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Abstract. We simulate the particle transport in a thin film deposition process made
by PVD (physical vapor deposition) and present several models for projectile and tar-
get collisions in order to compute the mean free path and the differential cross section
(angular distribution of scattered projectiles) of the scattering process. A detailed de-
scription of collision models is of the highest importance in Monte Carlo simulations
of high power impulse magnetron sputtering and DC sputtering. We derive an equa-
tion for the mean free path for arbitrary interactions (cross sections) that includes the
relative velocity between the particles. We apply our results to two major interaction
models: hard sphere interaction & screened Coulomb interaction. Both types of inter-
action separate DC sputtering from HIPIMS.

AMS subject classifications: 80M31, 60J20, 65N74, 65C05, 65C35, 65C40
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1 Introduction

The main reason for studying the collision processes of elastic scattering is the need for a
reliable physical description of the interactions between ions and a plasma (background
gas) in high power pulsed magnetron sputtering processes for the creation of uniform,
stoichiometric thin films. MAX-phases experienced a renaissance in the mid 1990s, when
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Barsoum synthesized relatively phase-pure samples of the MAX-phase Ti3SiC2, and dis-
covered a material with a unique combination of metallic and ceramic properties: it ex-
hibited high electrical and thermal conductivity, and it was extremely resistant to oxida-
tion and thermal shock, and so is very attractive for industrial applications like proton
exchange fuel cells (PEFC). These stoichiometries (MAX-phases) are described by the
general formula Mn+1AXn, where M is an early transition metal (Sc, Ti, V, Cr, Zr, Nb,
Mo, Hf, Ta), A is an A-group element (Al, Si, P, S, Ga, Ge, As, Cd, In, Sn, Ti, Pb), and
X is either Carbon and/or Nitrogen. The different MAX stoichiometries are often re-
ferred to as 211 (n= 1), 312 (n= 2). Recent developments have led to a new method of
synthesizing thin films of MAX-phases on a substrate (workpiece): high power impulse
magnetron sputtering (HIPIMS or HPPMS), see [1–4]. The most important ingredient
in sputtering processes is a plasma, i.e., a partially ionized gas, which, at macroscopic
scales, is electrically neutral. If a material body such as a substrate is immersed in a
plasma it will acquire a potential slightly negative with respect to ground. This effect
is known as a floating potential. The physical reason for this is the higher mobility of
electrons than that of ions. Hence, more electrons reach the substrate surface than ions.
A very sensitive quantity in sputtering processes (with respect to the experimental setup:
gas-pressure, temperature, target-material, etc.) is the sputtering yield, which describes
the ratio of atoms ejected from a target surface per incident ion. The sputtering yield
can take almost any value from 0.1 up to 10. To optimize production, one is generally
interested in obtaining values for the sputtering yield as high as possible. In order to
obtain a well defined film stoichiometry at the substrate, one has to take into account
the transport mechanism of the sputtered particles within the plasma. This can be done
either within a macroscopic description of the transport phenomena, i.e., the solution of
the advection–diffusion equation, or at a microscopic scale, via Monte Carlo simulations
of the transport phenomena. This paper deals almost exclusively with the last approach,
in the future, the ultimate goal of our work will be to link both approaches to each other
(this will be presented in future papers).

This paper is organized as follows: In Section 2 we describe the concept of mean free
path and derive, on the basis of the kinetic theory, an appropriate expression for the mean
free path of an external particle (projectile) that is probing an ensemble of target particles
that constitute an ideal gas (background gas). The main modification to standard mean
free paths is to allow of initially moving targets. Section 3 studies, from first principles,
the concept of differential cross sections. In Section 4 we present our Monte Carlo method
based on a pathway model, see [5], and perform several simulations of direct current
(DC) and high power pulsed magnetron sputtering (HIPIMS). At the end, in Section 5,
we summarize our results and discuss perspectives for future work.

2 Collision model: mean free path

The mean free path or average distance between collisions for a gas molecule may be
estimated from kinetic theory. If one assumes the gas consists of hard spheres (non over-



1620 J. Geiser and S. Blankenburg / Commun. Comput. Phys., 11 (2012), pp. 1618-1642

lapping spheres), then the effective collision area is given by

σ=π(d1+d2)
2=πD2. (2.1)

In time δt, the area sweeps out a volume of Vinteraction and the number of collisions can be
estimated from the number of target molecules (nV) that are in that volume

Vinteraction=σvδt. (2.2)

The expression for the mean free path,

λ=
|vproj|δt

VinteractionnV
=

|vproj|δt

πD2vδtnV
=

1

πD2nV
, (2.3)

is a good approximation, but it suffers from a significant flaw—it assumes the target
object’s being at rest, which is of course nonsense, physically. We introducing the relative
velocity between the gas objects

vrel =
√

2v. (2.4)

Here the
√

2 results from the molecular speed distribution of a mono atomic ideal gas
(Maxwell–Boltzmann distribution). We therefore have the expression

λ=
1√

2πD2nV

. (2.5)

The number of molecules per unit volume can be determined from the state equation of
the gas

pV=(1+B1+B2+···)RT. (2.6)

If one assumes an ideal gas (non interacting and non overlapping gas particles) one can
neglect the so called higher virial coefficients (B1+B2+···). Inserting the state equation
for an ideal gas into (2.5), one gets

λ=
(1)RT√

2πD2NA p
. (2.7)

Here R is the gas constant and NA is Avogadro’s number. This is an approximation for
the mean free path of an atom/molecule of an ideal gas. In our problem, however, we
have to calculate the mean free path of an external particle (projectile) which is not a
member of the background gas (ideal gas). This can be done by modifying the average
relative velocity between projectile and target. This is done in the next part.
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2.1 The mean relative velocity between projectiles and targets

The background gas is assumed to be Maxwell distributed in velocity (this is motivated
by the assumption of an ideal gas). Because the background particles are an ensemble
(with statistically distributed velocities) one can just speak of a mean relative velocity
< |vrel |>=< |vproj−vtarget|>, which can be calculated via:

< |vrel |>=
∫ ∫ ∫

V
|vproj−vtarget|Z

(
vtarget

)
dvtarget, (2.8)

where Z is the three-dimensional Maxwell distribution given by

Z
(
vtarget

)
=(A/π)3/2 1

2
√

2
exp

(
−Avtarget

2
)
, (2.9)

with the abbreviation A = Mtarget/2kBT. A complete derivation of the solution can be
found in the Appendix. The result is

|vrel |=

[(
s+ 1

2s

)
erf(s)+ 1√

π
exp

(
−s2

)]

3s
×|vproj|, (2.10)

with s= a
√

A (scalar) and a= |vproj|. We now want to discuss a few special cases.
If the velocity of the projectile is very small, |vproj| ≈ 0, then s ≈ 0 and therefore the

following approximation holds
vrel ≈vtarget. (2.11)

If the target objects are identical to the projectile objects (same mass and same mean
velocity), then the following limit holds

|vrel |≈1.41|vtarget |, (2.12)

which gives the factor
√

2≈1.41 and leads to the mean free path of an element of a mono
atomic ideal gas (as expected). However, the general expression for the mean free path
of a projectile probing into an ideal gas with pressure Pgas and temperature T is given by

λproj =
3

4π

s[(
s+ 1

2s

)
erf(s)+ 1√

π
exp(−s2)

] kBT
(

Rion+Rtarget

)2
Pgas

. (2.13)

There are a few things to say about this expression. First, the main assumption that the
background gas (ensemble of target particles) is an ideal gas, is valid only within the high
vacuum regime, i.e., small target density. Second, the interaction between the projectile
and target atoms are assumed to be of hard sphere type, i.e., purely geometrical. If the
projectile is a free particle between the interactions, its Hamilton function is

H=
p2

2Mproj
=E. (2.14)



1622 J. Geiser and S. Blankenburg / Commun. Comput. Phys., 11 (2012), pp. 1618-1642

In this case one can easily compute a= |vproj|=
√

2E/Mproj.. There follows immediately

s= a
√

A=

√
E

kBT

√
Mtarget

Mproj
. (2.15)

In appropriate units (atomic units) the scalar s is

s=107.7242

√
E[eV]

T[K]

√
Mtarget

Mproj
. (2.16)

Therefore the mean free path in units of cm is given by:

λproj[cm]=
s[(

s+ 1
2s

)
erf(s)+ 1√

π
exp(−s2)

] · 3.297cm·T[K]
(

Rion[pm]+Rtarget[pm]
)2

Pgas[mbar]
. (2.17)

In [2], a formula for the mean free path of ions surrounded by an ideal gas of pressure
par is used and given by

λ[cm]=
4.39cm·T[K]√(

1+ Mion
Mtarget

)(
rion[pm]+rtarget [pm]

)2
ptarget[mbar]

. (2.18)

Table 1 shows the mean free path for ions at E = 3 eV and T = 300K and gas pressure
p=4×10−3 mbar.

Table 1: mean free paths for the different sputter species.

Ion Eq. (2.17) Eq. (2.18)
carbon (12) 12.96 cm 15.18 cm
silicon (28) 7.52 cm 7.71 cm

titanium (48) 5.03 cm 4.55 cm

In a sputtering process, the ions obey a kinetic energy distribution as well as an
angular-distribution at the target. Because of different transport mechanisms, an ion
loses to some extent its initial kinetic energy. The ions of a sputter process can there-
fore be classified into three groups. First, the ballistic group, such that any member of the
ballistic group travels from the target to the substrate in a straight line because no colli-
sions occur. The transition group is characterized by the observation that the path of the
ion is not a straight line and therefore the ions of this group undergo some collisions but
still retain some of their initial energy. The last group is the thermalized or diffusive group,
where any member of this group has completely lost its initial kinetic energy. The motion
of such an ion is therefore described by a random walk. The typical distances between
the target and the substrate are of the order of 5–15 cm. Hence, at low argon pressures
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Figure 1: Mean free path of projectiles @ argon targets (p=4×10−3 mbar and T=300 K).

we can classify carbon as more or less ballistic, and silicon and titanium as transition or
thermalized. One can also see that the formula used by [2] and [4] is quite a good approx-
imation, although it lacks an energy dependency of the mean free path with respect to
the ion energy. There have been several attempts to achieve an energy dependency of the
mean free path. But most of them are more or less physical consistent. For example, in
paper [6], a formula is used, whereby the energy dependency is obtained by modifying
the naive mean free path by multiplying the naive formula by the ion energy. This is of
course unphysical because it implies a zero mean free path at very low ion energies and
consequently the associated cross section is infinite. We hope that our formula for the
mean free path will be positively accepted within the community and might help imple-
ment a realistic description of the interactions between particles. In Fig. 1 one can see the
results from Eqs. (2.16) and (2.17) with respect to the ion energy E (kinetic energy) at an
argon pressure of p=4·10−3 mbar and a constant temperature of T= 300 K, in which the
following constants (see Table 2) were used.

Table 2: Atomic parameters for the different sputter species.

element atomic mass [u] atomic radius [pm]
Ar 39.948 71
C 12.0107 67
Si 28.0855 110
Ti 47.867 150

One can see that the mean free path increases with increasing kinetic energy of the
ion and that the mean free path is almost constant (i.e., the classically obtained mean
free path) at energies above 2 eV. The likelihood of ions to scatter off argon targets is not
constant, because if the ions scatter off an target it loses some energy and therefore its
mean free path becomes smaller. This iterative procedure continues. It is therefore of the
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highest importance in situations in which one has to deal with multiple scattering, as is
the case if the sputter-target and the substrate.

3 Collision model: Differential cross section & angular

distribution

With the help of the mean free path λ one is able, within a Monte Carlo approach, to
determine the collision frequency. But several questions are unanswered by a knowledge
of the mean free path. If one is interested in a detailed description (kinematic) of the
scattering process, one has to work out the differential cross section. We propose two
descriptions; both are, within their limits, applicable. In the first model, we assume the
target particle is initially at rest, whereas the second model will loosen this restriction.

3.1 Scattering with initially fixed targets

If the projectile velocity is much higher than the target velocity one can assume the tar-
get atoms are initially at rest. Describing the scattering process with the center of mass
system (CMS) simplifies the calculations. The theoretical analysis of such a scattering
process can be found in almost any text book on classical mechanics such as [7]. We use
spherical coordinates, wherein θ,φ describes the coordinates in the laboratory and Θ, Φ

are the coordinates in the CMS. The ratio

ρ=
Mproj

Mtarget

vt,1

vrel,1
(3.1)

can be used to connect the scattering angles in the laboratory and the CMS (radial sym-
metric scattering potential)

cosθ=
cosΘ+ρ√

1+2ρcosΘ+ρ2
. (3.2)

The transformation from CMS coordinates to laboratory coordinates brings in the Jaco-
bian as an extra factor:

σ(θ)=σ(Θ)
sinΘ

sinθ

∣∣∣∣
d(Θ,Φ)

d(θ,φ)

∣∣∣∣. (3.3)

Because Φ=φ the Jacobian reduces to

σ(θ)=σ(Θ)

∣∣∣∣
dcosΘ

dcosθ

∣∣∣∣. (3.4)

With the help of Eq. (3.2) one gets

σ(θ)=σ(Θ)

(
1+2ρcosΘ+ρ2

)3/2

1+ρcosΘ
. (3.5)
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The energy transfer from projectile to target (elastic scattering) is given by:

∆E=
Eproj,new

Eproj,old
=

1+2ρcosΘ+ρ2

(1+ρ)2
. (3.6)

The differential cross section is however not exactly the scattering angle distribution,
because we have to remember that the angular distribution is given by an extra factor of
sinθ followed by an integration over φ, i.e.,

σtotal =
∫ π

0

∫ 2π

0

sinθσ(θ)

4π
dφ

︸ ︷︷ ︸
probability distribution

dθ. (3.7)

3.1.1 Hard sphere collision

In order to model the transport mechanism within a DC sputtering process, one recog-
nizes experimentally that most of the background targets as well as the sputter particles
are not ionized and therefore it seems absolutely reasonable that the interaction of both
projectile and targets are purely geometrical and can be modeled by a hard sphere inter-
action. The scattering angle ΘCMS in the center of mass system of a binary collision can
in generally be calculated for any given interaction potential V(r) with the help of

ΘCMS =π−2
∫ ∞

r0

(rφ(r))−1
dr, (3.8a)

φ(r)=

(
r2

p2
−1− r2V(r)

1/2µv2
rel p2

)
, (3.8b)

where µ is the reduced mass in the CMS system, i.e., µ=(M1M2)/(M1+M2) and vrel is
the relative velocity of the scattering partner. p is called the impact parameter. In Fig. 2
one can see the scattering angle θ in the laboratory of several incident projectiles at argon
atoms (held at rest) and the maximal scattering angle θmax in the laboratory with respect
to the mass ratio ρ. In the case of a hard sphere potential, i.e.,

V(r)=

{
∞, for r<R,

0, for r≥R,
(3.9)

the integral can be computed analytically and the result is

ΘCMS =2cos−1(z). (3.10)

Here we have used the dimensionless parameter z= p/pmax = p/R with R=R1+R2 the
radius of interaction. The impact parameter p is chosen to be uniformly distributed be-
tween 0 and pmax, i.e., z ∈ U[0,1]. In Fig. 2 one can see the results from single binary
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Figure 2: Results from one hard sphere collision (targets initially at rest).

collisions for the sputter species C, Si, and Ti within the framework of hard sphere colli-
sions. One can see that as long as the projectile mass is smaller than the target mass all
scattering angles are allowed. However, this changes if the mass ratio becomes greater
than 1. In this case only a cone of scattering directions is allowed, and the opening angle
of the cone decreases with increasing mass ratio. In the case of titanium projectiles at ar-
gon targets, only scattering angles between 0 and θmax≈60 degrees are allowed. Titanium
projectiles are therefore subjected to forward scattering and the cone angle is around 120
degrees. The above approach is quite satisfactory if one assumes highly energetic pro-
jectiles (with respect to target velocity) and the suppression of multi-scattering events. A
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proper description of the kinematics should include the random motion of the target pro-
jectiles and therefore an energy dependency for the differential cross section. The total
cross section has to be unchanged, because the total area per target cannot depend on the
relative velocity of the target and projectile, because the total cross section is an intrinsic
quantity.

3.1.2 Screened Coulomb collision

Now we want to investigate the kinematics of the scattering process where we assume a
Coulomb-like interaction between the sputter particles and the gas atoms (again neglect-
ing interactions between the sputter particles). This is motivated by the experimentally
observed fact that in high power impulse magnetron sputtering processes, a fraction of
the background gas as well as the sputtered particles are ionized and consequently the
interaction model should include long range interactions due to electrical repulsion be-
tween both particles (ions). Our method of investigation is quite the same as in the previ-
ous (hard sphere) collision model. First we will specify the interaction potential and after
that we compute the scattering angle in the CMS system. With the help of the scattering
angle in the CMS we can compute the scattering angle in the LAB frame and also the
energy loss. We have chosen the following screened interaction potential:

V(r)=
Z1Z2k

r
exp(−r/a). (3.11)

Here Z1 and Z2 are the atomic numbers of the collision partners, r is the radial distance
between both partners, k is a constant (k = 1.44MeV fm) and a is the screening length
given by

a=
a0√(√

Z1+
√

Z2

) , (3.12)

a0=0.53·10−10m being the first Bohr radius of the hydrogen atom. For any given scatter-
ing potential, the scattering angle in the CMS system can be computed with the help of
Eq. (3.8). As we mentioned earlier, the integral can be solved analytically in the situation
of a hard sphere interaction and a pure Coulomb interaction. However, we have chosen a
screened Coulomb potential and we must therefore evaluate the integral numerically. In
order to reduce round-off errors, we reformulate the integral (this procedure is motivated
by [8]):

ΘCMS =2Arccot

(
2χ2

exp(−1/z0)

)
+2χ0χ2

∫ z0

0

(
y1/2

0 (z)−y1/2(z)
)

dz. (3.13)

Here we made use of

χ0 :=
b

a
=

Z1Z2

√(√
Z1+

√
Z2

)

ECMS[eV]
·27.17, (3.14a)
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χ2 :=
p

b
=

p[10−10m]ECMS[eV]

Z1Z2
· 1

14.4
, (3.14b)

ECMS =

(
(1+1/2s)erf(s)+1/

√
πexp

(
−s2

))2

(
1+

Mproj

Mtarget

)
9s2

·Eproj, (3.14c)

y0(z)=1−(χ0χ2)
2z2−χ0zexp(−1/z0), (3.14d)

y(z)=1−(χ0χ2)
2 z2−χ0zexp(−1/z), z= r/a. (3.14e)

Our procedure is then as follows: for a given impact parameter p in units of fm we can
solve the integral numerically for every sputtering species. Because this is very time con-
suming we have done this for several impact parameters and every species before the
simulation and we have stored the results in a data file which is then used during the
simulation. During the Monte Carlo simulation an impact parameter is chosen from a
uniform distribution between zero and pmax whereby we have chosen pmax =4·10−10 m,
because for an impact parameter greater than pmax the scattering angle in the laboratory
system is in general smaller than 0.1 degree. With the help of the numerical integration
of Eq. (3.8) we can compute the scattering angle in the CMS and therefor compute the
scattering angle in the laboratory system. Recall, that here we choose the impact parame-
ter to be uniformly distributed in the CMS system and not the scattering angle (as we did
in the hard sphere scattering). Recall also that we have chosen an appropriate relative
velocity between projectiles and targets (the derivation can be found in the Appendix).
In Fig. 3 one can see the scattering angle of several species with respect to a screened
Coulomb interaction potential. Again, all scattering angles between zero and 180 degree
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Figure 3: Results from the screened Coulomb collision model under the assumption of fully ionized argon gas
particles and simply ionized projectile particles.



J. Geiser and S. Blankenburg / Commun. Comput. Phys., 11 (2012), pp. 1618-1642 1629

are possible for projectiles with a mass smaller than the target mass. For projectiles with a
mass greater than the target mass there exists a maximum scattering angle and therefore
the scattering occurs only with an scattering cone of finite opening angle, i.e., forward
scattering in the laboratory system will be preferred for titanium. In Fig. 3 one can see
the functional dependency of the scattering angle in the laboratory stem with respect
to the impact parameter as well as the relative probability distribution of the scattering
angle θLAB in the laboratory system.

4 Monte Carlo simulations

In Fig. 4 one can see the geometry of the simulated sputter-deposition chamber.

4.1 Sputtering from target

Sputtering from a circular planar magnetron causes the formation of a race-track in the
target (see Fig. 4). The profile of the race-track is approximated by a Gauss distribution:

P(R)=
1

σ
√

2π
exp

(
− R−µ

2σ2

)
.

The radius of the experimental race-track is 7.5 mm (which is used for the mean µ of the
Gauss distribution) and the width of the race-track is 5 mm (from which the standard
deviation is calculated to be 3σ=2.5 mm).

Figure 4: The chosen geometry of the simulated sputter-deposition chamber.
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Table 3: Input parameter used to simulate the sputtering process from the compound target.

atom lattice binding energy [12] [eV] surface binding energy [eV]
carbon 281 0.5
silicon 99 0.5

titanium 485 0.5

4.2 Angular distribution

The initial distributions of out-coming particles from the sputter material is obtained by
using the TRIM Monte Carlo code [10]. We used the latest version of the code (TRIM 2008)
in order to obtain the initial angular distribution of the sputtered particles, the sputtering
yields, as well as the energy distribution. We modeled our compound target as a one
layer material with specific parameters given in Table 3. To have more a realistic angular
distribution of the light elements (e.g. C (carbon)), we have also taken into account the
dynamic variations in the surface composition. We compared the results with TRIDYN
(dynamic TRIM), based on the low concentration of C, and did not see any different
results with carbon. It should be stated, that studies on comparison the results with
TRIDYN are done in [11], where they obtain differences in the angular distributions of
carbon.

For the sputtering process we used a beam of monoenergetic argon ions approaching
the target perpendicularly to its surface with an energy of 500 eV. Because of the relatively
low energy of the argon atoms the sputtering process is a surface process.

4.3 Ionization rates and ion energy distribution

The ionization rates of sputtered particles are very low, and thus no influence on the
particle distribution is assumed. But in contrast, the particle’s energy seems to be of high
importance. Unfortunately, until now no experimentally obtained energy distribution for
our compound target (Ti3SiC2) is available. We therefore used the TRIM-code in order
to set up the initial conditions at the sputter target. In Fig. 5 one can see the ion energy
distribution, which is obtained by TRIM. One can see that most of the ions are at energies
close to 3 eV. In order to simulate the ion transport it is necessary to calculate the velocity
of the ions. From

E=H=
p2

2M
=

1

2
Mv2,

it follows that

v=

√
2E

M
. (4.1)

The energy of the ions is given in units of electron volts (eV) and the mass of the ions
is given in atomic units (u). Therefore one can compute the velocity in units of cm per
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Figure 5: Simulated energy and angular distribution of the sputtered species at the target by using the TRIM-
code. One can see that most of the sputter particles have energies around 3–5 eV. The angular distribution is
an over-sine distribution. Here we used a monoenergetic beam of argon ions impacting perpendicularly to the
target surface with an energy of 500 eV and constant surface binding energies of the sputtered particles of 0.5
eV.

second by using

v=

√
2E[eV]

m[u]
·9.824·105 =v[cm/s]. (4.2)

In two spatial dimensions, one has two velocity components. φ0 is the direction angle of
the ion (see angular distribution of the ions) and the velocity components can be calcu-
lated by

vx =v·cos(φ0), (4.3)

vy=v·sin(φ0). (4.4)

Now, we want to apply our two interaction models to DC and high power impulse
sputtering for Ti3SiC2. In general if several independent interaction mechanism can oc-
cur, the mean free path is not an additive quantity, but in contrast the total cross section
is an additive quantity. In order to reduce the computational effort, we decided to use
an event-driven Monte Carlo method in contrast to the usually used time-driven Monte
Carlo method. It is therefore necessary to determine when the next interaction will occur.
If the velocity (v) and the mean free path (λ) of the particle are known, one can compute
the collision frequency τ by using

τ=
v

λ
=

√
v2

x+v2
y

λ
. (4.5)

With the help of the collision frequency one is able to compute the time interval until the
interaction occurs

δt=− log(r)

τ
. (4.6)
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Figure 6: Left: Single pathway model and right: Multi pathway model (Christie 2005).

Here r is a random number from a uniform distribution between zero and one. Instead of
simulating the trajectory of all particles in a Monte Carlo run with a fixed time step, one
can use the above mentioned formula to adjust the time step. The strategy is as follows:
one calculates the time interval δt for every particle (except the background particles)
within a Monte Carlo run (trial), and finds the minimum value. The particle related to
the minimum value of δt will first undergo an interaction. The Monte Carlo time step
is set to this minimum value (this makes it an event driven MC). After the time step,
the specific particle will undergo the interaction, and all other particles just move along
their specific trajectory, i.e., in the absence of any external forces the trajectory is just a
straight line (this is motivated by the fact the even if external fields are set up, inside the
plasma the particles will behave as if they were free, due to the electric conductance of the
plasma). If an interaction with the background gas (argon) occurs, we assume a uniform
impact parameter distribution in the center of mass system (CMS) between the ion and
the background gas. We first describe the simulations of DC sputtering; thereafter the
simulations concern high power impulse magnetron sputtering. The several interaction
processes can be put into an abstract interaction model (the pathway model, see [5]) that
binds the interaction parameters together. A schematic drawing can been seen in Fig. 6.

4.4 DC sputtering

In DC sputtering with low direct currents one can use the elastic hard sphere interaction
to model the transport phenomena at the microscopic scale.
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Table 4: Experimental setup parameter concerning the first experiment.

Parameter Value
Temperature (T) 300 K

Ar-pressure (pAr) 4·10−3 mbar
S-T-distance (d) variable from 1 cm to 24 cm

Table 5: Experimental setup concerning the second experiment.

Parameter Value
Temperature (T) 300 K

Ar-pressure (pAr) 4·10−3 mbar
S–T distance (d) variable from 1 cm to 24 cm

4.4.1 First experiment: Only hard sphere interaction

In Fig. 7 the results of 100,000 Monte Carlo events are shown, in which we used the
experimental setup parameters in Table 4.

4.5 High power impulse magnetron sputtering

In HIPIMS one can assume that at least a fraction of particles (sputter particles as well
as target particles) are ionized. Unfortunately, there is no specific relation between pulse
duration and/or pulse height and the percentage of ionized particles. The next results are
therefore very academic. In our first experiment concerning HIPIMS we assume that all
gas particles and sputter particles are simply ionized. This is of course a realistic property
for the gas particles (argon) but not for the sputter particles.

4.5.1 Second experiment: Only Coulomb interaction

If one assumes all sputter particles and all gas particles are at least simply ionized, then
the interaction is completely described by the Coulomb or screened Coulomb interac-
tion. For sake of simplicity, we assume only simply ionized particles. The results from
Monte Carlo simulations can be seen in Fig. 8 whereby we used the experimental setup
parameters in Table 5.

4.5.2 Third experiment: Mixed interactions

If one assumes the sputter particles consist of ionized as well as neutral atoms two inter-
actions with the background gas can occur: hard sphere collisions if one of the collision
particles is neutral, and Coulomb interactions if both collision particles are at least simply
ionized. We assume the particles are only simply ionized and therefore we have chosen
the following (see Table 6) effective atomic numbers Ze f f with respect to the Slater rules
in atomic physics.
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Left: registered Monte Carlo events at the workpiece and right: stoichiometric composition at the workpiece
for several target–substrate distances in cm in which we assumed a pure hard sphere interaction between
the sputter particles and the gas particles.

Figure 7: Results from the first experiment.
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Left: Registered Monte Carlo events at the workpiece and right: stoichiometric film composition at the
workpiece for several target–substrate distances in cm in which we assumed a pure Coulomb interaction
between the sputter particles and the gas particles (simple ionized species). One can easily see the effect
of the two sputter sources on the stoichiometric film composition at small substrate–target distances. This
effect smears out at far distances.

Figure 8: Results from the second experiment.
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Table 6: Calculated effective atomic numbers by using the Slater rules.

atom (ionized) electron configuration Ze f f

6C+ (1s2),(2s22p1) 6−2.75=3.25

14Si+ (1s2),(2s22p6)(3s23p1) 14−9.85=4.15

22Ti+ (1s2),(2s22p6),(3s23p63d1),(4s2) 22−19=3

18 Ar+ (1s2),(2s22p6),(3s23p5) 18−11.25=6.75

Table 7: Experimental setup according the third experiment.

Parameter Value

Temperature (T) 300 K

Ar-pressure (pAr) 4·10−3 mbar

S-T-distance (d) constant 5 cm

percentage of ionized carbon 30% (5–10 %)

percentage of ionized silicon 30% (20–30 %)

percentage of ionized titanium 30% (50–90 %)

percentage of ionized argon variable from 0% up to 100%

In Fig. 9 one can see the results from our simulation in which we used the following
(see Table 7) experimental setup parameters, (we do not have to much difference between
the higher ionizations).

The results from the Monte Carlo simulation with several ionization degrees of argon
atoms indicates that the ionization degree plays almost no role for our experimental setup
parameter. All results show a dominance of titanium atoms at far distances from the tar-
get axis at the substrate. The most reliable member of the stoichiometry is again silicon.
One can easily see that the effect of the ionization degree of argon atoms is suppressed
due to the low ionization degree of the sputter particles. There are several experimentally
obtained indications that the ionization degree of the sputter particles is not the assumed
one, but particle dependent (electronic structure) as well as particle energy dependent.
Therefore, further investigations concerning the ionization degree of the sputtered par-
ticles as well as the argon atoms are important and will be the subject of future paper.

4.5.3 Link to the pathway model & convergence test

In the following section we want to investigate the link with the pathway model [5] and
our Monte Carlo simulations. The most important parameter in the pathway model of
the transport phenomena is the loss factor. First predictions (rough estimations) can be
made by inspection of the mean free paths for the sputter species. Carbon has almost
the largest mean free path and therefore it will be just slightly affected by the interaction
mechanism with the background gas. In Fig. 10 one can see our results for the loss factor
of several sputter species and the different interaction models, i.e., pure hard sphere and
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Left: registered Monte Carlo events at the workpiece and right: stoichiometric composition at the work-
piece for several ionization degrees of argon in which we respected mixed interactions between the sputter
particles and the gas particles (simple ionized species).

Figure 9: Results from the third experiment.
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First row left: Loss factor due to interaction with walls for pure hard sphere interaction and first row right:
Loss factor due to thermalization. Second row left: Loss factor due to interaction with walls for pure
screened Coulomb interaction and second row right: Loss factor due to thermalization. Third row left:
Loss factor due to interaction with walls for pure hard sphere interaction and third row right: Loss factor
due to thermalization with respect to the substrate–target distance (S–T distance). Fourth row left: Loss
factor due to interaction with walls for pure screened Coulomb interaction and fourth row right: Loss factor
due to thermalization with respect to the substrate–target distance (S–T distance).

Figure 10: Link to the pathway model (loss factor).
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pure screened Coulomb (described by the first two experiments). One can easily see that
the values for the loss factor are almost constant after some equilibrium trials. This indi-
cates a way of observing the convergence behavior of our Monte Carlo algorithm. Thus,
with the help of the loss factor we can estimate the minimum Monte Carlo trials within
a simulation and conclude from the equilibrium tendency that our implementation was
done correctly. It is important to remember that the equilibrium MC time (number of MC
trials) for the loss factor differs from Monte Carlo run to Monte Carlo run even with the
same experimental setup parameter. We see that 50,000 Monte Carlo trials (events) are
almost enough to equilibrate the system, i.e., reach convergence. One can also see the
sensitivity of the loss factor with respect to different interaction mechanism between tar-
get atoms and projectiles. The loss factor for Coulomb interactions in general is smaller
than the loss factor for hard sphere interactions.

5 Conclusion

So far, we have developed an appropriate Monte Carlo method based on a pathway
model for interactions between sputtered particles and a background gas, assumed to
be an ideal gas. We have set up a novel equation for the mean free path which incorpo-
rates all physical parameter such as temperature and gas pressure, but most importantly
it respects the movement of the target atoms, i.e., the argon particles. With the help of
our theoretical investigations we performed several Monte Carlo simulations for direct
current (DC) and high power impulse magnetron sputtering (HIPIMS). The results from
our simulations are qualitatively in agreement with experimentally obtained film com-
positions at the substrate as in the target composition. We were thus able to show that
in DC sputtering the main interaction between the sputter particles and the background
gas is of hard sphere type, i.e., purely geometrical. In HIPIMS a mixture of hard sphere
and Coulomb interaction takes place. Unfortunately, the lack of experimentally obtained
data concerning the ionization degree of the sputtered particles and the background gas
forbids a direct comparison between simulation and experiments. In the future we hope
to extract the ionization degree from first principles or by data fitting to experimentally
obtained results. The effect of moving targets on the differential cross section, i.e., the
angular distribution of sputtered particles, cannot be neglected. The effect of initially
moving targets (with respect to the Maxwell velocity distribution) is especially impor-
tant within the thermal group, i.e., with an energy ratio of the target and projectile of
about one. Carbon and silicon are almost not members of the thermal group (because of
their large mean free path). But titanium is a member of the thermal or diffusive group.
In the case of a pure hard sphere interaction between argon and titanium, almost all scat-
tering angles in the laboratory system can occur (in contrast to the initially resting target
approach). The calculation and implementation of the initially moving target approach
is in progress and includes an appropriate Monte Carlo Markov chain method.
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Appendix: Derivation of the mean relative velocity

Within the framework of statistical mechanics, the mean value of an observable O can be
computed via

<O>=

∫ ∫
O(q,p)Z(q,p;H)d3Nqd3N p∫ ∫

pZ(q,p;H)d3Nqd3N p
. (A.1)

With q the canonical coordinates and p the canonical momenta of an N-particle system,
i.e., with Hamiltonian H(q,p) and obeying Hamiltonian’s equations of motion. The prob-
ability distribution Z depends on the total Hamiltonian H of the system. Within the
canonical ensemble one has the following relation

Z=exp

(
−H(q,p)

kBT

)
. (A.2)

With p = mv and the assumption of an ideal gas, the Hamilton function for the back-
ground gas is constructed by means of the kinetic energies of the gas particles

H=
N

∑
i=1

p2
i

2mi
. (A.3)

If O=O(p) then the coordinate integration gives a volume factor in the numerator and
denominator and therefore no contribution. The momentum integration can be done
immediately and results in Gaussian integrals. The result for the mean relative velocity
is therefore given by

<O=vrel >=
∫ ∫ ∫

V
|vproj−vtarget|Z̃

(
vtarget

)
dvtarget, (A.4)

with Z̃=(A/π)3/2 1
2
√

2
exp(−Av2) the reduced partition function (Maxwell distribution)

and A=Mtarget/2kBT. By substituting u=vtarget−vproj and du=vtarget one gets

< |vrel |>=
∫ ∫ ∫

V
|u|exp

(
−Av2

proj−2Avproju−Au2
)

du

=
(A/π)3/2exp

(
−Avproj

2
)

2
√

2︸ ︷︷ ︸
=:C(a,A)

∫ ∫ ∫

V
|u|exp

(
−2Avproju−Au2

)
du. (A.5)
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By using spherical coordinates with r = |u|, a= |vproj.| and vproj ·u= |vproj|·|u|cosθ one
gets

< |vrel |>=C(a,A)
∫ ∞

0

∫ 2π

0

∫ π

0
rexp

(
−Ar2−2A·a·r·cosθ

)
r2sinθdθdφdr

=2πC(a,A)
∫ ∞

0
r3
∫ π

0
exp

(
−Ar2−2Aarcosθ

)
sinθdθdr. (A.6)

The double integral on the right hand side can be evaluated and its solution is

∫ ∞

0
r3
∫ π

0
exp

(
−Ar2−2Aarcosθ

)
sinθdθdr

=

(
A
π

)3/2
exp

(
−a2 A

)

2
√

2




2
√

Aa+
(
2Aa2+1

)
exp

(
a2 A

)√
πerf

(
a
√

A
)

4aA5/2


. (A.7)

After some simplification the mean relative velocity is

< |vrel |>=

(
2a+ 1

Aa

)
erf
(

a
√

A
)
+

2exp(−a2A)√
A
√

π

4
√

2
. (A.8)

Here we made use of the scalar s := a
√

A.
With a= |vproj| the final result for the mean relative velocity between projectiles prob-

ing into a mono-atomic ideal gas is given by

< |vrel |>=

[(
s+ 1

2s

)
erf(s)+ 1√

π
exp

(
−s2

)]

3s
×|vproj|. (A.9)
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