Shaw model to take the advantage of the
fact that the gap between the plates is small relatively to the size of the plates. And we
use a level set method to numerically study the formation of liquid bridges between two
patched surfaces. Furthermore, we investigate the effects of relevant physical parameters
such as the viscosity ratio and capillary number, and our numerical results are consistent
with those in the existing literature.

In our numerical computation, the interface between the two fluids is captured using
a level set method while the Hele-Shaw equations are solved by a first order ghost fluid
method [5]†. The level set method is one of the widely used approaches for problems with
evolving interfaces, especially when topological changes are involved [4]. The standard
level set method uses the zero level set of a smooth scalar function (usually the signed
distance function) to represent the interface. The evolution of the level set function is nor-
mally governed by a transportation equation, high order methods (ENO or WENO) can
be easily applied. In order to maintain the level set function as a signed distance function,
a reinitialization process is needed. Although it is easy to implement, the standard level
set method suffers serious mass loss. As a consequence, for a divergence-free velocity
field, the computed area (volume) enclosed by the zero level set usually does not stay as
a constant.

The objective of our paper is twofold. Our main purpose is to assess the importance of
the dynamic aspect of the liquid bridge process that is useful for designing miniature test
devices with a wide range of applications. In order to make accurate predictions, main-
taining mass conservation is crucial for this class of problems and an important objective
of this study is to present a method that is easy to implement and capable of handling
topological changes of a moving interface. This is achieved by using a constrained level
set method. While the idea of using constraints in the level set approach is not new,
we have made a number of improvements in the implementations. First of all, a global
constraint is imposed in the evolution stage [2] together with local constraints in the reini-
tialization stage [3] of level set function in order to limit numerical mass loss. Secondly, in
contrast to the low order finite element method [2], we use a 5th order HJWENO scheme
for spatial discretization. As a result, our version of the constrained level set method is
more accurate than the existing ones. Our numerical tests based on standard test prob-
lems show that a significant improvement is achieved. Having establish the reliability of
the numerical method, we carry out extensive numerical simulations of the liquid bridge

†Although high order methods such as a hybrid immersed interface level set method [6] could also be used,
our focus here is to study the effect of the dynamics, and the current first order method is sufficiently accurate
as long as certain precaution is taken.
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formation process. Our simulations show that the prediction of a static surface energy
minimizer has limited applicability. In general, the dynamic nature of the flow plays an
important role in the formation process of liquid bridges.

The rest of the paper is organized as follows. In Section 2 we present the basic mathe-
matical model. A constrained level set method with a high order difference discretization
(HJWENO) is given in Section 3. Numerical results are given in Section 4. A brief conclu-
sion and discussion of future directions is given in Section 5. In Appendix B, we present
comparisons between the standard and constrained level set methods using standard nu-
merical tests, where we show that the HJWENO scheme produces much more accurate
results than that of the finite element method [2].

2 Problem description

The experimental setup used in [1] is shown in Fig. 1(a), where two parallel plates are
placed in close proximity. The sample solution (water) filled in the gap between the two
plates is slowly displaced by another fluid. Since the circular patches (dark spots) are
more hydrophilic compared to the rest, it is more difficult to displace water from these
patches. Often, the displacing fluid removes most of the water in the gap except in the
areas directly over the patches. The water over these patches form isolated liquid bridges
immersed in the non-reacting fluid, as shown in Fig. 1(b).

(a) Displacing water (dark colored) by
another fluid

(b) Close-up view of liquid
bridge formation

Figure 1: An illustration of filling fluids and formation of the liquid bridge (reproduced from [1]).

We consider a simple case consisting of two parallel plates sized [−1,1]×[−1,1], and
a circular patch centered at (-0.5,0) with radius 0.25 on each plate. The circular patch
is hydrophilic while the rest of the plates is hydrophobic. Both plates have the same
wetting property for the fluids, a top view of the problem is given in Fig. 2. Furthermore,
we assume that the aspect ratio of the device is sufficiently small, by lubrication theory,
the two-phase flow can be modeled by the (non-dimensional) Hele-Shaw equations [5]

~u=β∇p, (2.1)

∇·~u=0 (2.2)
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Figure 2: Computational domain and boundary conditions for liquid bridge formation process.

for ~x in Ω+ and Ω− with jump conditions

[p]=κxy+
κz

λ
, (2.3)

[~u·~n]= [β∇p·~n]=0 (2.4)

on Γ where

β=















β+,−
λ2

12ηCa
, ~x∈Ω+,

β−,−
λ2

12Ca
, ~x∈Ω−.

(2.5)

Here Ca= µ−U
σ is the capillary number, U is the characteristic velocity, λ is the aspect ratio,

η= µ+

µ−
is the ratio of viscosities, κxy is the non-dimensional curvature in the xy plane, and

κz =−2cosθ (2.6)

is the non-dimensional curvature in z direction under the assumption that the interface
along z direction is a circular arc [5].

We use u = 1,v = 0 as the boundary condition on the left boundary L, and use the
condition

∫

L udx=
∫

R udx, ∂u
∂x = 0 on the right boundary R to ensure that global mass is

conserved. Moreover, periodic boundary conditions are used on the top and bottom
boundaries. We assume that the initial interface is a straight line parallel to y axis which
is set to be x=−0.9 and the region occupied by the displaced fluid is Ω−, while the region
occupied by the displacing fluid is Ω+.
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3 Numerical method

We apply the level set method to capture the interface between two fluids. For compari-
son purposes, we use both the standard and constrained formulations. We refer readers
to [7] and [5] for detail description of the standard level set method. And we shall repre-
sent the constrained level set method as follows.

3.1 Constrained level set method

In [2], the authors propose the constrained method for the level set equation as

φt+~u·∇φ+λ(t)=0. (3.1)

Here λ is the Lagrange multiplier, subjected to the following condition

d

dt

(

∫

Ω
H(φ)dx

)

=0, (3.2)

where Ω is the computational domain, H is the Heaviside function. Substituting (3.1)
into (3.2), we obtain

λ(t)=−

∫

Ω
~u·∇φδ(φ)dx
∫

Ω
δ(φ)dx

. (3.3)

In this paper, the delta function is regularized by

δǫ(φ)=















0, if φ<−ε,
1

2ε
+

1

2ε
cos

(

πφ

ε

)

, if −ε≤φ≤ ε,

0, if φ> ε.

(3.4)

The area enclosed by the zero contour of the level set function is calculated using integral
∫

Ω
Hε(φ)dx, where Hε is the regularized Heaviside function

Hε(φ))=















0, if φ<−ε,
1

2
+

φ

2ε
+

1

2π
sin

(

πφ

ε

)

, if −ε≤φ≤ ε,

1, if φ> ε.

(3.5)

In all the following computations, we use uniform meshes, and set ε= 1.5h, where h is
the mesh size.

When the velocity field is divergence free, it is easy to show that λ(t)≡0 [2]. However,
in discrete form, this may not be the case. By choosing λ through (3.3), we can ensure
mass conservation (3.2) in continuous form and improve mass conservation in discrete
form. This is demonstrated as follows.
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The discretization form of (3.1) is

φn+1
ij −φn

ij=

[

−~un
ij ·(∇φ)n

ij+
∑ij~u

n
ij ·(∇φ)n

ijδε(φn
ij)

∑ij δε(φn
ij)

]

∆t, (3.6)

where the spatial derivatives are discretized by an upwind 5th order HJWENO scheme.
Since the difference between φn+1 and φn is very small, the difference of the mass en-
closed by the zero level set curve between time level n+1 and n in discrete form can be
expanded as

∫

Ω
Hε(φ

n+1)dx−
∫

Ω
Hε(φ

n)dx

≈∑
ij

(Hε(φ
n+1
ij )−Hε(φ

n
ij))h

2

=∑
ij

δε(φ
n
ij)(φ

n+1
ij −φn

ij)h
2+∑

ij

H
′′

ε (φ
n
ij)

2
(φn+1

ij −φn
ij)

2h2+··· . (3.7)

Since ε∼h, we have δε(φn
i,j)∼ǫ−1∼h−1 and H

′′

ε (φ
n
ij)∼ ε−2∼h−2. In addition, formally we

have φn+1
ij −φn

ij ∼O(∆t). Therefore, the first term in (3.7) is of order h∆t and the second

term is of the order (∆t)2 when a standard level set method is used. On the other hand,
when the constrained discrete equation (3.6) is used, the first term in (3.7) drops out,
which in general reduces the discretization error. The discretization error can be further
reduced when we use a smaller time step size, as indicated by the second term of (3.7).

In the implementation of the constrained level set method for the study of a complete
liquid bridge formation process, the constraint equation (3.2) should be changed into

d

dt

(

∫

Ω
H(φ)dx

)

=2, (3.8)

since the area occupied by displacing fluid increases with a constant rate 2 during the
whole liquid bridge formation process, and a similar numerical method are implemented
for the associated Lagrange multiplier

λ(t)=−
2+

∫

Ω
~u·∇φδ(φ)dx

∫

Ω
δ(φ)dx

. (3.9)

As we noted earlier, the idea of using Lagrange multiplier is not new. The new feature
of our approach lies in the implementation of the method. For example, the constraint is
not applied everywhere during the reinitialization stage in [2]. In this paper, we impose
the constraint in each discretizations cell during reinitialization stage, following [3]. In
addition, an upwind 5th order HJWENO scheme is used for spatial discretization. Con-
sequently, our numerical results are more accurate than those in [3].



D. He and H. Huang / Commun. Comput. Phys., 12 (2012), pp. 577-594 583

3.2 Discretization

The discretization used here is similar to that in [5]. We use staggered grids and ghost
fluid method to compute the velocity and pressure fields. The level set method is used
to capture the interface evolution. For more details we refer the readers to [5]. In our
numerical implementation, the contact angle θ is assumed to vary smoothly from θ1 to θ2

in a thin layer along the patch boundary, instead of a jump across the boundary.

4 Results

Before solving the Hele-Shaw model for the liquid bridge problem, we tested the per-
formance of the constrained level set method with its standard counterpart using two
simple problems when velocity is given. The results, presented in Appendix B, show
that the mass loss is much smaller for the constrained level set method. Furthermore, test
results for the “Zalesak’s disk” problem show that our HJWENO scheme is much more
accurate than the finite element method [2]. Below we present numerical results for the
liquid bridge problem.

4.1 Numerical results for a half-formed liquid bridge

In this section, we will compare the numerical results obtained by the constrained level
set method and the asymptotic solutions. The setup and the asymptotic solutions are
given in Appendix A.

Since 69o is the critical angle in patch region predicted by asymptotic approach for a
half-formed liquid bridge, we set θ2 =69o with other parameters taking the same values
as in [1]. The final numerical interface profile is shown in Fig. 3 (black line), and the
corresponding pressure values are plot in Fig. 4(a). The comparison between numerical
calculated values of pressure jump across the interface (zero level set) and asymptotic
values is given in Fig. 4(b). The comparison between our numerical calculated contact
angle along the fluid interface (zero level set) and asymptotic value (i.e. 69o) is displayed
in Fig. 5. Numerical computations are also carried out for θ2 = 68o and θ2 = 70o. The
results are shown in Fig. 3, where red line is the profile obtained by θ2 = 68o and green
line corresponds to θ2=70o.

From Fig. 3, it can be seen clearly that the final interface forms a half liquid bridge
along the patch rim when θ2≤69o, while the half liquid bridge is formed inside the patch
when θ2 > 69o. These results confirm that the aforementioned conclusion that 69o is the
critical value for formation of a half liquid bridge along the patch rim. Furthermore,
Fig. 4(b) shows that maximum relative difference rate between numerical calculated val-
ues of pressure jump across interface and asymptotic values is less than 4%, and Fig. 5
shows that the numerical contact angles on the rim of patch fit the asymptotic values
quite well. Thus, there are good quantitative agreements between numerical results and
asymptotic solution for the static equilibrium state of a half-formed liquid bridge.
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Figure 3: Numerical results using constrained level set method. Red line corresponds to θ2 = 68o, black line
corresponds to θ2 = 69o, and green line corresponds to θ2 = 70o. (Blue circle is the boundary of the wetting
patch.)
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4.2 Numerical results for the liquid bridge formation process

We now present the numerical results for the dynamic liquid bridge formation process
using the constrained level set method. For comparison purpose, some numerical results
obtained using the standard level set method are also presented.

In the first set of computations, we compare the results using standard level set method
with that using constrained level set method. The parameter values used here are λ=
0.005, θ1 =81o, θ2 =45o, Ca=2.5×10−4, η=1.2, and the computations are carried out on
100×100 meshes. Fig. 6 shows the numerical solutions using both methods up to compu-
tational time t=1.7192. It can be seen that the standard method suffers significant mass
loss, as demonstrated by the reduction of the size of the liquid bridge. The constrained
method, on the other hand, performs much better. In order to provide a clearer picture
of the mass loss, we have computed the mass (projected area) of the liquid bridge for
both methods, as shown in Fig. 7. It can be seen that the mass loss of the liquid bridge
is significantly reduced for constrained level set method, compare to standard level set
method. Furthermore, the mass of displaced fluid obtained by both methods are plotted
to compare with the exact values, as shown in Fig. 8. It can also be seen that numeri-
cal displaced fluid area data fit the exact value well for the constrained level set method
while it is not the case for the standard method after the formation of liquid bridge.

Other relevant physical quantities related to the liquid bridge formation process in-
clude the pressure field and streamlines. In Fig. 9, we plot the pressure and streamlines at
two different stages of constrained level set method. It shows that pressure experiences
large jump across the interface while the flow remains smooth. They also show that after
the formation of the liquid bridge, pressure inside the liquid bridge is almost constant
while outside a large pressure drop remains in the direction of the flow.

Next we study the effects of various physical and geometrical parameters have on the
formation of liquid bridge. In all the computations, we use constrained level set method
on a 100×100 mesh. The basic starting point for comparison is the case shown in Fig. 6(e-
h). Fig. 10 gives the results based on the same parameter values as in Fig. 6 except the
capillary number, which is increased to Ca=3.6×10−4 from Ca=2.5×10−4; Fig. 11 further
increases Ca to Ca=3×10−3; In Fig. 12, we changed viscosity ratio η=1.2 to η=1.8; and
in Fig. 13 we further increase η to η=12; In Fig. 14 we increased θ2 to 58o instead of 45o;
Finally in Fig. 15 we further increase θ2 to θ2=75o.

These computations show that the formation of the liquid bridge is closely related to
Ca which is a measure of the surface tension relative to the flow rate. When Ca is low, it
is relatively easy for the interface to deform and subsequently the formation of the liquid
bridge on the entire patch. When Ca increases, it becomes more difficulty to form the
liquid bridge and a smaller one is formed. Increasing Ca further the interface sweeps
through the patch area without forming the liquid bridge. The results also reveal the
effect of viscosity ratio η between the two fluids. For smaller η, it is easier to form the
liquid bridge while larger η makes it more difficult for the liquid bridges to form. The
difference in contact angles between the hydrophilic and hydrophobic areas also has an
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Figure 6: Numerical results obtained by using the standard level set method (a-d) and the constrained level set

method (e-h). The parameter values are λ=0.005, θ1 =81o, θ2 =45o, Ca=2.5×10−4, η=1.2.
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Figure 10: Numerical results by constrained level set method for λ=0.005, θ1 =81o, θ2 =45o, Ca=3.6×10−4,
η=1.2.
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Figure 11: Numerical results by constrained level set method for λ= 0.005, θ1 = 81o, θ2 = 45o, Ca= 3×10−3,
η=1.2.
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Figure 12: Numerical results by constrained level set method for λ=0.005, θ1 =81o, θ2=45o, Ca=2.5×10−4,
η=1.8.
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Figure 13: Numerical results by constrained level set method for λ=0.005, θ1 =81o, θ2=45o, Ca=2.5×10−4,
η=12.
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Figure 14: Numerical results by constrained level set method for λ=0.005, θ1 =81o, θ2=58o, Ca=2.5×10−4,
η=1.2.
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Figure 15: Numerical results by constrained level set method for λ=0.005, θ1 =81o, θ2=75o, Ca=2.5×10−4,
η=1.2.
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effect. It is easier to form the liquid bridge when the difference in contact angle is large.
All these are consistent with the experimental observations report in [1].

It is worth mentioning that the critical contact angle predicted by the asymptotic so-
lution is θ2=78o based on the parameter values used in our computation. In other words,
for any θ2≤78o , we would expect liquid bridges to form. Clearly, this is no longer true un-
der the dynamic process, as demonstrated by our numerical simulation. In many cases,
no liquid bridges or only partially formed liquid bridges are obtained despite the fact
that θ2 is far below the critical value.

5 Conclusions

In this paper, we apply a high order finite difference method (HJWENO) to solve the con-
strained level set evolution equation, which was first proposed by [2] in finite element
context. We combine the above constrained evolution step with constrained reinitializa-
tion step [3] to form our constrained level set method. It is found that the constrained
level set method reduce mass loss greatly through two standard test problems, and the
method is much more accurate than the finite element method in [2]. We first use this
method to simulate a half-formed liquid bridge and get good agreements with previous
asymptotic results from [1]. Then we utilize both the constrained and standard level set
method to simulate the dynamic formation process of a liquid bridge between two paral-
lel plates with hydrophilic patches. Numerical results show that the constrained level set
method is much better than the standard method, and also numerical predictions given
by constrained level set method are consistent with the previous literature [1]. As a next
step, we plan to carry out additional simulations for a multi-patch setup to examine the
effect of neighboring patches by varying configurations of the patches. In addition, we
also plan to improve our model by including the effect of the dynamic contact angle.
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A A Hele-Shaw model for formation of a half liquid bridge

Considering a half-formed liquid bridge as the static state and using the aspect ratio as a
small parameter, authors in [1] derive asymptotic expressions for pressure jumps across
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Figure 16: Computational domain and boundary conditions for a finally half-formed liquid bridge. Parameters
are same as in [1]: r=5×10−4m, d=1×10−3m, h=5×10−5m, θ1=81o, σ=2.3×10−2dyn/cm.

the interface in both the hydrophobic region and the patch rim region and as follows

[p]1 =
σ

h

[

cosθ1+
εc

2

( π
2 −θ1

cosθ1
+sinθ1

)

+···

]

,

[p]r =
σ

h

[

cosθr−
εr

2

( π
2 −θr

cosθr
+sinθr

)

+···

]

,

where εc =
h

d−r , εr =
h
r and h is the half height between two plates, r is the patch radius, d

is half distance between patch centers, σ is the interfacial tension between two fluids, θ1

is the contact angle in hydrophobic region, θr is the contact angle on patch rim, [p]1 is the
pressure jump across interface in the hydrophobic region, and [p]r is the pressure jump
across interface on the patch rim. By balancing these two jumps and using the parameters
given in [1], we can give a criteria for formation of a half liquid bridge: θ2 ≤69o‡, where
θ2 is the contact angle in the patch region.

To test our numerical method, we now set up a dynamic Hele-Shaw model with the
half-formed liquid bridge as a possible final equilibrium state. The top view of the do-
main is shown in Fig. 16, where the initial interface can be chosen as any shape that cuts
the domain into half, and parameters are the same as that in [1]. Since the gap between
two plates is small compare to the size of the plate, we apply dimensional Hele-Shaw

‡This value is 56o in [1]. However, we believe this is a typo since we have verified the asymptotic solution
in [1] and they do predict 69o as the critical value, furthermore, our numerical results also confirmed that the
correct value is 690.
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equations for both fluids as follows [5]

~u=−
h2

3µ
∇p, (A.1)

∇·~u=0 (A.2)

for ~x in Ω+ and Ω− with jump conditions

[p]=σ(κxy+κz), (A.3)

[~u ·~n]=0 (A.4)

on Γ, where ~u is velocity, µ is the dynamic viscosity, p is the pressure, Γ is the interface
of two fluids, Ω+, Ω− are the space occupied by displacing fluid and water, respectively,
and κxy, κz are the dimensional curvature in the xy and z plane respectively, and

κz =−
cosθ

h
(A.5)

using the same assumption in Section 2, and θ is the contact angle, and θ = θ1 in all the
computational domain except the patch region where θ= θ2< θ1.

For the computations, we choose three connected straight lines which are showed in
Fig. 16 as the initial interface of two fluids and use no flux boundary conditions here.

B Additional numerical tests

Here we provide the results when the standard and constrained level set methods are
applied two standard test problems. In both cases, velocity fields are given and the zero
level set of a function evolves according to the velocity fields.

B.1 Zalesak’s disk

We consider a unit square computational domain with a rigid body rotation [8] u=0.5−y
and v= x−0.5. Initially, the zero level set represents a slotted circle centered at (0.5,0.75)
with a radius of 0.15, a width of 0.05, and a slot length of 0.25. We use both standard and
constrained level set methods to calculate the problem. The mass of the disk is calculated
through

∫

Ω
Hε(φ)dx and its associated regularized form (3.5).

The numerically computed zero level sets after one rotation are presented in Fig. 17
for the standard and constrained level methods. The relative mass loss after one rev-
olution and convergence rates are given in Table 1. The results clearly show that the
constrained level set has better mass conservation property than the standard one, espe-
cially when on relatively coarse grids. Furthermore, our results show that the HJWENO
scheme is 5th order accurate, however, the results for the same problem in [2] is only
0.5 order accurate, mass loss of our result for a resolution 100×100 is less than 0.3%,
even better than the results obtained by 400×400 meshes in [2], we can conclude that the
HJWENO scheme is much more accurate than the finite element method.
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Figure 17: Results using standard level set method (a-c) and results using constrained level set method (d-f).
The red line is the exact solution, and the blue line is the numerical solution.

Table 1: Zalesak’s disk: Relative mass loss (%) and convergence rate using standard level set method and the
constrained level set method.

Grid Size Standard Convergence rate Constrained Convergence rate
50×50 55.6 - 3.84 -
100×100 -4.86 3.516 0.29 3.727
200×200 0.38 3.6769 0.0116 4.6439

B.2 Single vortex

To further compare the performance of the standard and constrained level set meth-
ods, we use the following velocity field on a unit square: u = sin2(πx)sin(2πy) and
v =−sin2(πy)sin(2πx) for 0≤ t ≤ T. The zero levelset is a circle with radius 0.15, ini-
tially centered at (0.5,0.75). This velocity field is reversed at time t= T so that the zero
levelset at t=2T coincides with the initial condition.

Previous literature (see [9]) shows that the best result by level set method for this prob-
lem is obtained without reinitialization. Therefore, we use standard level set method and
constrained level set method without reinitialization. We choose T = 4 in the computa-
tion so that the maximum deformation happens when t=4 and the exact solution at t=8
should coincide the initial condition.

The numerical result of the standard level set method on a 256×256 grid is given
in Fig. 18 while the result using the constrained level set method on the same gird is
presented in Fig. 19.
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Figure 18: Numerical simulation by standard level set method without reinitialization using 256×256 meshes.
(The red line is the initial circle, and the blue line is numerical solution).
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Figure 19: Numerical simulation by constrained level set method without reinitialization using 256×256 meshes.
(The red line is the initial circle, and the blue line is numerical solution).

To quantify mass conservation, we use two measures. In the first case we compute the
mass using the regularized form, i.e., integral

∫

Ω
Hε(φ)dx and its associated regularized

form (3.5) and the relative mass loss is given in Table 2. In the second case, the mass is
computed by the integral

∫

Ω
H(φ)dx without regularizing H(φ). The relative mass loss is

given in Table 3. Once again, the constrained level set method outperforms the standard
one, no matter which mass measure method is used.
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Table 2: Single vortex: relative mass loss (%) using the standard and constrained level set methods based on
the regularized Heaviside mass measure.

Grid Size Standard Constrained
128×128 79.96 0.01863
256×256 29.48 0.00961
512×512 4.93 0.00785

Table 3: Single vortex: relative mass loss (%) using the standard and constrained level set methods based on
the Heaviside mass measure.

Grid Size Standard Constrained
128×128 80.78 1.21
256×256 29.60 0.48
512×512 5.04 0.18
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