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Abstract. Two-phase flow and heat transfer, such as boiling and condensing flows, are
complicated physical phenomena that generally prohibit an exact solution and even
pose severe challenges for numerical approaches. If numerical solution time is also an
issue the challenge increases even further. We present here a numerical implementa-
tion and novel study of a fully distributed dynamic one-dimensional model of two-
phase flow in a tube, including pressure drop, heat transfer, and variations in tube
cross-section. The model is based on a homogeneous formulation of the governing
equations, discretized by a high resolution finite difference scheme due to Kurganov
and Tadmore.
The homogeneous formulation requires a set of thermodynamic relations to cover the
entire range from liquid to gas state. This leads a number of numerical challenges
since these relations introduce discontinuities in the derivative of the variables and are
usually very slow to evaluate. To overcome these challenges, we use an interpolation
scheme with local refinement.
The simulations show that the method handles crossing of the saturation lines for
both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result
obtained in this work, the method is stable towards dynamic transitions of the in-
let/outlet boundaries across the saturation lines. Results for these cases are presented
along with a numerical demonstration of conservation of mass under dynamically
varying boundary conditions. Finally we present results for the stability of the code in
a case of a tube with a narrow section.

AMS subject classifications: 76T10, 80A20, 65M06
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1 Introduction

Simulation of two-phase flow and heat transfer is important for the analysis of a range
of fundamental physical processes and phenomena such as evaporation and condensa-
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tion. Thus, the application of numerical methods has a substantial impact on research
and development within a large range of industrial applications, for example, the design
of heat exchangers in areas of power generation, refrigeration and air conditioning, in-
dustrial thermal- and chemical process plants. As the requirements of these industrial
applications tend towards increasing energy efficiency, the requirements for model accu-
racy and stability of the numerical tools increase. Consequently there is a growing need
for more detail in the modeling of the basic phenomena while at the same time keeping
the computation efficient.

Computationally demanding components in the systems mentioned above are mainly
the dry-expansion evaporators in refrigeration and air-conditioning systems. Lumped
component models for these components are traditionally solved using NTU-ǫ - meth-
ods or models of the moving boundary type [1–4]. Such models have an advantage by
realistically demonstrating dynamical behavior of the component in relation to capacities,
temperature, and pressure levels although formulated as lumped models. A disadvan-
tage is a loss of detail in the modeling and the handling of fluid-zone switching which
may result in numerical instability and increased computation time.

In a general effort to investigate the dynamic behavior of two-phase flow and heat
transfer we are seeking a mathematical formulation that provides a stable numerical so-
lution despite the problem involves a dynamically changing number of fluid zones [5].
Several works have been published on fully distributed models solving the governing
equations [6–9]. However, the fast pressure dynamics of the full set of governing equa-
tions is neglected in earlier analyses in order to accomplish faster computation times and
numerically stable codes. Also, these earlier models are generally limited to constant
cross sectional area of the tubes

To handle the above difficulties, high resolution difference schemes have been de-
veloped as “black box” solvers for both conservation laws and Hamilton-Jacobi equa-
tions [10, 11]. In the semi-discrete form, they are easily implemented using, e.g., Runge-
Kutta methods for ordinary differential equations, and therefore an attractive alterna-
tive to commercial CFD codes. Applications of high resolution difference schemes to
two-phase flow problems include the so-called separated models where liquid and gas
are treated as two separate fluids [12]. In these models, interphase exchange terms are
needed to model the evaporation/condensation process and the form of the terms de-
pends on the two-phase flow regime [13]. In the homogenous formulation, these details
are instead included in the thermodynamic relations available from, for example, the
National Institute of Standards and Technology [14].

In this paper, we develop a novel numerical model to effectively handle the fast dy-
namics and the associated phenomena when crossing the phase boundaries. We present
the application of the Kurganov-Tadmor (KT) semi discrete central difference method
[10, 11] to the case of two-phase boiling flow in a single tube exchanging heat with the
surroundings. The model is derived for a tube of arbitrary cross section.
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2 Formulation of one-dimensional governing equations

Modeling of two-phase fluid flow is traditionally cast in the framework of a homoge-
neous or a separated flow formulation. In the separated formulation each phase is treated
separately and two sets of conservation equations are set up for the problem. Evaporation
and condensation are then treated as sink and source terms, respectively. The homoge-
neous formulation seeks to treat the flow as a single fluid and introduces a variable x that
represents the local quality of one of the phases. The thermodynamics of the phase tran-
sition is thus accounted for through this variable as specified by the equation of state. In
this paper we will apply the homogenous formulation such as described in various text
books [13, 15].

The equations describing mass- and momentum conservation (the Navier-Stokes equa-
tions), and the fluid energy equation form the basis of our formulation. They can be
written as

∂ρ

∂t
+∇·(ρv)=0, (2.1)

∂v

∂t
+(v·∇)v=−

1

ρ
∇P+

1

ρ
∇σ

′, (2.2)

ρ

(

∂h

∂t
+v·∇h

)

−
∂P

∂t
−v·∇P=q′, (2.3)

where ρ, P, h, v, q′, σ, ∇, and t are the fluid mass density, pressure, fluid specific enthalpy,
fluid velocity, boundary heat flux, the viscous stress tensor, the nabla operator referring to
spatial derivatives, and time, respectively. Apparently, since the governing equations are
formulated mathematically in ”strong” form in the homogeneous formulation, caution
must be taken as to whether all variables including thermodynamic parameters are in-
deed differentiable everywhere in the solution space. This is, however, not the case when
phase changes take place as they do in a boiling flow. In the homogeneous formulation
used in this work (refer to later discussions), we have made a specific choice in circum-
venting this problem for, e.g., the speed of sound and other thermodynamic derivatives
which are not differentiable exactly when phase changes occur. In a future work, em-
phasis will be given to the accuracy of different choices in treating non-differentiable
quantities using the homogeneous formulation.

We seek to derive a set of dynamic one-dimensional spatial differential equations, yet
maintaining the possibility to address geometries of varying cross sectional area along
the spatial coordinate z, as shown in Fig. 1. This is done by integration of Eqs. (2.1)-(2.3)
over the local cross sectional area A(z). We apply the following operator

∫

A(z)
dA=

∫ 2π

0

∫ R(z,θ)

0
rdrdθ, (2.4)

to each term in the three equations (using cylindrical coordinates (z,r,θ)) where R(z,θ) is
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Figure 1: Schematic view of the geometry and flow direction. The fluid is interacting with the ambient through
the walls.

the radial extend of the geometry. If a term does not depend on the radial coordinate r
and angle θ, this operator corresponds to multiplication by A(z).

We consider all thermodynamic properties to be a function of z and t but independent
of r and θ, i.e.

ρ=ρ(z,t), (2.5a)

P=P(z,t), (2.5b)

T=T(z,t), (2.5c)

h=h(z,t), (2.5d)

TW =TW(z,t), (2.5e)

and assume the fluid velocity to be along the z direction and a function of all four vari-
ables,

v=(vz(z,r,θ,t),0,0), (2.6)

valid for small |dA/dz|.
We also assume that the flow velocity vanishes at the tube wall due to small viscous

effects, i.e.

vz(z,R(z,θ),θ,t)=0, (2.7)

and we introduced the average quantity 〈 f 〉 defined by

〈 f 〉=
1

A(z)

∫

A(z)
f dA. (2.8)

Upon acting with the operator in Eq. (2.4), Eqs. (2.1)-(2.3) become

∂ρ

∂t
A(z)+

∂[〈vz〉ρA(z)]

∂z
=0, (2.9)

∂〈vz〉

∂t
A(z)+

1

2

∂

∂z

[

〈v2
z〉A(z)

]

=−
1

ρ

∂P

∂z
A(z)−

A(z)

ρ

(

∂P

∂z

)

f ric

, (2.10)

ρ
∂h

∂t
−

∂P

∂t
+ρ

∂h

∂z
〈vz〉−

∂P

∂z
〈vz〉=

4

D
α(TW−T), (2.11)
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where the right hand side term in Eq. (2.11) expresses the boundary heat flux where TW ,
T, α, D, are the wall temperature, fluid temperature, heat-transfer coefficient accounting
for the combined effect of conduction, convection, and radiation and inner wall diameter
respectively. The viscous stress tensor term is approximated by a pressure loss term along
the z coordinate, and

A(z)=
π

4
D2(z). (2.12)

For a flat turbulent flow profile where the flow velocity vz is equal to the average flow
velocity 〈vz〉 everywhere as a function of r except very near the wall (i.e., in the boundary
layer where vz drops to zero fast as r approaches R(z,θ)), we have

〈v2
z〉= 〈vz〉

2. (2.13)

However, for a laminar parabolic flow profile,

vz(r)=2〈vz〉

(

1−
r2

R2(z)

)

, (2.14)

one finds

〈v2
z〉=

4

3
〈vz〉

2. (2.15)

If needed, a local assessment in the modeling as to whether flow is turbulent or laminar
can be invoked and then use a relation on the form 〈v2

z〉= f (Re)〈vz〉2, where Re is the
local Reynolds number. f = 1 gives Eq. (2.13) and f = 4/3 gives Eq. (2.15). In the rest of
this paper we assume a turbulent flow profile and set 〈v2

z〉= 〈vz〉2.
With the above expressions, we finally have three differential equations in three un-

knowns: 〈vz〉,ρ, and h that, together with the wall temperature equation (for TW), com-
plete the equation framework for a geometry of varying cross sectional area. Recasting
the above set of differential equations in terms of the mass flow defined by

ṁ(z,t)=ρA(z)〈vz〉, (2.16)

the governing equations formulated in terms of density, mass flow, enthalpy together
with an energy equation for the wall then become

∂(ρA)

∂t
+

∂ṁ

∂z
=0, (2.17)

∂ṁ

∂t
+

∂

∂z

(

ṁ2

ρA

)

+
ṁ2

2ρA2

∂A

∂z
=−A

∂P

∂z
−A

(

∂P

∂z

)

f ric

, (2.18)

ρ
∂h

∂t
−

∂P

∂t
+

ṁ

A

∂h

∂z
−

ṁ

ρA

∂P

∂z
=

4

D
α(TW−T), (2.19)

(CWρW AW)
∂TW

∂t
=απD(T−TW)+αoπDo(TA−TW)+λW AW

∂2TW

∂z2
, (2.20)
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where CW, ρW , AW , αo, Do, TA, and λW denote the wall heat capacity, wall mass density,
wall cross-sectional area, heat-transfer coefficient to the ambient, outer wall diameter,
ambient temperature, and the wall heat conductivity, respectively. Note that Do, AW,
D, and A generally are functions of the axial coordinate z and allows us to approximate
different 3D geometries as variations along the z direction in the inner and outer cross
sectional areas.

Eqs. (2.17)-(2.20) must be supplemented with boundary conditions. We use the fol-
lowing

ṁ(0,t)= ṁin(t), (2.21)

h(0,t)=hin(t), (2.22)

ṁ(L,t)=ρ(L,t)V̇(t), (2.23)

∂TW

∂z

∣

∣

∣

∣

z=0,L

=0, (2.24)

for a geometry starting at z = 0 and ending at z = L. V̇ is the volume flow out of the
system. These boundary conditions are common if Eqs. (2.17)-(2.20) models for example
flow boiling in a tube, with an outlet condition determined by a positive displacement
machine such as, e.g., a compressor. If the process is condensing flow, the volume flow
boundary condition is usually replaced by a mass flow boundary condition, e.g. ṁ(L,t)=
ṁout.

3 Thermodynamics

Thermodynamic functions, such as P and T, must be supplied in order to do calculations
with Eqs. (2.17)-(2.20). These are assumed to be functions of the dependent variables ρ
and h, e.g. P=P(h,ρ) and then

∂P

∂t
=

∂P

∂h

∂h

∂t
+

∂P

∂ρ

∂ρ

∂t
=

∂P

∂h

∂h

∂t
−

1

A

∂P

∂ρ

∂ṁ

∂z
. (3.1)

This relation is used in Eqs. (2.17)-(2.20) to eliminate the time-derivatives of the pressure.
Notice that we are treating the flow in a homogeneous formulation so that the two-phase
nature of the underlying thermodynamics are expressed in terms of the saturated quan-
tities and the vapor quality. For the density this means:

ρ=

(

x

ρg
+

1−x

ρl

)−1

, (3.2)

where subscript g and l refers to saturation values of gas and liquid phase, respectively.
For simplicity, each phase is assumed to propagate with the same velocity, although a
slip-relation could have been included [13].
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In addition, the heat transfer coefficient, α, and the pressure loss term due to friction,
(∂P/∂z) f ric, must be calculated. For two-phase flow in particular the pressure drop due to
acceleration (rapidly decreasing density) usually dominates over the frictional pressure
drop. Numerous correlations for two-phase flow pressure drops can be found in the
literature [13]. For the sake of simplicity, we use the conventional expression applied to
the two-phase region

(

∂P

∂z

)

f ric

=4 f
1

D

ṁ2

ρA2
, (3.3)

where f is the Fanning friction factor here given by the Blasius correlation

f =0.079Re−0.25. (3.4)

The Reynolds number is

Re=
|ṁ|D

µA
, (3.5)

with the viscosity, µ, depending on the local vapor quality x= x(h,P) as

µ=

(

x

µg
+

1−x

µl

)−1

, (3.6)

where µg and µl refer to the viscosity in the gas phase and liquid phase, respectively.
For the heat transfer coefficient numerous correlations [16] exist but again for simplic-

ity we apply a linear interpolation between the liquid and gas phases, i.e.,

α=(1−x)αl+xαg, (3.7)

with

αk =
Nukλk

D
, (3.8)

where the subscript ’k’ is used to designate either ’g’ (gas) or ’l’ (liquid). αk is the single-
phase heat transfer coefficient. λk = λk(P) is the thermal conductivity and Nuk is the
Nusselt number given by the Dittus-Boelter equation

Nuk =0.023Re0.8
k Pr0.3

k , (3.9)

Rek =
|ṁ|D

µk A
, (3.10)

Prk =
µkCp,k

λk
, (3.11)
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where Cp,k = Cp,k(P) is the specific heat, µk = µk(P) is the dynamic viscosity, Rek is the
Reynolds number, and Prk is the Prandtl number.

The remaining thermodynamic functions must be obtained in a different way. We use
REFPROP [14], which, for many different fluids, implements a highly accurate equation
of state used to calculate thermodynamic quantities. The pressure is determined from ρ
and h and then the remaining functions are determined from P and/or h.

For many thermodynamic quantities, REFPROP employs an iterative approach. This
process can be very time consuming, especially near phase transitions. To speed this part
up, we pre-calculate tables for the needed thermodynamic functions and use interpola-
tion between the grid points. Our numerical experiments indicate that accurate determi-
nation of P(h,ρ) are of utmost importance for both accuracy and stability. To determine
P(h,ρ) we use the monotone piecewise bicubic interpolation of Carlson and Fritsch [17]
on a recursively subdivided grid. To generate the grid, we start with an initial grid of
800x800 points. At grid centers and centers of grid lines, the interpolated function is
compared to the value obtained from REFPROP. If the relative error is larger than 10−3,
we subdivide the grid cell by a factor of 4. This is done recursively until the interpolated
function matches REFPROP within the relative accuracy. When we subdivide a grid cell,
we break the continuity of the bicubic interpolation along the boundaries of the subdi-
vided cell. However, since we demand all interpolated cells to be very close to the “true”
value, the possible discontinuities along the cell lines become, in practice, very small and
does not provide a problem.

The characteristic velocities of Eqs. (2.17)-(2.19) can be estimated by assuming α =
(∂P)/(∂z) f ric = 0, inserting a harmonic wave of the form Aei(kz−ωt) for each dependent
variable in the equations of motion, and solve the resulting eigenvalue problem to obtain
v=ω/k. The result is

v0=
ṁ

Aρ
, (3.12)

v±=v0±

√

√

√

√

ρ ∂P
∂ρ

ρ− ∂P
∂h

≡v0±c. (3.13)

The velocity v0 is recognised as the mass-flow velocity and v± are the mass-flow velocity
plus or minus the speed of sound, c.

The partial derivatives of the pressure are calculated using finite differences from
gridded ρ(h,P) data and then using relations

∂P

∂ρ
=1

/ ∂ρ

∂P
, (3.14)

∂P

∂h
=−

∂ρ

∂h

/ ∂ρ

∂P
, (3.15)
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that follows from inserting the differential expression

dρ=
∂P

∂p
dp+

∂P

∂h
dh, (3.16)

in the right-hand side of

dp=
∂P

∂ρ
dρ+

∂P

∂h
dh, (3.17)

and requiring the resulting left- and right-hand expressions to be identical for any varia-
tion of thermodynamic quantities.

Using these relations, the speed of sound can also be expressed as

c=

√

ρ

ρ
∂ρ
∂P +

∂ρ
∂h

, (3.18)

hence

ρ
∂ρ

∂P
+

∂ρ

∂h
>0, (3.19)

must be true at all (h,P) since ρ>0.
We use 2nd order central finite differences to obtain ∂ρ/∂P and ∂ρ/∂h from ρ(h,P)

except at discontinuities (occurring due to phase transitions). At the discontinuities we
resort to first order one-sided differences, chosen such that Eq. (3.19) is satisfied at all grid
points. The gridded data of partial derivatives are interpolated with bilinear interpola-
tion to guarantee that the inequality (3.19) is satisfied at all (h,ρ).

Fig. 2 shows a plot of the pressure and speed of sound as a function of the density.
The pressure is continuous everywhere, while the speed of sound jumps from 6 m/s to
842 m/s at ρ=555 kg/m3 due to the discontinuous first derivative of the pressure.
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Figure 2: Pressure (left) and speed of sound (right) as a function of ρ for constant h=250 kJ/kg. The pressure

is continuous everywhere, while the speed of sound jumps from 6 m/s to 842 m/s at ρ=555 kg/m3.
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4 Central difference scheme

Spatial discretization turns the continuous functions into discrete functions in space. The
length of the geometry is discretized using N+1 points from z= 0 to z= L, and we will
use a lower index as a discrete spatial coordinate, e.g. fi = f (i∆z,t) with ∆z= L/N.

Straight-forward central finite differences applied to Eqs. (2.17)-(2.19) show spuri-
ous oscillations which quickly destroy the numerical solution. High resolution cen-
tral schemes have been developed to avoid such oscillations, to allow possible discon-
tinuities in the solutions, and to be more than first order accurate overall. We have
used the KT scheme for conservation laws [11] to discretize Eq. (2.17) and the KT
scheme for Hamilton-Jacobi equations [10] to discretize Eqs. (2.18) and (2.19), both in
the 2nd order semi-discrete form with characteristic velocities found from Eqs. (3.12) and
(3.13). Eq. (2.20) is discretized in space using standard 2nd order central differences, e.g.
f ′(i∆z,t)≈ ( fi+1− fi−1)/(2∆z) where the prime denotes differentiation with respect to z.

To do the time-stepping of the resulting set of ordinary differential equations, we use
the 3rd order strong stability preserving Runge-Kutta method [18] with time step

∆t=C
∆z

vmax
, (4.1)

where vmax is the maximum characteristic velocity in the tube (from Eqs. (3.12) and (3.13)).
C is the Courant number, which is typically taken to be 0.95. However, when going from
the two-phase state into the liquid state (or vise-versa), we use a value of 0.24 in order to
preserve stability.

4.1 Boundary conditions

The 2nd order KT scheme has a five point spatial stencil. At each boundary, we use two
ghost points to implement physical and numerical boundary conditions. For the central
2nd order finite differences used for the temperature, only one ghost point is needed. At
the boundaries we use

ṁ0= ṁin, (4.2)

ṁN =ρNV̇, (4.3)

h0=hin, (4.4)

TW,−1=TW,1, (4.5)

TW,N+1=TW,N−1, (4.6)

to implement the physical boundary conditions in Eqs. (2.21)-(2.24).

The missing numerical boundary conditions for the five point stencil of the KT
scheme can be constructed using extrapolation. We consider here two forms of extrapo-
lation: The first is just to use the values on the boundary, i.e. (shown for ṁ only, ρ and h
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are similar)

ṁ−2= ṁ−1= ṁ0, (4.7)

and the second is to fit a 2nd order polynomial to the first 3 values, giving

ṁ−1=3ṁ0−3ṁ1+ṁ2, ṁ−2=6ṁ0−8ṁ1+3ṁ2. (4.8)

5 Simulations

We perform simulations on boiling flow in a tube using the parameters given in Table
1 and with R600a (isobutane) as the working fluid [19]. As a starting point, we use the
following constant values:

ṁ(z)=0.002 kg/s, h(z)=250 kJ/kg, ρ(z)=60 kg/m3, Tw(z)=300 K. (5.1)

Table 1: Common parameters and initial data used in the simulations. Working fluid is R600a (isobutane). In
Fig. 10, A is changed along the tube and is not the constant value shown here.

Parameter Value Unit
L 10 m

CW 385 J/(kg K)
ρW 8.96·103 kg/m3

AW 2.1·10−5 m2

A 2.8·10−5 m2

λ 386 W/(m2K)
TA 300 K
α0 100 W/(m2K)
hin 2.5·105 J/kg
V̇ 2·10−4 m3/s

Table 2: The test case is 250 s long and consists of several steps in the inlet mass flow. At t= 0 s, the state
is given in Eq. (5.1). The ’Figure’ column refers to the figure showing the steady state, obtained after 50 s of
simulation time.

time [s] ṁin [kg/s] Figure
0-50 0.002 4
50-100 0.001 5
100-150 0.002 4
150-200 0.01 6
200-250 0.002 4

We simulate for 250 s and make steps in the mass flow at the inlet according to Table
2. The figure number in the last column shows the state obtained just before doing the
next step. These states are very close to steady state. Fig. 3 shows the locations of the
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State in Fig. 4

State in Fig. 5
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Figure 3: Overview of the test case in a P−h diagram. The arrows schematically show the transient behavior
of the tube as the boundary conditions change according to Table 2. The dashed lines marked hl and hg show

the location of the transitions to the pure liquid and gas phases. The solid lines represent steady-state (h,ρ)
values from z=0 (leftmost point) to z= L (rightmost point).
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Figure 4: Steady state with ṁin=0.002 kg/s.

three different steady states in a P−h diagram. The figure number associated with the
simulation results for the three states are also shown in Fig. 3. As seen the first process in
Fig. 4 is a pure two-phase flow from inlet to outlet. The next, in Fig. 5, is a conventional
process of two-phase inlet and superheated gas outlet. Here the two-phase/gas bound-
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Figure 5: Steady state with ṁin =0.001 kg/s.
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Figure 6: Steady state with ṁin =0.01 kg/s.

ary is crossed. The last, in Fig. 6, is a process crossing the liquid line from sub-cooled
liquid into the two-phase region. The system goes from Fig. 4 to Fig. 5 and back again
and then from Fig. 4 to Fig. 6 and back again, as indicated by the arrows in Fig. 3.
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Figure 7: Ma(t) and Mb(t) for the test case with extrapolation by Eqs. (4.7) at both inlet and outlet for

different values of N. Values of Ma,b corresponding to Figs. 4-6 are shown to the right.

Fig. 4 reflects the overall continuous behavior of the variables. In Fig. 5 we clearly
identify the dry-out point associated with the two-phase to gas boundary crossing. This
happens at about z=5.5 m. In Fig. 6, the point of liquid to two-phase region crossing is
also clearly identified at z=1.8 m.

To compare different simulations we calculate the total mass of the fluid in the evap-
orator as

Ma(t)=
∫ L

0
A(z)ρ(z,t)dz, (5.2)

Mb(t)=Ma(0)+
∫ t

0
(ṁ(0, t̃)−ṁ(L, t̃))dt̃. (5.3)

The continuity equation requires Ma(t)=Mb(t), which we can use as a measure of accu-
racy.

The simulation case above was run with the numerical boundary conditions in
Eqs. (4.7) and (4.8). However, we found that the 2nd order extrapolation could lead to
instabilities when the inlet moves in and/or out of the liquid zone. This is evident from
Fig. 6, where the density ρ is seen to have a discontinuous first derivative near z∼1.8 m.
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Figure 8: Ma(t) and Mb(t) for the test case with extrapolation by Eqs. (4.7) at both inlet and Eq. 4.8) at the

outlet for different values of N. Values of Ma,b corresponding to Figs. 4-6 are shown to the right.

This point separates the near constant ρ in the liquid zone and the rapidly changing ρ in
the two phase zone. Doing polynomial extrapolation across this point is highly inaccu-
rate, leading to numerical instability and have prevented us from running the test case
using Eq. (4.8) at the inlet. We therefore only consider two cases: a) Using Eq. (4.7) at the
inlet and outlet and b) Using Eq. (4.7) at the inlet and Eq. (4.8) at the outlet.

In Figs. 7 and 8 we compare these two numerical boundary conditions for different
number of discretization points, by calculating Ma(t) and Mb(t). The whole 250 s process
indicated in Table 2 is simulated dynamically to underline the stability of the method.
The simulation then crosses both saturation lines dynamically and should hereafter re-
turn to the initial steady state (e.g. t=50 s). The total mass in the tube changes due to the
changing boundary conditions. For low discretization (N=105) and no extrapolation at
the boundary, Ma(t) and Mb(t) are seen to disagree and (more severely), Mb(t) is seen to
drift. In the other cases, we get more accurate agreement, and in general the introduction
of the 2nd order extrapolation at the outlet increases the consistency.

In steady state one expects ṁ(z) to be a constant. In the simulations we do not find
this to always be the case, especially for low discretization. In Fig. 9 we compare ṁ cor-
responding to the steady states in Figs. 4-6 for different number of discretization points



1144 S. Madsen, C. Veje and M. Willatzen / Commun. Comput. Phys., 12 (2012), pp. 1129-1147

N = 1605

0.00091

0.00092

0.00093

0.00094

0.00095

0.00096

0.00097

0.00098

0.00099

0.001

0.00101

0 2 4 6 8 10

ṁ
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Figure 9: ṁ for different N in situations corresponding to Figs. 5 (left) and 6 (right). The height of the sudden
jump in mass flow is related to the range shown of the y-axis.

using constant numerical boundary conditions at the inlet and the 2nd order extrapola-
tion at the outlet. Near the inlet we see a sudden jump in ṁ when the inlet is two-phase
(left column of Fig. 9). This is due to the constant ghost points. If we use the 2nd order
extrapolation at the inlet, this jump is greatly reduced. When the inlet is liquid (right
column of Fig. 9), the jump in ṁ near the inlet is almost gone, since the method of giving
ghost points a constant value equal to the first point (or last point) nearly corresponds to
using a higher-order extrapolation. However, near the phase change we see a new jump
in ṁ. Fortunately, all these jumps are seen to decrease with better discretization and for
the calculations of the total mass in the evaporator (Figs. 7 and 8), these jumps do not
seem to be a major problem.

To conclude this section, we show in Fig. 10 a simulation with a pipe with changing
cross sectional area. In the middle of the pipe, the radius is changed from 0.003 m to



S. Madsen, C. Veje and M. Willatzen / Commun. Comput. Phys., 12 (2012), pp. 1129-1147 1145

R

1.5

2

2.5

3

0 2 4 6 8 10

R
[m

m
]

z [m]

h

200

300

400

500

0 2 4 6 8 10

h
[k
J
/k

g]

z [m]

P

850

875

900

925

0 2 4 6 8 10

P
[k
P
a]

z [m]

R

1.5

2

2.5

3

0 2 4 6 8 10

R
[m

m
]

z [m]

Figure 10: An example of a simulation with a narrowing of the pipe. The lower right plot shows the radius of
the pipe. ṁ=0.006 kg/s.

0.0015 m and back to 0.003 m again. Liquid is entering the pipe, and as the pressure
drops rapidly due to the constriction, the liquid flashes into two phase flow. The stability
of the scheme towards such area changes is important for further investigations into, e.g.,
flashing phenomena in expansion valves.

6 Computational time

The program has been parallelized using the OpenMP implementation in gcc 4.4.4. This
is straightforward to do, since the KT scheme combined with the Runge-Kutta time step-
ping essentially corresponds to a sequence of loops over the grid. The expected complex-
ity of the algorithm is O(N2) for fixed length, but the constant of proportionality depends
on the speed of sound. The speed of sound in the liquid phase of R600a is typically about
800 m/s and in the gas phase it is typically about 200 m/s. These properties makes sim-
ulations including a liquid phase about a factor of 4 slower than simulations including
only two-phase and gas.

Fig. 11 shows measurements of the simulation time on a dual quad-core 2.27 GHz
Xeon computer. Hyper-threading (doubling the number of cores available to the operat-
ing system) was enabled and we tested the program with up to 16 threads, though the
computer only contains 8 actual computation cores. The speed-up is the single-thread
running time divided by the multi-thread running time. For a small number of points,
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Figure 11: Computational time (right) and speed-up (left) for simulations from t=50s to t=100s (two-phase
and gas) and t=150s to t=200s (liquid and two-phase) from Table 2.

the parallel performance of the program is not very good, but for N ≥ 405, we see a
nice linear scaling with the number of threads and a slope slightly below 1. The fig-
ure also shows the expected 4-fold difference between two-phase+gas simulations and
liquid+two-phase simulations.

7 Conclusion

We have presented transient numerical solutions of the one dimensional homogeneous
formulation of the governing equations for boiling flow in a horizontal tube. The re-
sults demonstrate the ability of the method to handle flow across the saturation lines,
even when the initial crossing is at a boundary. To our knowledge, this has not been
demonstrated elsewhere in the literature. A certain combination of numerical boundary
conditions demonstrates both stability and conservation of mass, even in dynamic simu-
lations with rapidly changing boundary conditions. While mass must be conserved, it is
certainly not trivial to guarantee in a local numerical scheme, since mass is an integrated
quantity. The method is also found to be easily parallelizable using a high level language
like OpenMP.
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