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Abstract. This paper is an introduction to a conservative, positive numerical scheme
which takes into account the phenomena of reflection and transmission of high fre-
quency acoustic waves at a straight interface between two homogeneous media. Ex-
plicit forms of the interpolation coefficients for reflected and transmitted wave vectors
on a two-dimensional uniform grid are derived. The propagation model is a Liouville
transport equation solved in phase space.
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1 Introduction

The present work deals with propagation of high-frequency acoustic waves at a straight
interface between two homogeneous media characterized by their respective celerities
and densities. The main issue that is considered here is the conservation of the total
energy by the finite difference scheme used for numerical simulations. The overall prop-
agation problem is splitted into two sub-problems, first propagation of high-frequency
waves in both media itself, and second their behaviour at the interface considering reflec-
tion and transmission. Propagation is described by a Liouville transport equation which
rules the evolution of the acoustic energy density in time and phase space (position ×
wave vector) [12]. It is solved numerically by a finite difference scheme [2, 9] applied in
time and phase space following the original developments of Jin and co-workers [3–7].
The behaviour of the waves at the interface is described by Snell-Descartes laws [1, 8].
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However the discontinuity of the celerities at that interface is a source of numerical dis-
sipation, that is to say a net loss for the computed total acoustic energy. A refined in-
terpolation of the acoustic energy density in the cells that have a common edge with
the interface is necessary to obtain a conservative scheme. This interpolation has to be
done on a wave-vector mesh which does not necessarily includes the reflected and/or
transmitted wave vectors as given by Snell-Descartes laws. The main contribution of
this paper is the derivation of an adapted finite difference scheme to circumvent this
shortcoming. It is constructed in such a way that the (computed) overall acoustic energy
remains conserved. The whole derivation is carried out for a two-dimensional acoustic
medium, which is the plane of incidence of an acoustic source with a given incident wave
vector. The diffraction phenomenon at critical incidence as considered by Jin and Yin [7]
is however ignored in this work. It is the subject of ongoing research.

The physical model is recalled in Section 2, as well as the time and phase-space fi-
nite difference scheme introduced in [3–7]. The construction of a conservative scheme
including reflection and transmission at the interface is outlined in Section 3. There the
computation of the increment of the total acoustic energy between two successive time
steps is performed and used as a guideline to construct explicitly an adapted interpo-
lating expansion on the wave-vector grid. Both cases of transmission from the fast to
the slow medium (Section 3.3), and from the slow to the fast medium (Section 3.4) are
considered. Some comparisons of the proposed new scheme with the one of Jin and co-
workers [3–7] are done through the numerical results given in Section 4. Finally Section 5
offers a few conclusions.

2 High-frequency acoustic wave propagation with a sharp

interface

The transport model for high-frequency wave propagation in heterogeneous acoustic me-
dia derived in [12] is summarized in Section 2.1 below. It has been shown that the acoustic
energy density associated to these waves satisfies a Liouville transport equation up to the
interface. There it is reflected and/or transmitted according to Snell-Descartes laws [1]
as recalled in Section 2.2. The last Subsection 2.3 describes how the Liouville equation is
discretized by time and phase-space finite differences following an upwind scheme up
to the interface.

2.1 Acoustic energy propagation

We consider the propagation of the high-frequency energy density in an acoustic medium
O⊂R

2 divided into two subdomains O− and O+ by a straight interface Γ oriented by
its unit normal n̂. For convenience and without loss of generality this interface is the line
Γ = {x = (0,y), y ∈ R}, thus O− = {x = (x,y) ∈O, x < 0}, O+ = {x = (x,y) ∈O, x > 0}
and we choose n̂= (1,0). The tangent unit vector to the interface is denoted by t̂. The
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sound speed c(x) and the density ̺(x) are either the constants c− and ̺− on the left side
(x∈O−) of Γ or the constants c+ and ̺+ on its right side (x∈O+). In the whole paper it
is assumed that c−< c+. The acoustic wave equation in each subdomain for the pressure
p(t,x) is:

1

c(x)2
∂2

t p−∆p=0, (2.1)

with some initial conditions p(0,x) = ǫA(x)eiS(x)/ǫ and ∂t p(0,x) = B(x)eiS(x)/ǫ, where A
and B denote amplitude functions depending on position x and S is for a phase function.
ǫ is a small parameter which characterizes high frequencies. The initial conditions are
supported in a compact subset of O− or O+. In order to solve this system for ǫ→0, we
use the theory developed in [12] where it is shown that the energy density a(t,x,k) of
these high-frequency acoustic waves in the phase space X =O×R

2 satisfies a Liouville
transport equation:

∂ta+∇kω ·∇xa−∇xω ·∇ka=0, (2.2)

where the Hamiltonian ω is ω(x,k)= c(x)|k|. Here k∈R
2 denotes the wave vector such

that k= |k|k̂ and k̂∈S1, the unit circle of R
2. Thus the phase-space energy density a, also

called specific intensity in the optical literature, is transported along rays which are the
projections in physical space of the bicharacteristics of the Liouville equation (2.2). As in
classical mechanics, the Hamiltonian ω is kept constant along a ray, even when it is being
transmitted or reflected by an interface [1,11]. The overall energy E and power flow Π in
the medium are recovered from the specific intensity by:

E(t)=
∫

X
a(t,x,k)dxdk, Π(t)=

∫

X
a(t,x,k)∇kωdxdk.

We then focus on solving numerically the Liouville equation in X by finite differences
following the scheme developed by Jin and co-workers in [3–7]. We seek a conserva-
tive scheme which works for rather coarse meshes of X, taking into account the reflec-
tion/transmission phenomena at the interface. The latter are described in the next Sub-
section 2.2. The scheme originally proposed in [3–7] is detailed in a subsequent subsec-
tion.

2.2 Acoustic waves reflection and transmission at an interface

At the interface Γ between two different media, an incident energy ray is partly transmit-
ted and partly reflected, or totally reflected (above critical incidence). Let ki be the wave
vector of that incident ray, the wave vectors kR and kT of the reflected and transmitted
rays, respectively, are such that the Hamiltonian is preserved:

ω := c±|ki|= c±|kR|= c∓|kT|. (2.3)

For plane waves hitting the interface, this condition is equivalent to Snell-Descartes laws
of refraction: the reflected and transmitted wave vectors kR and kT are located in the
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plane of incidence (ki,n̂) and their tangential components are identical to the tangential
component of the incident wave vector. Thus the following relations hold between their
normal components ξl =kl ·n̂, l= i,R or T:

ξr =−ξi, ξt =sign(ξi)
√

ν2ξ2
i +(ν2−1)η2, (2.4)

where ν= c−/c+< 1 if ξi > 0 (the incident wave impinges the interface from the left) or
ν= c+/c−> 1 if ξi < 0 (the incident wave impinges the interface from the right). In the
above (I−n̂⊗n̂)kl :=η t̂ is the constant tangential component of the wave vectors, I being
the identity matrix of R

2. If ν<1, ξt is purely imaginary above the critical incidence ξ̂c :=
arccos ν, giving rise to evanescent surface waves. However the high-frequency energy
density associated to the latter vanishes [1, 10, 11]. The associated acoustic power flow
reflection/transmission coefficients are given by [1]:

R−(ω,η)=
(̺+ξi−̺−ξt

̺+ξi+̺−ξt

)2
, T −(ω,η)=1−R−(ω,η),

for ξi>0; above critical incidence we set R−(ω,η)=1 and thus T −(ω,η)=0 (total reflec-
tion). The power flow reflection/transmission coefficients R+(ω,η) and T +(ω,η) for an
incident ray hitting the interface from the right side (ξi <0) are obtained from R−(ω,η)
and T −(ω,η) by interchanging ̺+ and ̺−.

2.3 Finite-difference scheme in phase space

It is assumed in the remaining of the paper that the initial condition giving rise to high-
frequency waves impinging the interface Γ is centered at a point (x0,k0) of the phase
space X, such that the wave vector k0 points toward the interface. The initial acoustic
energy density is propagated according to (2.2) until it reaches Γ, where it is partially
reflected and transmitted (diffraction at the critical incidence is ignored in our model).

The computational physical domain Oh=[−Lx,Lx]×[−Ly,Ly] considered for numeri-
cal simulations is meshed uniformly by the grid points xi− 1

2 ,j− 1
2
=(xi− 1

2
,yj− 1

2
) with 1≤ i≤

Nx+1, 1≤ j≤ Ny+1, such that xi− 1
2
=−Lx+(i−1)∆x and yj− 1

2
=−Ly+(j−1)∆y, where

∆x= 2Lx/Nx and ∆y= 2Ly/Ny. Then the mesh points xij =(xi,yj), 1≤ i≤Nx , 1≤ j≤Ny,
at which the specific intensity a and the sound speed c are discretized, are defined by:

xi = xi− 1
2
+

∆x

2
, yj =yj− 1

2
+

∆y

2
.

It is also assumed that there exists an index I such that xI+ 1
2
=0 is located on the interface;

then I is the index of the cells adjacent to the left of the interface, and I+1 is the index of
the cells adjacent to its right. A similar discretization is used for the wave vector k=(ξ,η),
which is also taken in a bounded computational domain [−Kx,Kx]×[−Ky,Ky] (Kx,Ky>0):

ξk =−Kx+
(

k− 1

2

)

∆ξ, ηl =−Ky+
(

l− 1

2

)

∆η,
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for 1 ≤ k ≤ Nξ and 1≤ l ≤ Nη . Nξ = 2K and Nη denote the number of mesh points and
∆ξ = 2Kx/Nξ , ∆η = 2Ky/Nη . K is the index such that ξk < 0 for 1≤ k≤K and ξk > 0 for
K+1 ≤ k ≤ 2K; this means that the case ξk = 0 is excluded from our scheme, because,
again, glancing energy rays are ignored. These rays shall be considered in future works,
introducing a model of diffraction compatible with energetic quantities as considered
here. The projection of the discretized wave vector kkl=(ξk,ηl) on the unit circle is written
k̂kl =(ξ̂kl ,η̂kl), with:

ξ̂kl =
ξk

√

ξ2
k+η2

l

, η̂kl =
ηl

√

ξ2
k+η2

l

.

At last, the discretized time steps are denoted by tn = n∆t, 0≤ n≤ N. It is assumed that
N (for the last time step τ=N∆t of the computation) is such that the boundaries x=±Lx

and y=±Ly of the computational physical domain Oh have not yet been reached, because
we focus on the reflection/transmission processes on Γ solely. This assumption diverts
us from dealing with any artificial or physical reflections on the boundaries, an issue out
of the scope of the paper.

Then the fully discretized Liouville equation (2.2) is [3–7]:

an+1
ijkl −an

ijkl

∆t
+cijξ̂kl

an
i+ 1

2 ,jkl
−an

i− 1
2 ,jkl

∆x
+cijη̂kl

an
i,j+ 1

2 ,kl
−an

i,j− 1
2 ,kl

∆y

−
√

ξ2
k+η2

l

ci+ 1
2 ,j−ci− 1

2 ,j

∆x

an
ij,k+ 1

2 ,l
−an

ij,k− 1
2 ,l

∆ξ
−
√

ξ2
k+η2

l

ci,j+ 1
2
−ci,j− 1

2

∆y

an
ijk,l+ 1

2

−an
ijk,l− 1

2

∆η
=0, (2.5)

with cij = c(xij) for the sound speed on each cell. It requires to introduce for each mesh
point (i, j,k,l) of the phase space and time step tn four values an

i± 1
2 ,j± 1

2 ,kl
of the specific in-

tensity computed from its values an
ijkl ≃a(tn,xij,kkl) by an upwind scheme. Given indices

i, j, k, and l, the latter writes:

an
i+ 1

2 ,jkl
= an

ijkl , if ξk >0; an
i+ 1

2 ,jkl
= an

i+1,jkl , if ξk <0, (2.6)

with similar expressions for an
i,j+ 1

2 ,kl
along the y-axis as a function of the sign of ηl . The

values an
i,j,k± 1

2 ,l± 1
2

for all cells are also given by an upwind scheme, which is described

in [7] for example. Note that the fact that the sound speed is constant on each side of
the interface implies that the fourth and fifth terms in Eq. (2.5) cancel. This full upwind
scheme ensures the positivity of the solution for the cells that have no common edge with
the interface. For the cells having an edge on the interface, the reflection and transmission
processes must be taken into account in the definition of the numerical fluxes. The exten-
sion of the upwind scheme in these cells is based on the conservation of the discretized
normal flux densities cij ξ̂kl a

n
ijkl at the interface, which is written:

c− ξ̂kl a
n
I+ 1

2 ,jkl
= c−R−(kR,l)ξ̂kl a

n
I,jkR l+c+T+(kT,l)ξ̂kT la

n
I+1,jkT l, if ξk <0, (2.7a)

c+ ξ̂kl a
n
I+1− 1

2 ,jkl
= c+R+(kR,l)ξ̂kl a

n
I+1,jkR l+c−T−(kT ,l)ξ̂kT la

n
I,jkT l , if ξk >0, (2.7b)
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where:

R±(k,l) :=R±
(

c±
√

ξ2
k+η2

l ,ηl

)

, T±(k,l) :=T ±
(

c±
√

ξ2
k+η2

l ,ηl

)

,

using the power flow reflection/transmission coefficients R±(ω,η) and T ±(ω,η) intro-
duced in Section 2.2. In the above an

IjkR l, an
I+1,jkR l , an

IjkT l and an
I+1,jkT l are the discretized

specific intensities corresponding to some incident wave vectors kkRl=(ξR,ηl) and kkT l=
(ξT,ηl), yielding the wave vector kkl=(ξk,ηl) by reflection and transmission respectively.
By symmetry ξR is directly obtained from ξk by ξR =−ξk (or kR =2K+1−k from the def-
inition of the discretized phase space). However, ξT is not necessarily a mesh point and
kT does not necessarily correspond to an index on this mesh. In [3–7], an

ijkT l for i = I or

i= I+1 is written as a linear interpolation of an
ijk′ l and an

ij,k′+1,l for the index k′ such that

ξk′ < ξT < ξk′+1. But this scheme has no reason to be conservative a priori. The purpose of
the paper is to present a refined interpolation by enforcing conservation of the discretized
total energy. It is described in the next section.

3 Conservative finite differences scheme

Dividing the previous equalities (2.7) by c− ξ̂kl and c+ ξ̂kl , respectively, the discretized
specific intensities on the interface are written in the form:

an
I+ 1

2 ,jkl
=R−(kR,l)bn

IjkR l+T+(kT ,l)bn
I+1,jkT l , if ξk <0, (3.1a)

an
I+1− 1

2 ,jkl
=R+(kR,l)bn

I+1,jkR l+T−(kT ,l)bn
IjkT l, if ξk >0, (3.1b)

where bn
ijkR l and bn

ijkT l are defined so as to conserve the discretized total energy for all time

steps of the simulation. Their construction is the main ingredient of the proposed new
numerical scheme. It is summarized in the following Section 3.1, whereas the increment
of the discretized total energies for two successive time steps is computed in Section 3.2.
Equating it to zero yields the required interpolation coefficients introduced in Section 3.1;
this is done for an incident wave impinging the interface from the right (fast to slow
medium) in Section 3.3 or from the left (slow to fast medium) in Section 3.4.

Now let us define some notations used in the remaining of the paper. As ηl is a
constant parameter all along the reflection/transmission process, it is simply noted η in
the following in order to lighten notations, for it is understood that it should be fixed
among the mesh points {ηl}1≤l≤Nη

. Second, for some normal wave-vector component
ξ within the computational wave-vector domain, we will use the mapping ξ 7→ index(ξ)
which identifies the index k of the closest mesh point ξk to ξ; it is defined by:

index(ξ) :=
[ ξ+Kx

∆ξ
+

1

2

]

,

where [z] stands for the integer part of z∈R.
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3.1 Discretized specific intensities at the interface

The expressions for bn
ijkR l and bn

ijkT l, with i= I or i= I+1 are specific to the scheme used

to ensure the conservation of the discretized normal fluxes on the interface. First, in the
case of a straight interface, the symmetry of the mesh points {ξk}1≤k≤2K yields:

bn
ijkR l = an

ij,2K+1−k,l .

Second, the transmitted specific intensity bn
ijkT l for i= I or I+1 is written as a linear com-

bination of the discretized specific intensities an
ijkl of the form:

bn
ijkT l =

k′+KM

∑
p=k′−Km

γpan
ijpl , (3.2)

where the scalars γp and the strictly positive integers Km and KM are chosen by enforcing
conservation of the discretized total energy computed in the next section. The index k′

is k′= index(ξT), where ξT is derived from Eq. (2.4) by ξk =(ν2ξ2
T+(ν2−1)η2)1/2. Again,

ξT as given by the latter formula has no reason to be a mesh point, hence the interpola-
tion (3.2).

3.2 Evolution of the discretized total energy

The discretized total energy En
a of the medium at time tn is given by the discrete ℓ1-norm

of an in phase space:

En
a =∆x∆y∆ξ∆η∑

ijkl

an
ijkl :=‖an‖1.

Using the discretized Liouville equation (2.5) and the upwind fluxes, yields the following
equality for En+1

a and En
a :

En
a −En+1

a =∆t∆ξ∆η
(

∆y∑
ij

cij∑
kl

ξ̂kl

(

an
i+ 1

2 ,j,kl
−an

i− 1
2 ,j,kl

)

+∆x∑
ij

cij∑
kl

η̂kl

(

an
i,j+ 1

2 ,kl
−an

i,j− 1
2 ,kl

)

)

.

For all indices i, k, l, and n let:

Sn
ikl =

∆t

∆y
η̂kl

Ny

∑
j=1

ci

(

an
i,j+ 1

2 ,kl
−an

i,j− 1
2 ,kl

)

,

where ci = c−, if i≤ I and ci = c+, if i≥ I+1, as the interface is vertical. Since an upwind
scheme is used, we have:

Sn
ikl =



























∆t

∆y
η̂kl

Ny

∑
j=1

ci(a
n
ijkl−an

i,j−1,kl)=
∆t

∆y
η̂klci(a

n
i,Ny,kl−an

i0kl), if η>0,

∆t

∆y
η̂kl

Ny

∑
j=1

ci(a
n
i,j+1,kl−an

ijkl)=
∆t

∆y
η̂klci(a

n
i,Ny+1,kl−an

i1kl), if η<0.
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For all time steps we have assumed above that

an
iNykl = an

i0kl =0 and an
i,Ny+1,kl = an

i1kl =0

for all indices i, k and l, because the boundaries of the computational physical domain
Oh are never reached during the simulation; in addition the values of the specific inten-
sities outside Oh namely an

i,Ny+1,kl and an
i0kl , are conventionally set to zero. Under these

assumptions, each of the sums Sn
ikl is zero and the total sum ∑k,l S

n
ikl is also equal to zero.

Likewise for all indices j, k, l, we set

an
Nx ,jkl = an

0,jkl =0 and an
Nx+1,jkl = an

1,jkl =0,

such that the following sum S rewrites:

S :=
∆t

∆x ∑
ij

ci∑
kl

ξ̂kl

(

an
i+ 1

2 ,jkl
−an

i− 1
2 ,jkl

)

=
∆t

∆x ∑
j

(

∑
kl

c− ξ̂kl a
n
I+ 1

2 ,jkl
−∑

kl

c+ ξ̂kla
n
I+1− 1

2 ,jkl

)

.

We then deduce that the difference En
a −En+1

a = S×∆x∆y∆ξ∆η is a function of the dis-
cretized specific intensities at the interface, as expected. The latter are an

I+ 1
2 ,jkl

and an
I+1− 1

2 ,jkl

as defined in Eq. (3.1), and they must be chosen to ensure the conservation of the dis-
cretized total energy between two time steps. Let us rewrite:

S=
∆t

∆x ∑
jl

[

∑
k;ξk>0

(

c−ξ̂kla
n
I+ 1

2 ,jkl
−c+ ξ̂kla

n
I+1− 1

2 ,jkl

)

+ ∑
k;ξk<0

(

c− ξ̂kla
n
I+ 1

2 ,jkl
−c+ ξ̂kla

n
I+1− 1

2 ,jkl

)

]

,

then taking into account that by upwinding, Eq. (2.6),

an
I+ 1

2 ,jkl
= an

Ijkl , if ξk >0; an
I+1− 1

2 ,jkl
= an

I+1,jkl , if ξk <0,

invoking again Eq. (3.1), and then using a change of variables for the reflected vectors,
the expression of S is finally merged to S=S1+S2 where:

S1=
∆t

∆x ∑
jl

K

∑
k=1

(

c−T+(kT ,l)ξ̂klb
n
I+1,jkT l−c+(1−R+(k,l))ξ̂kl a

n
I+1,jkl

)

,

S2=
∆t

∆x ∑
jl

2K

∑
k=K+1

(

c−(1−R−(k,l))ξ̂kl a
n
Ijkl −c+T−(kT ,l)ξ̂klb

n
IjkT l

)

.

Cancelling S as expressed above yields En+1
a =En

a or ‖an+1‖1=‖an‖1, which is the conser-
vative property, or ℓ1-stability sought for. The next Sections 3.3 and 3.4 describe how to
choose the expansion (3.2) of bn

IjkT l and bn
I+1,jkT l in order to satisfy this property. It should

be noted that the numerical fluxes constructed by this process are first order in x and
k, but this order could actually be increased using a slope limiter as in [6] for example.
The algorithm described there enables to obtain a second order accuracy and could be
extended to our scheme; we will not however pursue this issue in the remaining of the
paper but shall rather leave it to future works.
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3.3 Transmission from the fast to the slow medium

Let us first consider the case when the initial energy density is on the right side of the
interface and propagates toward it. Let n be a time index for which none of the physical
boundaries has yet been reached. Then the values of an

Ijkl for ξk>0 and thus the values of

bn
IjkT l vanish, as well as the values an

IjkR l for ξk > 0, since no wave impinges the interface

from the left. Thus S2=0 and S reduces to S1. To obtain a conservative scheme, we have
to choose bn

I+1,jkT l such that S1=0.

Let k be a given index such that ξk <0, and η (the constant discretized tangent wave
vector) is a fixed real parameter among the mesh points {ηl}1≤l≤Nη

. The incident energy
density on the fast side with wave vector (ξT,η) is transmitted by the interface in the
direction defined by the wave vector (ξk,η). Then bn

I+1,jkT l is approximated using the

existing mesh of wave vectors and Eq. (3.2). To determine the relationship between the
incident wave vector and a given transmitted wave vector from the mesh {kkl}, let us
consider the function fη : [−∞,Ξη ]→ [−∞,0] defined by:

fη(ξ)=−1

ν

√

ξ2+(1−ν2)η2,

where Ξη =−|η|
√

ν2−1 such that fη(Ξη)=0 and {(ξ,η);ξ<Ξη} is included in the set of
sub-critical vectors. It is reminded that in this configuration ν = c+/c− > 1. Also fη is
an increasing continuous function, and it has an asymptotic direction given by ξ 7→ ξ/ν
for ξ →−∞ (see Fig. 1). Then as ν>1, there is a unique normal wave-vector component
Ξ′

η =−ν|η| such that

f ′η(Ξ
′
η)=1 and f ′η(ξ)<1, for all ξ<Ξ′

η .
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Figure 1: The function fη : ξ 7→− 1
ν

√

ξ2+(1−ν2)η2 with η = 0.2, η = 0.4, η = 0.6, η = 0.8 and 1.0 from the

right to the left, and ν=c+/c−=1.2; wave-vector normal component mesh for K=20 (dotted lines ···) and its
intersections with fη (bullets •).
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Let us define the indices kη = index(Ξη) and k′η = index(Ξ′
η)≤ kη of the wave vector

meshes for the closest grid points to Ξη and Ξ′
η , and introduce the setsKk and Jη,k defined

for 1≤ k≤ kη by

Kk ={ξ1,ξ2,··· ,ξk}, Jη,k={k′ ; k′= index( fη(ξ)), ξ∈Kk},

and denote Jη =Jη,kη
. As fη is a monotonous function, one can always find an index

k′ ∈Jη,k such that ξk′ ≤ fη(ξk)< ξk′+1; then a two-point interpolation for bn
I+1,jkT l may be

chosen in the form:

bn
I+1,jkT l =γ1(k

′,l)an
I+1,jk′ l+γ2(k

′+1,l)an
I+1,j,k′+1,l, (3.3)

where k′= index( fη(ξk)). However, the set J +1
η :=Jη∪{Jη+1} does not contain all the

indices {1,2,··· ,K}, and some points of the wave-vector mesh may never be covered by
such a two-point interpolation. In fact, as soon as k≤ k′η the set J +1

η,k :=Jη,k∪{Jη,k+1}
has a sequential form

J +1
η,k ={km,km+1,··· ,kM−1,kM},

where km ≥ 1 and kM ≤K. But for k> k′η this is not necessarily the case. This situation

is illustrated for example on Fig. 1 below for the grid point ξk3
corresponding to the

horizontal thick line: this point is never covered by the two-point interpolations (3.3)

constructed from ξk1
and ξk2

. This means that the set J +1
η,k2

is not sequential, and more

points need be used in this case for the interpolation. This occurrence is described more
in detail in the following Section 3.4. Nevertheless, for the ease of understanding, we
assume in the remaining of this section that the above two-point interpolation is sufficient

for all cases. This means that for the largest index k>k′η such that the setJ +1
η,k is sequential,

the upper bound kM is equal to K (note that this assumption will be released in the next
section). Then plugging (3.3) in S1 yields:

∆x

∆t
S1=∑

jl

[ kη

∑
k=1

c−T+(kT,l)ξ̂kl

(

γ1(k
′,l)an

I+1,jk′l+γ2(k
′+1,l)an

I+1,j,k′+1,l

)

−
K

∑
k=1

c+(1−R+(k,l))ξ̂kla
n
I+1,jkl

]

=∑
jl

c−
[

∑
k′∈Jη

(

∑
k; ξk′< fηl

(ξk)<ξk′+1

T+(kT ,l)ξ̂kl

)

γ1(k
′,l)an

I+1,jk′l

+ ∑
k′∈Jη+1

(

∑
k; ξk′−1< fηl

(ξk)<ξk′

T+(kT ,l)ξ̂kl

)

γ2(k
′,l)an

I+1,j,k′l

]

−∑
jl

K

∑
k′=1

c+(1−R+(k′,l))ξ̂k′la
n
I+1,jk′l .

For η = ηl fixed (l fixed), the lower bound of J +1
η is km = index( fη(ξ1)). Then it is finally

assumed that an
I+1,jk′ l =0 for all k′< km, so that only the part of the wave vectors (ξk′ ,η)
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with k′ ≥ km can be transmitted. Note that this assumption is naturally imposed by the
boundedness of the computational wave-vector domain [−Kx,Kx]×[−Ky,Ky]. By merg-
ing the sums above, expressions for the coefficients γ1 and γ2 are finally obtained as:

γ1(k
′,l)=

ν(1−R+(k′,l))ξ̂k′ l

2∑k; ξk′< fη(ξk)<ξk′+1
T+(kT ,l)ξ̂kl

, ∀k′∈Jη , (3.4a)

γ2(k
′,l)=

ν(1−R+(k′,l))ξ̂k′ l

2∑k; ξk′−1< fη(ξk)<ξk′
T+(kT ,l)ξ̂kl

, ∀k′∈Jη+1. (3.4b)

Using them in Eq. (3.3) allows to derive a conservative scheme for the energy rays cross-
ing the interface from the fast to the slow medium as illustrated on Fig. 4 below. The
proposed scheme also inherits the positivity property of the original scheme in [3–7] with
a similar hyperbolic-type CFL condition. Finally, the above coefficients can be majorized
independently of k′ such that one obtains |bn

I+1,jkT l|≤C‖an‖∞ for some constant C>0 and

this scheme is ℓ∞-stable as well.

3.4 Transmission from the slow to the fast medium

Let us now consider the case when the initial energy density is on the left side of the
interface and propagates toward it. n is again a time step for which none of the physical
boundaries has been reached yet. As before, the values of an

I+1,jkl with ξk<0 and thus the

values of bn
I+1,jkT l vanish, as well as the values an

I+1,jkR l with ξk<0, since no wave impinges

the interface from the right. Thus S1 = 0 and S reduces to S2. To obtain a conservative
scheme, we have to choose bn

IjkT l such that S2=0.

Let k a given index such that ξk > 0, and η be again a fixed real parameter among
the mesh points {ηl}1≤l≤Nη

. As in Section 3.3, the incident specific intensity on the slow
side with wave vector (ξT,η) is transmitted by the interface in the direction defined by
the wave vector (ξk,η). Then bn

IjkT l is approximated using the existing mesh of wave

vectors and Eq. (3.2). To determine the relationship between the incident wave vector
and a given transmitted wave vector from the mesh {kkl}, we consider now the function
gη : [0,+∞]→ [Ξη ,+∞] defined by:

gη(ξ)=
1

ν

√

ξ2+(1−ν2)η2,

where Ξη = η
√

1−ν2/ν =−Ξη has been defined in the previous section as the normal
wave-vector component corresponding to the critical angle. The analysis of gη shows
that it is an increasing function, that it has an asymptotic direction ξ 7→ ξ/ν for ξ →+∞,
but contrary to the previous case its slope is 1/ν = c+/c− > 1 in this configuration (see
Fig. 2). Also the normal component Ξ′′

η such that g′
η(Ξ

′′
η )=1 is Ξ′′

η =νη, corresponding to
the index k′′η = index(Ξ′′

η ) of the mesh.
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Figure 2: The function gη : ξ 7→ 1
ν

√

ξ2+(1−ν2)η2 with η=0.1, η=0.3, η=0.5, η=0.7, and η=0.9 from the

bottom to the top, and 1/ν= c+/c−=1.2; wave-vector normal component mesh for K=20 (dotted lines ···)
and its intersections with gη (bullets •).

Now let us introduce the normal component Ξd such that g(Ξd)=ξ2K and the sets Kk

and Jη,k now defined for K+1≤ k≤ kd = index(Ξd) by

Kk ={ξk,ξk+1,··· ,Ξd}, Jη,k={k′; k′= index(gη(ξ)), ξ∈Kk}.

Assuming that ξk′′η+1<Ξd, then g′
η(ξk)<1 for K+1≤k≤k′′η , and the two-point interpolation

(3.3) can be used in this case:

bn
IjkT l =γ1(k

′,l)an
Ijk′ l+γ2(k

′+1,l)an
Ij,k′+1,l, (3.5)

where k′= index(gη(ξk)). As already outlined in Section 3.4, it is however not sufficient

if the set J +1
η,K+1=Jη,K+1∪{Jη,K+1+1} is different from the sequential set {2K−kη ,2K−

kη+1,··· ,2K−1,2K}, where one can check that 2K−kη = index(−Ξη) and kη has been in-
troduced above in Section 3.3. That is to say that the previous set does not cover all the
mesh points in the computational wave-vector domain and thus contains holes. Indeed,
as the slope of gη may be greater than 1, it may happen that some mesh points can not

be counted in the set J +1
η,K+1; then (3.5) misses all the an

Ijkl ’s for the k’s not included in it.

Thus for k′′η +1≤ k≤ kd the interpolation is defined by:

bn
IjkT l = ∑

p∈I(k)
γk(p,l)an

Ijpl , (3.6)

where the sets I(k) are defined such that index(gη(ξk))∈I(k), I(k1)∩I(k2)=∅, for k1 6=
k2, and

⋃

k

I(k)=
{

2K−kη ,2K−kη+1,··· ,2K
}

.
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Also because of the boundedness of the computational wave-vector domain it can be
assumed that an

Ijk′ l =0 for all k′> kd.

Then plugging Eq. (3.6) in S2, the latter rewrites:

∆x

∆t
S2=∑

jl

[ 2K−kη

∑
k=K+1

c−(1−R−(k,l))ξ̂kla
n
Ijkl−

k′′η

∑
k=K+1

c+T−(kT ,l)ξ̂klb
n
IjkTk

−
min(I(k′′η+1))−1

∑
k=2K−kη+1

c−(1−R−(k,l))ξ̂kla
n
Ijkl

−
kd

∑
k=k′′η+1

∑
p∈I(k)

(

c+T−(kT ,l)γk(p,l)ξ̂kla
n
Ijpl−c−(1−R−(p,l))ξ̂pla

n
Ijpl

)

]

.

The first sum in the above expression cancels because it corresponds to total reflection
with R−(k,l) = 1. The second and third sums are cancelled with the regular two-point
interpolation of Eq. (3.5). At last the interpolation coefficients γk(p,l) are chosen such
that the fourth sum cancels for all p∈I(k), that is:

γk(p,l)=
ν(1−R−(p,l))ξ̂pl

T−(kT ,l)ξ̂kl

, ∀p∈I(k). (3.7)

These coefficients as well as γ1 and γ2 in (3.5) may be majorized independently of p or
k′, yielding |bn

IjkT l| ≤ C‖an‖∞, for some constant C > 0 and thus the ℓ∞-stability of the

proposed scheme, as in Section 3.3.

4 Numerical results

In this section we present some numerical results obtained with the proposed conserva-
tive scheme and compare them with those obtained with the scheme depicted in [3–7].
In the latter the bijkl ’s of Eq. (3.1) are constructed by linear interpolation:

bn
ijkT l =

ξk′+1−ξT

∆ξ
an

ijk′ l+
ξT−ξk′

∆ξ
an

ij,k′+1,l, bn
ijkR l =

ξk1+1−ξR

∆ξ
an

ijk1 l+
ξR−ξk1

∆ξ
an

ij,k1+1,l, (4.1)

for i= I or I+1, with k′=index(ξT), k1=Nξ+1−k, ξR=−ξk, and ξT= fη(ξk), if ξk<0 or ξT=
gη(ξk), if ξk>0. The sound speeds on both sides of the interface are c−=1 and c+=2.5 for
both computations presented below, and we consider a computational physical domain
with Lx = 0.4 and Ly = 0.25. The first computation is for reflection/transmission of the
specific intensity from the fast to the slow medium. The phase-space mesh is constructed
with the following data: Nx = Ny = Nη = 36, and K = 25; the Courant number for time
discretization is C := c−∆t/∆x = 1/14. The initial specific intensity a0

ijkl = a0(xij,kkl) is

given by:

a0(x,k)=
1

πc2
1

e
−
( |x−x0|

c2

)2

×e
−
( |k−k0|

c1

)2

×ϕ2∆x

(

x−x0

)

×ϕ2∆k

(

k−k0

)

, (4.2)
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Figure 3: Snapshots of the specific intensities computed by the proposed new scheme at time steps tn=10×∆t,
tn = 30×∆t, tn = 50×∆t, and tn = 70×∆t with c−= 1, c+= 2.5, and Courant number C= 1/14; propagation
from the fast to the slow medium (left) and from the slow to the fast medium (right).
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Figure 4: Evolution of the computed total energy for the proposed new scheme (•) and for the scheme of [7]
(+); propagation from the fast to the slow medium (left) and from the slow to the fast medium (right).

where c1=0.02, c2=0.025, x0=(0.1083,0), k0=(−0.09,0); and ϕ∆x(x) is the characteristic
function

ϕ∆x(x)=1{|x|≤∆x}(x)×1{|y|≤∆y}(y)

with a similar definition for ϕ∆k(k). The initially peaked specific intensity a0 is a trun-
cated Gaussian beam centered around the point (x0,k0) in phase space which propagates
toward the interface Γ. Although it is discontinuous, the proposed scheme is observed
to be numerically convergent in agreement with [4, 5] for one-dimensional examples. A
second computation considers propagation from the slow to the fast medium. In this case
the phase-space mesh is constructed with the following data: Nx=Ny=Nη=30 and K=20,
while the Courant number is the same as in the previous example. The initial specific in-
tensity is (4.2) with x0 =(−0.1083,0) and k0=(0.17,0). Fig. 3 displays some snapshots of
the computed specific intensity at different time steps for both computations. Fig. 4 also
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displays the evolution of the total acoustic energy during the simulation, as computed by
the proposed modified scheme (labelled with bullets •) and by the original scheme of [7]
with reflected and transmitted specific intensities given by Eq. (4.1) (labelled with pluses
+).

5 Conclusions and perspectives

In this paper, we have modified the numerical scheme proposed in [3–7] to solve the Li-
ouville equation for the high-frequency acoustic energy density in a two dimensional do-
main divided into two sub-domains with different sound speeds by a straight interface.
The proposed new scheme is a phase-space finite difference scheme which takes into
account (i) the reflection/transmission phenomena, and (ii) conserves the total acous-
tic energy reflected and transmitted by the interface. The evolution of the total energy
between two successive time steps is computed, and an interpolation formula for the
computed energy density is derived on each side of the interface. More precisely, inter-
polation weights on the wave-vector grid are derived for transmission from the fast to
the slow medium (see Eq. (3.4)) as well as transmission from the slow to the fast medium
(see Eq. (3.7)). At present the proposed scheme is limited to a straight interface and a
piecewise homogeneous medium. A scheme for a curved interface in two dimensions
will be derived along the same way in future works. Its possible extension to heteroge-
neous acoustic media (at least away from the interface), as implemented in [4–6], shall be
investigated as well. Diffraction phenomena have been considered in [7], but not in this
paper. They shall also be taken into account in future researches. We note finally that the
ideas presented in this paper may be extended in our opinion to higher-order schemes,
using slope limiters for example [6], and adaptive strategies.
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