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Abstract. We propose a numerical procedure to extend to full aperture the acoustic far-
field pattern (FFP) when measured in only few observation angles. The reconstruction
procedure is a multi-step technique that combines a total variation regularized itera-
tive method with the standard Tikhonov regularized pseudo-inversion. The proposed
approach distinguishes itself from existing solution methodologies by using an exact
representation of the total variation which is crucial for the stability and robustness
of Newton algorithms. We present numerical results in the case of two-dimensional
acoustic scattering problems to illustrate the potential of the proposed procedure for
reconstructing the full aperture of the FFP from very few noisy data such as backscat-
tering synthetic measurements.
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1 Introduction

The determination of the shape of an obstacle from the knowledge of some scattered far-
field patterns (FFP), and assuming some a priori knowledge about the characteristics of
the surface of the obstacle is one of the most basic problems arising in the inverse scat-
tering field. However, this inverse obstacle problem (IOP) is very difficult to solve from
both mathematical and numerical view points due to its ill-posed nature and — to some
extent — to its nonlinearity. The numerical determination of the obstacle becomes more
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challenging when the FFP is not measured entirely around the obstacle but only in a
limited sector (limited aperture), which is the case in most applications. Nevertheless,
and because of its importance to many applications such as sonar, radar, geophysical ex-
ploration, medical imaging and nondestructive testing [1], applied mathematicians and
engineers devoted an important effort and attention, in the last three decades, to the de-
sign of solution methodologies for solving numerically IOP problems (see for example
the overview in [4] and references therein). The numerical results reported in the litera-
ture indicate that the success in the reconstruction of the sought-after shape of an obstacle
depends strongly on the quality of the given FFP measurements: the aperture (range of
observation angles) and the level of noise in the data (accuracy of measurements). In par-
ticular, there is no hope — at least by the current numerical methods — to solve the IOP
when the FFP is measured in small apertures (less than π/4) even if the data are noise
free (see for example [5–8,10] among others). Consequently, the development of numeri-
cal procedures to enrich (increase the size) the set of FFP measurements when given in a
small aperture could become a key step for solving efficiently IOP problems. Note that,
from a mathematical point of view, it is always possible to extend the FFP uniquely to the
entire circle S when given in a (continuous) subset of S. This unique determination is due
to the analyticity of the FFP [2]. However, the numerical extension from the knowledge
of a (discrete) subset of the FFP is a very challenging problem. Indeed, such extension
can be formulated as an inverse problem that is extremely ill-posed due to the analyt-
icity of the FFP. Therefore, any numerical procedure for extending (enriching) the FFP
measurements must address efficiently the ill-posed nature of this inverse problem.

Previous attempts to solve the inverse problem characterizing the extension of the
FFP were based on standard L2-Tikhonov regularization techniques on the FFP field [9]
as well on its first and second derivative [10]. The extension was (to some extent) success-
ful only when the range of measurements is given in an aperture larger than π/2. These
procedures fail to address situations of practical interest, that is when only one mea-
surement (backscattering) or very few measurements are available. Recently, the authors
suggested a multistep computational procedure that extends few measurements, such as
backscattering data, to full aperture (360o-aperture) [11]. The proposed procedure em-
ploys, in its first two steps, a regularized Newton-type algorithm where the total variation
(TV) of the FFP is incorporated to restore the stability to the inverse problem. The total
variation of the FFP, which can be viewed as the L1-norm of the first derivative of the FFP,
is evaluated at each Newton iteration approximatively using a finite difference scheme
(see Section 3.2 and the appendix in [11]). The first two-steps of the procedure allow to
extend the FFP to at least a π/2-aperture. The third step of the proposed procedure uses
a Tikhonov-type regularization technique that is known to be efficient when the data are
given on an aperture larger than π/2. The results delivered by this procedure are very
promising, especially in the presence of low levels of noise in the data. We propose in
this paper to modify this reconstruction strategy by employing an exact representation of
the total variation of the FFP. The use of such an expression is expected to retain more
stability and robustness that are needed for the convergence of the Newton algorithm
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applied in the first two-steps of the procedure, which in turn will lead to numerical FFP
extensions that are less sensitive to the noise level in the original data. The numerical
results obtained with this modified procedure illustrate its superiority over the procedure
suggested in [11], when the original measurements are contaminated with relatively high
levels of noise.

2 Problem statement

Let u∞ be the far-field pattern (FFP) corresponding to the solution u of the direct acoustic
scattering problem by an obstacle Ω [2]. Then, u∞ is an analytical function defined on the
unit circle S [2]. Consequently, we can express it as a Fourier series as follows:

u∞(θ)=
∞

∑
n=−∞

(−i)ncneinθ, θ∈S, (2.1)

where the complex constants cn are the Fourier coefficients. The determination of these
constants allows to measure the FFP u∞ on the entire unit circle S.

The computation of the Fourier coefficients cn when the FFP u∞ is given at some
(few) observation points allows to determine the FFP u∞ on the entire unit circle S. This
extension can be formulated as the following inverse Fourier coefficients problem (IFP):

Given a set of M far-field pattern measurements ũ∞ =
[
ũ∞(θ̂1), ··· , ũ∞(θ̂M)

]T
for one incident

plane wave, find the Fourier coefficients vector ĉ=[ĉ−N , ··· , ĉN ]
T such that:

ĉ= arg min
c∈C2N+1

‖Ac−ũ∞‖2, (2.2)

where argmin is used to denote that ĉ is the minimizer of the cost function ‖Ac−ũ∞‖2

over C2N+1 with N being the truncating order of the Fourier series given by Eq. (2.1). A
is a M×(2N+1) matrix given by:

A=




(−i)−Ne−iNθ̂1 ··· 1 ··· (−i)NeiNθ̂1

(−i)−Ne−iNθ̂2 ··· 1 ··· (−i)NeiNθ̂2

...
...

...
...

...

(−i)−Ne−iNθ̂M ··· 1 ··· (−i)NeiNθ̂M




. (2.3)

The IFP problem given by Eq. (2.2) is severely ill-posed. The condition number of the
matrix A given by Eq. (2.3) increases exponentially as the number of terms N increases
[2]. Consequently, it is very difficult to solve numerically IFP since the accuracy of the
solution requires N to be relatively large, depending on the frequency. For this reason, a
stabilization technique must be incorporated during the solution of Eq. (2.2).
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3 The regularized problem

We propose to use the total variation (TV) of the far-field pattern to restore the stability to
the IFP problem [13]. Such a technique has been used widely and successfully in image
deblurring applications [14–17]. It consists in replacing the minimization problem (2.2)
by the following TV-regularized IFP problem:

ĉ= arg min
c∈C2N+1

{
1

2
‖Ac−ũ∞‖

2
2+µJTV(u∞)

}
, (3.1)

where µ > 0 is the regularization parameter and JTV is a regularization operator rep-
resenting the total variation of the far-field pattern u∞. Observe that Acar et al. in [15]
proved that the cost function given by Eq. (3.1) is convex and therefore, the minimization
problem is well-posed.

Unlike the method proposed in [11], where JTV(u∞) is evaluated numerically using
a finite difference scheme (a central first-order derivative), we propose to use an exact
characterization of the derivative of the FFP with respect to its Fourier coefficients. Con-
sequently, the total variation is expressed as follows:

JTV(u∞)=‖Ac‖1 . (3.2)

We must point out that the penalty term given by Eq. (3.2) is “slightly” different from the
exact total variation of the FFP field. More specifically, ‖Ac‖1 is a TV-type regularization
term representing the Fréchét derivative of FFP with respect to the Fourier coefficients c

while the exact TV transformation consists in the derivative with respect to the observa-
tion angle θ. At the algebraic level, the difference between the two formulations is that the
nth column of the TV formulation is just a multiplication (by i n) of the nth column of the
matrix resulting from the adopted regularization. Our numerical investigation revealed
that the exact formulation improves slightly the accuracy delivered by the approximate
formulation proposed in [11] while with the proposed formulation the improvement is
more significant, as illustrated by the numerical results reported in Section 5.

Observe that the resulting regularized formulation involves a non-differentiable cost
function due to the presence of the 1-norm term ‖Ac‖1. The lack of the regularity is a seri-
ous defect in the cost function since it rules out the use of efficient numerical procedures,
such as Newton algorithms, that require the evaluation of the Jacobians. Hence, in order
to restore regularity to the resulting cost function, we modify the FFP total variation term
as suggested in [11]. The resulting minimization problem is given by:

ĉ= arg min
c∈C2N+1

{
1

2
‖Ac−ũ∞‖

2
2+µ

∥∥∥∥
(
(Ac)2+β2ẽ

)1/2
∥∥∥∥

1

}
, (3.3)

where ẽ is a vector in C2N+1 given by ẽ=[1, ··· , 1]T. The bold face exponents in Eq. (3.3),
and for the remaining of this section, are pointwise operations on the absolute values



H. Barucq et al. / Commun. Comput. Phys., 11 (2012), pp. 647-659 651

of the vector components. The positive constant β is the regularity parameter. Indeed,
the presence of β (β large enough) ensures the differentiability of the L1-norm term in
the cost function given by Eq. (3.3). The optimal value of the couple (µ,β) is obtained
using — at this point of the study — a trial and error strategy since our primary goal is to
investigate the feasibility of the proposed method. Note that the use of a finite difference
approximation of the total variation of the FFP leads to the presence in the formulation
of a third parameter h, representing the step size of the discretization scheme.

We note that a serious shortcoming of standard L2-regularization techniques is that
they do not allow discontinuous solutions, whereas a TV-computed solution could be
discontinuous. Therefore, the proposed TV formulation has the potential to be more
robust in the presence of noisy data due to measurement errors and/or roundoff.

Similarly to [11], we propose to apply the Newton method to solve the nonlinear
minimization problem given by (3.3) since the corresponding cost function is now differ-
entiable. Consequently, at each Newton iteration m, we solve the linear system:

F ′′(c(m))δc(m)=−F ′(c(m)) (3.4)

and then update

c(m+1) = c(m)+δc(m). (3.5)

F ′′ is a (2N+1)×(2N+1) matrix representing the Hessian of the regularized cost func-
tion. F ′′ is given by:

F ′′(c(m))=A∗A+µ

(
A∗Ψ−1A−A∗

[
diag

(
Ac(m)

)]2
Ψ−3A

)
, (3.6)

where Ψ is a (2N+1)×(2N+1) diagonal matrix given by:

Ψ=diag

([[
Ac(m)

]2
+β2ẽ

]1/2
)

. (3.7)

F ′(c(m)) is a vector in C2N+1 representing the Jacobian of the regularized cost function
given by (3.3). F ′(c(m)) is defined by:

F ′(c(m))=A∗
(

Ac(m)−ũ∞

)
+µA∗Ψ−1Ac(m). (3.8)

Observe that each Newton iteration equation consists in solving a (2N+1)×(2N+1)
linear system which can be done easily with an LU factorization method since this system
is, in practice, small. Indeed, 2N+1 represents the number of modes left in the truncated
Fourier series given by Eq. (2.1).
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4 The multi-step procedure for the FFP extension

Similarly to [11], we adopt the following three-step procedure for extending the FFP to
full aperture:

Step 1. The given data in this step are the frequency regime ka (a characterizes the di-
mension of the scatterer, and k being the wavenumber), the truncation order of
the Fourier series (see Eq. (2.1)) N, and the number of FFP measurements M. The
value of N depends on ka. Typically, N≈ ka, which means 2ka+1 modes are left
in the truncated series. The FFP data ũ∞ = [ũ∞(θ̂1), ··· , ũ∞(θ̂M)]T are measured
at M points in a given observation sector, as depicted in Fig. 1. Next, apply a
multi-stage strategy to enrich -at each stage- the FFP measurements by only two
additional adjacent values. More specifically, the proposed strategy requires the
following:

Step 1.1. Solve the TV-regularized minimization problem (3.3) using Newton itera-
tion equations (3.4)-(3.5). Proceed as follows:

• Initialize the Fourier coefficient vector c= c(0) and compute the FFP u
(0)
∞

corresponding to c(0).

• For a given µ and β, apply the Newton algorithm to the solution of the
regularized IFP problem given by Eq. (3.3) until convergence/stagnation of
the residual which is the 2-norm of the relative error on the FFP, i.e.

(
M

∑
j=1

|u
(m)
∞ (θ̂j)−ũ∞(θ̂j)|

2

) 1
2

(
M

∑
j=1

|ũ∞(θ̂j)|
2

) 1
2

< ǫ1,

where u
(m)
∞ is the computed FFP at Newton iteration m and ǫ1 is a pre-

scribed tolerance. ǫ1 is typically the noise level in the original data.

• Compute the new FFP and store its values at M+2 observation points.
These points are the ones located at the original M measurements and 2
additional points that are adjacent to the initial ones, as depicted in Fig.
2(a). Note that the values of the original FFP data are replaced by the com-
puted ones. Hence, at the end of this step, the FFP data are enriched by
two new observation points and the original measurements are updated by
the computed ones. Also, store the Fourier coefficients vector denoted by

c[1]= [c
[1]
−N , ··· , c

[1]
0 , ··· , c

[1]
N ]T corresponding to the FFP computed at the last

iteration of the Newton algorithm. We must point out that we have per-
formed several numerical experiments with and without updating the FFP
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Figure 2: Extension process of the FFP in Step 1.

measurements. We found that replacing the data by the computed ones
leads to better reconstruction of the FFP field.

Step 1.2. Repeat the solution procedure described in Step 1.1 where — this time —
the FFP measurements (the reference solution for the Newton algorithm)
are the M+2 values of the FFP computed and stored in Step 1.1, i.e., ũ∞ =
[ũ∞(θ̂1), ··· , ũ∞(θ̂M),ũ∞(θ̂M+1),ũ∞(θ̂M+2)]

T. Now, the stopping criterion of
the Newton algorithm is the 2-norm of the residual at the M+2 observation
points, that is:

(
M+2

∑
j=1

|u
(m)
∞ (θ̂j)−ũ∞(θ̂j)|

2

) 1
2

(
M+2

∑
j=1

|ũ∞(θ̂j)|
2

) 1
2

< ǫ1.
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Then,

• Compute the new FFP and store its values at M+4 observation points.
These points are the ones located at the previous M+2 measurements plus
2 additional points that are adjacent to the previous ones, as depicted in
Fig. 2(b). Hence, the values of the original M+2 FFP data are updated by
the computed ones. Observe that, at the end of this step, the original M FFP
data are updated and enriched by four measurements.

• Store the Fourier coefficients vector denoted by c[2]=[c
[2]
−N ,··· ,c

[2]
0 ,··· ,c

[2]
N ]T

corresponding to the FFP computed at the last iteration of the Newton al-
gorithm.

Step 1.3. Repeat this multi-stage process until its stagnation, i.e., the values of the
Fourier coefficients vector — stored each time — are no longer changing:

||c[m+1]−c[m]||2 =

(
N

∑
j=−N

|c
[m+1]
−N −c

[m]
−N|

2

) 1
2

<ǫ2,

where ǫ2 is a fixed tolerance. Typically, ǫ2 ≈ 10−6. At stagnation, com-
pute the new FFP and store its values in an aperture of 90o, that is ũ∞ =
(ũ∞(θ̂1), ··· , ũ∞(θ̂91)). These values are located in the sector of the original
measurements, as depicted in Fig. 3(a).

Step 2. Repeat the multi-stage procedure described in Step 1 using this time the follow-
ing initial data:

• The number of Fourier coefficients is increased by 2, i.e., N← (N+1).

●
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(a) The initial FFP measurements in Step 2 are
given in a 90o aperture. These data are obtained
at the end of Step 1.

Ω

X
X

X

X

X

X

X

X
X

θ1
^

S

X

X

θ^91
θ^93

θ^92

(b) The computed FFP measure-
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ments located at θ̂1 and θ̂93.

Figure 3: Extension process of the FFP in Step 2.
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• The FFP measurements are the values the computed FFP at the end of Step 1.3.
These measurements are given in an aperture of 90o i.e. M←91 (see Fig. 3(a)).

At stagnation (at the end of Step 2), compute the new FFP and store its values
at 91+2P new observation points (the number of extended FFP measurements
is always even). These points are the ones located in the region of the previous
90o aperture measurements plus 2P additional points that are adjacent to them.
Hence, at the end of step 2, the FFP is computed over an aperture of (90+2P)o

(for P=1, see Fig. 3(b)).

Step 3. The full aperture of the FFP is computed in this step using a Tikhonov regu-
larized pseudo-inversion. More specifically, starting with FFP values computed
and stored at the end of Step 2, i.e. ũ∞ = [ũ∞(θ̂1), ··· , ũ∞(θ̂91+2P)]

T, proceed as
follows:

• First, compute the final values of the Fourier coefficients ĉ=[ĉ−N−1, ··· , ĉ0, ··· ,
ĉN+1]

T by solving the linear system:

ĉ=(A∗A+µI)−1
A∗ũ∞,

where µ is the regularization parameter chosen using a trial and error strategy.

• Then, evaluate the full aperture of the FFP using the Fourier series expansion:

ũ∞(θ)=
N+1

∑
n=−N−1

(−i)n ĉneinθ, θ∈ [0,2π).

Observe that this three-step methodology requires solving mainly (2N+1)×(2N+1) lin-
ear systems which are small-scale systems, since 2N+1 is the number of Fourier modes
in the truncated series. Therefore, these linear system can be easily solved using direct
methods such as the standard LU factorization. Note that the number of these systems
depends however on the number of Newton iterations (typically no more than 10 itera-
tions) and the number of trials — at each Newton iteration — to select the “best” values
of the parameters µ and β (about 40 trials).

5 Illustrative numerical results

We have performed several numerical experiments to assess the effect of the noise level
on the accuracy of the FFP extension when using the proposed three-step procedure
equipped with the exact characterization of the FFP total variation. We have compared
the obtained results to the ones delivered by the method when using a finite difference
(FD) approximation [11]. Because of space limitations, we present the results obtained
when the given data are measured at (a) one observation angle, M=1 (for a backscattering
measurement) and (b) three backscattering observation angles, M=2 (corresponding to
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Table 1: Sensitivity of the 2-norm relative error of the full aperture extended FFP field to the white noise level.
Case of one backscattering measurement (M=1) and ka=1.

Noise level Extension over 360o with
exact JTV(u∞) approximate JTV(u∞)

1% 13.2157 % 11.9970 %
5% 15.5433 % 21.3259 %
10% 16.3817 % 24.7173 %

Table 2: Sensitivity of the 2-norm relative error of the full aperture extended FFP field to the noise level. Case
of a two-degree backscattering aperture (M=3) and ka=1.

Noise level Extension over 360o with
exact JTV(u∞) approximate JTV(u∞)

1% 11.7352 % 12.5250 %
5% 11.4183 % 11.3946 %

10% 12.8643 % 19.3652 %

very few measurements). Note that these measurements are synthetic data corresponding
to the acoustic scattered field by a sound-soft disk-shaped scatterer, that can be computed
analytically [2, 18]. In all experiments, we have set ka= 1 and considered three levels of
white noise (in the 2-norm sense): 1% (low), 5% (medium), and 10% (high). The results
are reported in Figs. 4-5 and Tables 1-2. The following observations are noteworthy:

• In all cases, the proposed procedure is able to reconstruct the full FFP aperture with
an impressive level of accuracy. For example, in the case of high level of white noise
(10%), the procedure delivers full aperture with a relative error of about 16% in the case
of one backscattering measurement, and of about 13% in the case of three backscattering
measurements (see Tables 1-2). Note that such a precision is of a great interest since it
has been demonstrated that one can retrieve the shape of the scatterer when the data
are tainted with a noise level as high as 20% [10]. Furthermore, applying the denoising
procedure suggested in [12] could reduce the level of errors on the reconstructed FFP
field, and therefore may improve the accuracy level.

• The results reported in Tables 1-2 clearly indicate that the proposed three-step proce-
dure when equipped with the exact representation of the FFP total variation outperforms
the formulation adopted in [11], especially if the original measurements are tainted with
a medium or a high noise level. For example, in the presence of a high noise level in the
data (10%), the proposed method reduces the relative error on the full FFP reconstructed
field from 24.7% to 16.3% in the case of one backscattering measurement, and from 19.3%
to 12.8% in the case of three backscattering measurements. In addition, these results tend
to indicate that the proposed procedure is less sensitive to the noise than the method pro-
posed in [11]. However, the difference between the two methods is barely noticeable in
the presence of a very low noise level (less than 1%).
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Figure 4: Sensitivity of the reconstruction
to the white noise level: Absolute value of
the full aperture FFP extension from a one
backscattering measurement (M = 1) and
ka=1.
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Figure 5: Sensitivity of the reconstruction
to the noise: Absolute value of the full
aperture FFP extension from a two-degree
backscattering measurements (M= 3) and
ka=1.
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• The numerical investigation has revealed that, similarly to the method suggested in
[11], Step 1 usually stagnates after reconstructing the FFP field over a 16o-sector, whereas
Step 2 stagnates when the FFP field is extended over a 960-aperture at most. In addition,
unlike the method suggested in [11], the proposed procedure is able to reconstruct the
full aperture with an acceptable accuracy level using Step 1 only, when the FFP data are
measured at one observation angle (one backscattering measurement) with a low noise
level ( 1%), as indicated in Fig. (4) and Table 1.

6 Summary and conclusion

The multi-step procedure proposed in [11] for extending the FFP data has been modified
via the use of the exact representation of the FFP total variation. The numerical investiga-
tion performed in the case where only one or three backscattering FFP measurements are
available revealed that the modified procedure is less sensitive to the noise and clearly
outperforms the original method. In particular, the modified extension procedure im-
proves significantly the accuracy level in the full aperture reconstructed FFP field when
the FFP data are tainted with a noise level larger than 5%. This impressive success in
reconstructing the FFP field over the full aperture from very few and highly noisy mea-
surements has the potential to improve the performance of the existing inverse obstacle
solvers in the case of limited aperture. This may be achieved by applying the proposed
procedure, as a pre-processing step, to enrich the limited aperture data in order to be
used by the considered inverse solver.
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