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Abstract. In low speed flow computations, compressible finite-volume solvers are
known to a) fail to converge in acceptable time and b) reach unphysical solutions.
These problems are known to be cured by A) preconditioning on the time-derivative
term, and B) control of numerical dissipation, respectively. There have been several
methods of A) and B) proposed separately. However, it is unclear which combina-
tion is the most accurate, robust, and efficient for low speed flows. We carried out a
comparative study of several well-known or recently-developed low-dissipation Euler
fluxes coupled with a preconditioned LU-SGS (Lower-Upper Symmetric Gauss-Seidel)
implicit time integration scheme to compute steady flows. Through a series of numer-
ical experiments, accurate, efficient, and robust methods are suggested for low speed
flow computations.
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1 Introduction

In recent years, compressible finite-volume methods (FVMs) have been used in a wide
spectrum of flow regimes, including low speed flows in which compressibility plays no
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significant role. The application of compressible flow solvers to low speeds has been mo-
tivated by the fact that users need only slight modifications to the existing (compressible)
codes for computations of such low speed flows, and that this extension has the following
potential applications of engineering interests:

1. Analysis of flows involving both low speeds (M < 0.1) and high speeds (M≈ 10 or even 100),
e.g., a cavitating flow in a rocket engine [1, 2].

2. Aeroacoustic analysis in low speed flows [3].

When applied to low speed flow computations, however, compressible solvers are known
to a) fail to converge in acceptable time (stiffness problem), and b) reach unphysical
solutions. These problems are known to be cured by A) preconditioning on the time-
derivative term so that acoustic wave speed is properly scaled, and B) control of dissipa-
tion in numerical fluxes, respectively. There have been several methods of A) [4, 5] and
B) [6–9] proposed separately. However, it is unclear which combination is the most accu-
rate, robust, and efficient in low speed flows. It is difficult to prove this mathematically
because, for instance, the amount of dissipation added to the computation is dependent
not only on the adopted methods, but on the computational grid, flow conditions, and so
forth. If a combination of methods A) and B) has insufficient dissipation for the given
conditions, the calculation will suffer from numerical oscillation/instability, and may
eventually diverge. If the method is too dissipative, on the other hand, its accuracy is
significantly lost.

Therefore, in the present paper, we pursue an experimental approach by performing a
comparative study of different methods of A) along with B) for different grids and differ-
ent flow conditions of low speeds. We will pay particular attention to several well-known
or recently-developed low-dissipation Euler fluxes coupled with a preconditioned LU-
SGS (Lower-Upper Symmetric Gauss-Seidel) implicit scheme [10, 11] in the framework
of steady flows. Similar comparisons have already been conducted by others (in [12],
for example), but their discussions were limited to only a few methods/cases and lacked
concrete conclusions. In this study, through an extensive series of numerical experiments,
accurate, efficient, and robust methods among 14 different approaches will be suggested
for low speed flow computations.

The paper is organized as follows: in Section 2, numerical methods and flow condi-
tions adopted here will be described. Then, in Section 3, numerical results and discus-
sions will be presented from a viscous, moderate speed case (Case 1: M∞=0.5, Re∞=5,000
in 3.1), inviscid, low speeds cases (Cases 2A-2C: M∞ = 0.1−0.001 in 3.2), and a viscous,
low speed case (Case 3: M∞=0.01, Re∞=2,000 in 3.3). CFL effects will also be discussed in
3.4. These computations will be conducted with global time stepping so that discussions
therein could be applied (or at least referenced) to unsteady flow computations with the
use of dual-time stepping in which temporal convergence is attained in each time step [4]
(not actually covered in this work, though). On the other hand, it is natural to use local
time stepping technique if one is interested in steady solutions. Thus, we will address
the local time stepping issue as a separate investigation in 3.5. Features of each method
will be summarized in 3.6, and Section 4 will conclude the present article.
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2 Numerical methods and flow conditions

2.1 Governing equations

The governing equations are the compressible Navier-Stokes equations as follows, in-
cluding the preconditioning matrix Γ of Weiss and Smith [4]. Γ is given in the Appendix,
and it is simply eliminated in the non-preconditioned form. In general, conservative vari-
ables are commonly used in compressible flow solvers and occasionally it is not straight-
forward to change variables used in the whole code (our code is not an exception). Thus,
we kept using conservative variables Q as dependent variables [8, 13], instead of using
primitive ones q, although some drawbacks of using conservative variables were pointed
out in [14].

Γ
∂Q

∂t
+

∂Fk

∂xk
=

∂Fvk

∂xk
, (2.1a)

Q=





ρ
ρul

ρE



, Fk =





ρuk

ρuluk+pδlk

ρukH



, Fvk =





0
τlk

umτmk+κ ∂T
∂xk



, (2.1b)

τlk =µ
( ∂ul

∂xk
+

∂uk

∂xl

)

−
2

3
µ

∂un

∂xn
δlk, (2.1c)

where ρ is the density, ui velocity components in Cartesian coordinates, E total energy, p
pressure, H total enthalpy, i.e., H = E+p/ρ, and T temperature. The working gas is air
approximated by the calorically perfect gas model with the specific heat ratio γ=1.4. The
Prandtl number is Pr = 0.72. The molecular viscosity µ and thermal conductivity κ are
related as κ = cpµ/Pr, where cp is specific heat at constant pressure.

we will address the local time stepping issue as a separate

s

 in 

Figure 1: Schematic of cell geometric properties.

Eq. (2.1) is solved with a finite-volume code, and can be written in the delta form as:

Vi

∆ti
∆Qi+Γ

−1
i Σj(Fi,j−Fvi,j)Si,j =0, (2.2)

where Vi stands for the volume of the cell i, ∆ti the (local) time step, ∆Qi change of con-
servative variables in time, Fi,j and Fvi,j the inviscid (Euler) and viscous fluxes through
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the cell-interface Si,j (which separates the cell i and its neighbor cell j), respectively (see
Fig. 1). Details are explained below.

2.2 Numerical methods

The computational code employed here is ”LS-FLOW”: JAXA’s in-house, unstructured,
compressible Navier-Stokes solver for arbitrary polygons. LS-FLOW has many options
for spatial reconstruction and temporal evolution. Included in Table 1 are only the meth-
ods adopted for the present study. The second order of spatial accuracy is guaran-
teed [18].

The Euler fluxes and the implicit schemes are summarized in Table 2. Viscous fluxes
are computed by using Wang’s second-order method [17]. Formulation of each Euler flux
is briefly introduced below, followed by that of time evolution methods (for details, see
the original literature).

Table 1: Numerical methods.

Governing Equations Compressible Euler/Navier-Stokes Equations
Spatial Discretization Cell-centered FVM

Gradients Green-Gauss Method [15, 16] (without slope limiter)
Spatial Reconstruction Inviscid Term see ”Euler Fluxes” in Table 2

Viscous Term Wang [17]
Temporal Evolution see ”Implicit Schemes” in Table 2

Table 2: Euler fluxes and implicit schemes.

Baseline Low-Dissipation/ Preconditioned (Specified reference values)
Roe [19] P-Roe [4] (Mco), A-Roe [9] (ρ∗u∗)

Euler Fluxes AUSM+ [20] AUSM+-up [6] (M∞)
SHUS [21] SLAU [8] (No reference values required)

Implicit Schemes LU-SGS [10] pLU-SGS [4] (Mco)

2.2.1 Euler fluxes

Inviscid numerical fluxes at cell-interfaces F1/2 are calculated by one of the following
Euler fluxes.

1) Roe [19], Preconditioned Roe (P-Roe) [4], and All-Speed-Roe (A-Roe) [9]: Using the
difference of variables ∆()= ()R−()L, and the Roe-averaged [19] values (̂), the Roe flux
is expressed in the following form of Liu and Vinokur [22]:

F 1
2
=

1

2

(

FL+FR−R̂|Λ̂|L̂∆Q
)

, (2.3a)

R̂|Λ̂|L̂∆Q= |λ̂1|∆Q+δ1Q̂∗+δ2N, (2.3b)

where

Q̂∗=(1 u v w H)T, N=(0 nx ny nz Vn)
T, Γ=diag(λ1, λ2, ··· , λ5), (2.4a)
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δ1 =
λ+ ·(∆p/ĉ)+λ− ·ρ̂∆Vn

ĉ
, δ2 =λ+ ·ρ̂∆Vn+λ− ·

(∆p

ĉ

)

, (2.4b)

λ+ =−|λ̂1|+
|λ̂2|+|λ̂3|

2
, λ−=

|λ̂2|−|λ̂3|

2
, (2.4c)

λ1,4,5 =Vn, λ2 =Vn+c, λ3 =Vn−c, (2.4d)

Vn =unx+vny+wnz. (2.4e)

The mass flux (first row of F1/2), for example, is written as follows:

m̂ 1
2
=

1

2

(

ρLVnL+ρRVnR−|V̂n|∆ρ−
|M̂+1|+|M̂−1|−2|M̂|

2
·
∆p

ĉ

−
|M̂+1|+|M̂−1|

2
·ρ̂∆Vn

)

, (2.5)

The Roe’s Riemann solver is one of the most widely-used numerical fluxes, but this flux
is known to suffer from the carbuncle phenomenon [23,24] or an expansion shock at high
speeds, and as demonstrated later, unphysical oscillations at low speeds.

To overcome the defect in low speed flow computations, Weiss and Smith derived a
version of Roe flux for a preconditioned system, called Preconditioned Roe (P-Roe) [4],
by multiplying inverse preconditioning matrix Γ

−1 to the numerical dissipation term as
follows:

F 1
2
=

1

2

(

FL+FR−Γ
−1R̂|Λ̂|L̂∆Q

)

, (2.6a)

Γ
−1R̂|Λ̂|L̂∆Q= |λ̂1|∆Q+δ

′

1Q̂∗+δ
′

2N, (2.6b)

where

Q̂∗=(1 u v w H)H, N=(0 nx ny nz Vn)
T, Γ

−1
Λ=diag(λ1 , λ

′

2, λ
′

3, λ4, λ5), (2.7a)

δ
′

1 =
[ |λ̂

′

2|+|λ̂
′

3|

2
−ε|Vn|−

1−ε

2
·
|λ̂

′

2|−|λ̂
′

3|

2
·
Vn

ĉ′

]

·
∆p

εĉ
+
|λ̂

′

2|−|λ̂
′

3|

2
·
ρ̂∆Vn

ĉ′
, (2.7b)

δ
′

2 =
[ |λ̂

′

2|+|λ̂
′

3|

2
−|Vn|+

1−ε

2
·
|λ̂

′

2|−|λ̂
′

3|

2
·
Vn

ĉ′

]

·ρ̂∆Vn+
|λ̂

′

2|−|λ̂
′

3|

2
·
∆p

ĉ′
, (2.7c)

λ1,4,5 =Vn, V ′
2,3 =V ′

n±c′=
1

2

{

(1+ε)|Vn|±
√

(ε−1)2V2
n +4εc2

}

, (2.7d)

with

ε=min
(

1, max(KM2,M2
co)

)

, (2.8)

where K is taken as 1.0, and Mco is cutoff Mach number which is set as freestream Mach
number M∞ in the present study, leading to ε = min(1,max(M2,M2

∞)). The above ex-
pression is borrowed from a preconditioning matrix Γ (see Eq. (A.2) in Appendix) so that
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the resultant flux formula has all the eigenvalues scaled from the order of the speed of
sound to that of the local fluid velocity at low speeds. Note that at supersonic speeds
(max(M2,M2

∞) > 1.0), ε is unity and original Roe flux is recovered; otherwise, even at
a moderate speed (e.g., M = 0.5), the eigenvalues are no longer the same as those in
Eq. (2.4d) and the resultant flux is expected to behave in a different manner as unprecon-
ditioned Roe.

All-Speed-Roe (A-Roe), which was developed recently by Li and Gu [9], modified the
Roe flux by introducing the switching function f (M) for all speeds as follows:

F 1
2
=

1

2

(

f (M)(FL+FR)+[1− f (M)]F
press
c −R̂|Λ̂A−Roe|L̂∆Q

)

, (2.9a)

f (M)=min
(

M

√

4+(1−M2)2

1+M2
,1

)

, (2.9b)

F
press
c =

Uc(ΦL+ΦR)

2
+

PL+PR

2
, (2.9c)

Uc =
(VnL+VnR)

2
−

c2

(ρ∗u∗)·(pR−pL)
, (2.9d)

Φ=(ρ, ρu, ρv, ρw, ρH)T, P=(0, pnx, pny, pnz, 0)T, (2.9e)

λA−Roe
1,4,5 =Vn, λA−Roe

2 =Vn+ f (M)c, λA−Roe
3 =Vn− f (M)c, (2.9f)

where F
press
c is a pressure stabilization term with c2 = 0.05 and ρ∗u∗ = ρ∞u∞ (according

to the original paper [9], these should be the maximum values in the whole computa-
tional domain; however, they are simply set to be freestream values here, since continuity
equation justifies ρ∗u∗ = ρ∞u∞ = const in this work). This scheme does not rely on ”cut-
off Mach number Mco”, which is typically borrowed from preconditioning matrix Γ (see
Eq. (A.2) in Appendix) and is included in some other all speed schemes (such as Eq. (2.8)
in P-Roe [4], as explained above), though reference values ρ∗u∗ should be specified. Fur-
thermore, as P-Roe, this flux is supposed to behave differently compared with original
Roe even at a moderate speed.

2) AUSM+ [20] and AUSM+-up [6]: AUSM-family schemes [6–8,20,21] are another set
of widely-used fluxes featuring simplicity and relative robustness against shock-related
anomalies (e.g., carbuncle phenomenon) [23, 24]. Among AUSM-family, we introduce
two representative methods, i.e., AUSM+ and its all-speed extension, AUSM+-up.

Formulation of AUSM+ is given as:

F 1
2
=

ṁ+|ṁ|

2
Ψ

++
ṁ−|ṁ|

2
Ψ

−+ p̃N, (2.10a)

Ψ=(1, u, v, w, H)T, N=(0, nx, ny, nz, 0)T, (2.10b)

ṁ 1
2
= M 1

2
c 1

2

{

ρL, if M 1
2
>0,

ρR, otherwise,
(2.10c)

M 1
2
= f +

M,L

∣

∣

β= 1
8
+ f−M,R

∣

∣

β= 1
8
, p̃= f +

p,L

∣

∣

α= 3
16

pL+ f−p,R

∣

∣

α= 3
16

pR, (2.10d)
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f±M
∣

∣

β
=

{

1
2(M±|M|), if |M|≥1,

± 1
4(M±1)2±β(M2−1)2, otherwise,

(2.10e)

f±p
∣

∣

α
=

{

1
2(1±sign(M)), if |M|≥1,
1
4(M±1)2(2∓M)±αM(M2−1)2, otherwise,

(2.10f)

where

c 1
2
=min(c̃L, c̃R), c̃=

c∗2

max(c∗,|u|)
, c∗2 =

2(γ−1)

(γ+1)
H. (2.11)

This scheme was extended for all speeds as AUSM+-up, with introduction of additional
user-specified parameters:

F 1
2
=

ṁ+|ṁ|

2
Ψ

++
ṁ−|ṁ|

2
Ψ

−+ p̃N, (2.12a)

Ψ=(1, u, v, w, H)T, N=(0, nx, ny, nz, 0)T , (2.12b)

ṁ 1
2
= M 1

2
c 1

2

{

ρL, if M 1
2
>0,

ρR, otherwise,
(2.12c)

M 1
2
= f +

M,L

∣

∣

β= 1
8
+ f−M,R

∣

∣

β= 1
8
+Mp, p̃= f +

p,L

∣

∣

α
pL+ f−p,R

∣

∣

α
pR+pu, (2.12d)

where

c 1
2
=min(c̃L, c̃R), c̃L =

c∗2

max(c∗,VnL)
, c̃R =

c∗2

max(c∗,−VnR)
, (2.13a)

Mp =−
Kp

fα
max(1−σM̄2,0)

pR−pL

ρ 1
2
c2

1
2

, ρ 1
2
=

ρL +ρR

2
, (2.13b)

pu =−Ku f +
pL f−pR(ρL+ρR)( fαc 1

2
)(VnR−VnL), (2.13c)

with

Kp =0.25, Ku =0.75, σ=1.0, (2.14a)

M̄2 =
V2

nL+V2
nR

2c2
1
2

, α=
3

16
(−4+5 f 2

α ), (2.14b)

fα(Mo)= Mo(2−M0), M2
o =min

(

1,max(M̄2,M2
∞)

)

. (2.14c)

This scheme also excludes ”cutoff Mach number Mco”, though freestream Mach number
M∞ is required†.

†In this paper, as in [6, 9], ”cutoff Mach number Mco” and ”freestream Mach number M∞” are used in
different meanings, because Mco is not necessarily equal to M∞, but arbitrary chosen from the values of the
order of M∞.
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3) SHUS [21] and SLAU [8]: SHUS (Simple High-resolution Upwind Scheme) is one
of AUSM-family schemes, which replaced mass flux of AUSM+ with that of Roe (Eq. (2.5)
with the use of arithmetic averaged values rather than Roe averaged ones. This scheme
achieved accuracy of Roe flux while keeping the robustness of AUSM+ against shock
anomalies.

F 1
2
=

ṁ+|ṁ|

2
Ψ

++
ṁ−|ṁ|

2
Ψ

−+ p̃N, (2.15a)

Ψ=(1, u, v, w, H)T, N=(0, nx, ny, nz, 0)T. (2.15b)

The mass flux function of SHUS is given as:

ṁ=
1

2

{

(ρVn)L+(ρVn)R−
∣

∣

∣

VnL+VnR

2

∣

∣

∣∆ρ−
|M̄+1|−|M̄−1|

2
ρ̄∆Vn

−
|M̄+1|+|M̄−1|−2|M̄|

2c̄
∆p

}

, (2.16)

where

∆()=()R−()L, (̄)=
()L+()R

2
. (2.17)

The pressure term is:

p̃= f +
pL

∣

∣

α=0
pL+ f−pR

∣

∣

α=0
pR, (2.18)

SHUS was further developed to give more reliable solutions both at low and high speeds.
The latest version is named SLAU (Simple Low-dissipation AUSM):

F 1
2
=

ṁ+|ṁ|

2
Ψ

++
ṁ−|ṁ|

2
Ψ

−+ p̃N, (2.19a)

Ψ=(1, u, v, w, H)T, N=(0, nx, ny, nz, 0)T. (2.19b)

The mass flux function of SLAU is:

ṁ=
1

2

{

ρL(VnL+|V̄n|
+)+ρL(VnL−|V̄n|

−)−
χ

c̄
∆p

}

, |V̄n|=
ρL|VnL|+ρR|VnR|

ρL+ρR
, (2.20a)

|V̄n|
+ =(1−g)|V̄n|+g|VnL|, |V̄n|

−=(1−g)|V̄n|+g|VnR|, (2.20b)

g=−max
[

min(ML,0),−1
]

·min
[

max(MR,0),1
]

∈ [0,1], (2.20c)

and the pressure flux is

p̃=
pL +pR

2
+

f +
pL

∣

∣

α=0
− f−pR

∣

∣

α=0

2
(pL−pR)+(1−χ)

(

f +
pL

∣

∣

α=0
+ f−pR

∣

∣

α=0
−1

) pL +pR

2
, (2.21a)

χ=(1−M)2, (2.21b)

M=min

(

1.0,
1

c̄

√

u2
L+v2

L+w2
L+u2

R+v2
R +w2

R

2

)

, (2.21c)

M=
Vn

c̄
=

unx+vny+wnz

c̄
. (2.21d)
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SLAU needs no cutoff Mach number Mco or freestream Mach number M∞. To the best of
the authors’ knowledge, this flux is the only method among all speed schemes which is
totally free from restrictions of specifying reference values. This property is desirable for
computations of flows involving no uniform flow, such as turbopump internal flows [1].

2.2.2 Time evolution methods

1) LU-SGS and pLU-SGS (preconditioned LU-SGS) Implicit Schemes: Time integration
is conducted by using LU-SGS implicit method or its preconditioned version, precondi-
tioned LU-SGS [4], which is referred to as ”pLU-SGS” for brevity here. Its formulation
starts from Eq. (2.2), expressed with time step index n included:

Vi

∆ti
∆Qn

i +Γ
−1
i ∑

j

(∆Fn
i,j−∆Fvn

i,j)Si,j =Γ
−1
i ·Resn

i , (2.22)

where

∆()n =()n+1−()n, (2.23)

and Resi is the right-hand side residual,

Resn
i =∑

j

(Fn
i,j−Fvn

i,j)Si,j. (2.24)

Again, in the case without preconditioning, Γ
−1 is simply dropped.

Then, Eq. (2.22) is rewritten in the form of Gauss-Seidel (GS) iterative method by
decomposition of new (updated) and old (non-updated) values

∆Qn+1
i =Dn

i
−1 ·

[

Γ
−1
i ∑

j∈Lower

Si,jA
+
j,i

new/old
∆Qnew/old

j

+Γ
−1
i ∑

j∈U pper

Si,jA
+
j,i

new/old
∆Qnew/old

j −Γ
−1
i ·Resn

i

]

, (2.25)

where

Ai,j =
∂Fi,j

∂Qi
−

∂Fvi,j

∂Qi
, (2.26)

is flux Jacobian from cell i to cell j through the cell-interface Si,j. A+ has only the positive
components of the eigenvectors. The diagonal matrix Di is given as

Di =
Vi

∆ti
I+Γ

−1
i ∑

j

Si,jA
+
i,j. (2.27)
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Specifically, in LU-SGS (Lower Upper Symmetric Gauss-Seidel), Eq. (2.25) is further rewrit-
ten as

∆Q∗
i =D−1

i ·
[

Γ
−1
i ∑

j∈Lower

Si,jA
+
j,i
∗
∆Q∗

j −Γ
−1
i ·Resn

i

]

, (2.28a)

∆Qn+1
i =D−1

i ·
[

Γ
−1
i ∑

j∈Lower

Si,jA
+
j,i
∗
∆Q∗

j +Γ
−1
i ∑

j∈U pper

Si,jA
+
j,i

n+1
∆Qn+1

j −Γ
−1
i ·Resn

i

]

=∆Q∗
i +D−1

i ·Γ−1
i ∑

j∈U pper

Si,jA
+
j,i

n+1
∆Qn+1

j . (2.28b)

Then, A+ is approximated as the following as in Jameson and Turkel’s LU-SGS [10] (this
version is commonly referred to as ”LU-SGS”).

A+
i,j≈

Ai,j+σi,jI

2
, (2.29)

where

σi,j =σi,j(Ai,j)= |Vni,j|+ci+
2(µi +µj)

(ρi+ρj)·∆hi,j
, (2.30)

where ∆hi,j is distance between cell-centers of i and j.

In pLU-SGS, the spectral radius σi,j is scaled as σ
′

i,j, thus,

Γ
−1
i A+

i,j≈
Γ
−1
i Ai,j+σ′

i,jI

2
, (2.31)

where

σ′
i,j =σ′(Γ

−1
i Ai,j)=

1

2

{

(1+ε)|Vni,j|+
√

(ε−1)2V2
ni,j+4εc2

i

}

+
2(µi+µj)

(ρi+ρj)·∆hi,j
. (2.32)

The preconditioning coefficient ε, which should be of the order of M2
∞, appears in the

preconditioning matrix as given by ε = min(1,max(KM2,M2
co)) (Eq. (A.3) in Appendix).

Variables in this equation can be arbitrary chosen, and here, K is taken as unity and
Mco = M∞, leading to

ε=min
(

1,max(M2,M2
∞)

)

. (2.33)

With the above approximation, the diagonal block Di (in Eq. (2.27))) is transformed into
merely a scalar

Di =
Vi

∆ti
I+∑

j

Si,jΓ
−1
i A+

i,j =
( Vi

∆ti
+∑

j

Si,j

σ′
i,j

2

)

I, (2.34a)

∵ ∑
j

Si,jAi,j =0. (2.34b)
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Substituting Eqs. (2.26), (2.31), and (2.34a), Eqs. (2.28a) and (2.28b) becomes

∆Q∗
i =

( Vi

∆ti
+∑

j

Si,j

σ′
i,j

2

)−1
·
[

Γ
−1
i ∑

j∈Lower

Si,jA
+
j,i
∗
∆Q∗

j −Γ
−1
i ·Resn

i

]

=
( Vi

∆ti
+∑

j

Si,j

σ′
i,j

2

)−1
·
[

∑
j∈Lower

Si,j

Γ
−1
i Aj,i+σ′

j,iI

2
∆Q∗

j −Γ
−1
i ·Resn

i

]

=
( Vi

∆ti
+∑

j

Si,j

σ′
i,j

2

)−1
·
[1

2 ∑
j∈Lower

Si,j

(

Γ
−1
i (∆F∗

j,i−∆Fv∗
j,i)+σ′

j,i∆Q∗
j

)

−Γ
−1
i ·Resn

i

]

, (2.35a)

∆Qn+1
i =∆Q∗

i +
( Vi

∆ti
+∑

j

Si,j

σ′
i,j

2

)−1
·Γ−1

i ∑
j∈Upper

Si,jA
+
j,i

n+1
∆Qn+1

j

=∆Q∗
i +

( Vi

∆ti
+∑

j

Si,j

σ′
i,j

2

)−1
·
1

2 ∑
j∈Upper

Si,j

(

Γ
−1
i (∆Fn+1

j,i −∆Fvn+1
j,i )+σ′

j,i∆Q∗
j

)

. (2.35b)

Note that the computational cost for the implementation of Γ
−1∆F is trivial according to

Turkel [5], by using the following form.

Γ
−1∆F=∆F−

(1−ε)dp

c2
(1 u v w H)T, (2.36a)

dp=(γ−1)
( u2+v2+w2

2
∆F1−u∆F2−v∆F3−w∆F4+∆F5

)

, (2.36b)

where Fl stands for the l-th row of ∆F (e.g., ∆F1 =∆(ρVn)).
With the above expression one can easily obtain preconditioned variables by avoiding

actual matrix operation of Γ
−1∆F.

2) Time step: Time step ∆ti is given by the following formula:

∆ti =
CFL∗Vi

[

∑j σi,jSi,j

] , (2.37)

where CFL is Courant-Friedrichs-Lewy (CFL) number, and the spectral radius σ can be
replaced by σ′ for preconditioned systems.

The use of Eq. (2.37)) is called local time stepping (used in 3.5), whereas the global
time stepping (used in 3.1-3.4) takes the form of

∆t=
CFL

maxi,j(σi,j/∆hi,j)
. (2.38)

3) Sub-iteration procedure: The sub-iteration (sometimes called Newton-iteration) is
used to enhance the convergence rate outside the LU-SGS loop. Eq. (2.22),

Vi

∆ti
∆Qn

i +Γ
−1
i ∑

j

(∆Fn
i,j−∆Fvn

i,j)Si,j =Γ
−1
i ·Resn

i , (2.39)



K. Kitamura, E. Shima, K. Fujimoto and Z. J. Wang / Commun. Comput. Phys., 10 (2011), pp. 90-119 101

with ∆Qn →∆Qm, and applying three-point backward difference (subscripts i and j are
omitted for clarity), leads to

3Qm+1−4Qn+Qn−1

2
=

3∆Qm +3Qm−4Qn+Qn−1

2
(2.40)

=−
∆t

V
Γ
−1 ·

{

Resm−(∆Fn−∆Fvn)S
}

. (2.41)

Thus,

∆Qm =−
2

3

[3Qm−4Qn+Qn−1

2
+

∆t

V
Γ
−1 ·

{

Resm−(∆Fn−∆Fvn)S
}

]

, (2.42)

where m is the number of sub-iterations, and when m reaches the specified maximum
iteration number or the ∆Qm reduced to the threshold value, the sub-iteration process
is terminated as ∆Qm →∆Qn. Note that this procedure achieves second-order temporal
accuracy if ∆t is frozen throughout the computation. In addition, with preconditioning
matrix Γ, dual time stepping is usually adopted for unsteady calculations [4]. However,
we did not take this strategy but used sub-iterations only to accelerate and stabilize com-
putations of steady flows‡. The same idea is shared by developers of OVERFLOW code
(see [25] and Private Communication with Dr. Chris Nelson, Mar. 2010).

In the subsequent sections, CFL is chosen as CFL=20 in consideration of both stability
and efficiency, and no sub-iterations (= one sub-iteration) or three sub-iterations are em-
ployed, if not mentioned otherwise. The global time stepping technique is usually used
(unless stated otherwise). Based on the flow conditions explained below (in Table 3), no
slope limiters or turbulence models are used.

Table 3: Test cases and conditions.

Cases Conditions Comments
1) Viscous M∞ =0.5, Re∞ =5,000 [26, 27] Moderate Speed (Validation)
2) Inviscid M∞ =0.001−0.1 Low Speeds
3) Viscous M∞ =0.01, Re∞ =2,000 [3, 11] Low Speed

2.3 Flow conditions

Computations are conducted for a subsonic or a low-Mach-number flow over NACA0012
airfoil, under the conditions given in Table 3. The airfoil has no angle-of-attack through-
out the present study. In order to highlight differences among methods, we generated
the following two grids that are not too fine or too coarse (Fig. 2):

‡We found that three inner-iterations were enough to accelerate convergence and/or stabilize computations
for steady state computations with significant reduction (2 orders drop) of RHS residual at the third in-
ner loop. Further iterations reduced residual slightly more, but did not improve accuracy or convergence
dramatically.
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Figure 2: Computational grids for (a) inviscid (201×31 points) and (b) viscous (201×51 points) simulations.

• Two-dimensional, O-type, structured grids.

• 201 points in the circumferential direction, and 31 points (inviscid) or 51 points (viscous) in the
radial (wall-normal) direction, respectively.

• The minimum spacing near the wall for viscous cases is δ=1.0e−3, based on the chord length
of 1. This spacing achieves sufficient resolution for boundary-layers considered here.

• Far field boundary is 50 times chord length away from the wall.

3 Results and discussions

The results are summarized in Tables 4 and 5, in which the following notations are used:

• S (Successful): The L2-norm of density residual dropped at least four orders with physically
correct solution.

• U (Unsatisfactory): The solution reached an unphysical one with poor quality, and/or the residual
remained significant.

• F (Failure): The calculation diverged.

In the Case 1, separations points (designated as % chord length from the leading edge)
are also included in the table. The result of each case will be discussed in the subsequent
sub-sections.

3.1 Case 1: M∞ =0.5 viscous (laminar) flow for code validation

This test case has been widely used as a benchmark [26, 27]. The computations were
conducted for 10,000 timesteps. Typical computed flow field is displayed in Fig. 3. Fig. 4
shows histories of drag coefficient CD and L2-norm of density residuals for the successful
cases.

For all the successful cases, the computed flows were almost identical to each other,
with slightly different separation points [26, 27] near the trailing edge. These locations,
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Figure 3: Computed flow field by LU-SGS/SLAU, no sub-iterations, Case 1 (M∞ = 0.5, viscous): (a) Iso-
Mach-contours (0< M<0.59), (b) u-velocity contours; blow-up view of separation region near the trailing-edge
(−0.01<u<0).
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Figure 4: Residual and drag coefficient histories, Case 1 (M∞ =0.5, viscous): (a) Residual vs. CPU time, (b)
CD vs. CPU time, (c) Residual vs. time steps, and (d) CD vs. time steps.

included in Tables 4 and 5, are in good agreement with reference separation points of
80%-89% chord length (comparisons to other methods in literature were made in a sepa-
rate work [18]).
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Table 4: Computed results of no sub-iteration cases (CFL =20), S (Successful), U (Unphysical or oscillatory),
and F (Failure, diverged).

Sub-iterations: 1 Case 1 Case 2 Case 3
Implicit Euler M∞ =0.5 A) M∞ =0.1 B) M∞ =0.01 C) M∞ =0.001 M∞ =0.01
Schemes Fluxes Re∞ =5,000[Sep.point(%)] Re∞ =∞ (Inviscid) Re∞ =2,000

Roe S[84.9]
AUSM+ S[85.0] U U
SHUS S[84.9]

LU-SGS P-Roe S[83.8] F F F F
A-Roe S[82.7] S F F F
AUSM+-up S[84.9] F F F F
SLAU S[83.8] S S S S

Roe S[84.9]
AUSM+ F F F
SHUS U[89.7]

LU-SGS P-Roe S[83.8] S S S S
A-Roe S[82.7] F F F S
AUSM+-up F F S S S
SLAU S[83.8] S S S S

Table 5: Computed results of three sub-iteration cases (CFL=20), S (Successful), U (Unphysical or oscillatory),
and F (Failure, diverged).

Sub-iterations: 3 Case 1 Case 2 Case 3
Implicit Euler M∞ =0.5 A) M∞ =0.1 B) M∞ =0.01 C) M∞ =0.001 M∞ =0.01
Schemes Fluxes Re∞ =5,000[Sep.point(%)] Re∞ =∞ (Inviscid) Re∞ =2,000

Roe S[84.9]
AUSM+ S[84.9] U U
SHUS S[84.9]

LU-SGS P-Roe S[84.1] F F F F
A-Roe S[83.0] S F F F
AUSM+-up S[84.9] F F F F
SLAU S[83.8] S S S S

Roe S[84.9]
AUSM+ F F F
SHUS U[85.4]

LU-SGS P-Roe S[83.8] S S S S
A-Roe S[82.6] S S S S
AUSM+-up F F S S S
SLAU S[83.8] S S S S

From Tables 4 and 5 and Figs. 3 and 4, the following features are noteworthy:

• Coupled with LU-SGS, all the fluxes yielded physically correct solutions.

• In this test case, the convergence rate was not practically improved by preconditioning of LU-SGS,
although histories of the drag coefficient and residual are slightly affected (Fig. 4(a) and (b)).
Even worse, calculations diverged in some cases (AUSM+, SHUS, and AUSM+-up, see Tables 4
and 5). This would be because i) some combinations, such as pLU-SGS/AUSM+, clashed and
produced an insufficient amount of dissipation (explained later), or ii) the scaling function of
AUSM+-up did not work well in conjunction with pLU-SGS under the present flow conditions.

• Effect of Euler fluxes seemed to be minor (Figs. 4(c) and (d)), compared with the above men-
tioned factors.
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For further code validation, we also conducted M=2.0, α=0, inviscid flow computations
on a grid in Fig. 2(a). We point out that all the 14 methods produced similar and sat-
isfactory results with the help of Venkatakrishnan’s limiter [28] with Wang’s correction
(ε′ =0.05) [29] (not shown).

3.2 Case 2: Low speed (M∞ =0.1, 0.01, and 0.001), inviscid flow

In this section, inviscid computations were carried out for 2,000 timesteps with the
freestream Mach number as a parameter: M∞ = 0.1 (Case 2A), 0.01 (2B), and 0.001 (2C).
Solutions and convergence rates are compared for different methods. Fig. 5 shows the
typical computed flowfields by LU-SGS/Roe, LU-SGS/SLAU and pLU-SGS/SLAU. In
Fig. 6, drag coefficient histories are shown for the three sub-iteration cases. Under the
current flow conditions, the computed drag is regarded as an indicator of numerical error.
For example, in LU-SGS/Roe calculation with M∞ = 0.01 (Case 2B), the drag coefficient
history reached a plateau at a significant value (Fig. 6(b)) with an apparently unphysi-
cal solution shown in Fig. 5(a), even though the corresponding density residual showed
three orders of reduction as well as other baseline fluxes cases (Fig. 7). The final values
of computed drag coefficients in all the runs are summarized in Table 6.

(a) (b) (c)

Figure 5: Computed flow fields (-1 < C  < 1), no sub-iterations, Case 2B (M =0.01, inviscid): a) LU-SGS/Roe
Figure 5: Computed flow fields (−1 < Cp < 1), no sub-iterations, Case 2B (M∞ = 0.01, inviscid): (a) LU-
SGS/Roe (Unphysical), (b) LU-SGS/SLAU (Stable, slow convergence), and (c) pLU-SGS/SLAU (Stable, fast
convergence).

From those Figs. 5 and 6 and Tables 4 and 5, the following general remarks are con-
firmed:

(a) If no-preconditioned system of Eq. (2.1) without Γ is solved, such as LU-SGS/Roe, calculations do
not diverge, but reach unphysical solutions due to excessive numerical dissipation of the method
(Fig. 5(a)) [3, 8].

(b) If only preconditioning A) (time-derivative preconditioning) is used, such as pLU-SGS/Roe, cal-
culations diverge (usually within a few time steps), because the dissipation in the numerical flux
is not scaled properly [4, 8, 30].

(c) If only preconditioning B) (numerical flux preconditioning) is used, such as LU-SGS/P-Roe,
calculations diverge in most cases; the only exception is LU-SGS/SLAU combination, showing
slow convergence but a stable solution (Fig. 5(b)) [3, 8].
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Figure 6: Drag coefficient histories, Case 2 (inviscid), 3 sub-iterations: (a) Case 2A (M∞ = 0.1), (b) Case 2B
(M∞ =0.01), (c) Case 2C (M∞ =0.001), and (d) Case 2C (M∞ =0.001, wider scale for vertical axis).
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Figure 7: Residual histories, Case 2B (M∞ =0.01, inviscid), 3 sub-iterations.

(d) If both preconditioning A) and B) are used, such as pLU-SGS/SLAU, physically correct solutions
are obtained in most cases, with clearly improved convergence (Fig. 5(c)). The pLU-SGS/A-
Roe diverged without sub-iterations, but it was expectedly cured by introduction of sub-iterations
(Recall that, as stated above, P-Roe, A-Roe and Roe are supposed to behave in different manners
at subsonic speeds). The pLU-SGS/AUSM+-up, however, failed to reach a solution at M∞ =0.1
as in the Case 1 (M∞ =0.5, viscous case) even with sub-iterations.

These remarks are summarized in Table 7.
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Table 6: Calculated drag coefficient in inviscid flow (= numerical error) over NACA0012 airfoil, Case 2 (M∞=0.1,
0.01, and 0.001; inviscid).

Case 2, Sub-iterations: 1 Case 2, Sub-iterations: 3
Implicit Euler A) M∞ =0.1 B) M∞ =0.01 C) M∞=0.001 A) M∞ =0.1 B) M∞ =0.01 C) M∞=0.001
Schemes Fluxes Re∞ =∞ (Inviscid) Re∞ =∞ (Inviscid)

Roe 0.0137 0.0720 0.6280 0.0137 0.0704 0.5267
AUSM+ 0.0177 0.0956 0.8442 0.0177 0.0915 0.7157
SHUS 0.0144 0.0758 0.6621 0.0144 0.0738 0.5565

LU-SGS P-Roe (Diverged) (Diverged) (Diverged) (Diverged) (Diverged) (Diverged)
A-Roe 0.0019 (Diverged) (Diverged) 0.0019 (Diverged) (Diverged)
AUSM+-up (Diverged) (Diverged) (Diverged) (Diverged) (Diverged) (Diverged)
SLAU 0.0038 0.0041 0.0069 0.0038 0.0037 0.0051
Roe
AUSM+ (Diverged) (Diverged)
SHUS

pLU-SGS P-Roe 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055
A-Roe (Diverged) (Diverged) (Diverged) 0.0019 0.0019 0.0019
AUSM+-up (Diverged) 0.0049 0.0049 (Diverged) 0.0049 0.0049
SLAU 0.0038 0.0037 0.0036 0.0038 0.0037 0.0036

Table 7: Summary of typical computed results (expect for a few exceptions), S (Successful), U (Unphysical or
oscillatory), and F (Failure, diverged).

Euler Fluxes
Baseline (Roe, Low-Dissipation (P-Roe, A-Roe, AUSM+-up,
AUSM+, SHUS) SLAU) (Preconditioning B)

Implicit LU-SGS U S (slow convergence, SLAU) or F (other fluxes)
Schemes pLU-SGS (Preconditioning A) F S (fast convergence)

According to Tables 4 and 5, qualitative performances of most of the methods pre-
sented here were independent on the Mach number. Quantitatively, however, the drag
coefficients for non-preconditioned cases increased with decreasing Mach number, from
the similar order to that of the preconditioned cases (M∞ = 0.1) to orders larger (M∞ =
0.001), indicating the recommended lower limit of non-preconditioned methods for use
be over M∞ = 0.1. Meanwhile, those CD values for the preconditioned cases stayed al-
most constant (Fig. 6). The drag coefficient, the error indicator, showed the least value for
pLU-SGS/A-Roe of 0.0019, followed by pLU-SGS/SLAU (0.0037), pLU-SGS/AUSM+-up
(0.0049), and pLU-SGS/P-Roe (0.0055), in the M∞ = 0.01, three sub-iteration cases (the
sub-iteration did not seem to affect solutions significantly) (Table 6). Therefore, at least
from these data, pLU-SGS/A-Roe appeared to have produced the most accurate solution
if it successfully worked.

In addition, it is confirmed that a pLU-SGS/Low-Dissipation-Flux combination can
handle even M∞ = 0.001 flow. Specifically, pLU-SGS/P-Roe and pLU-SGS/SLAU pro-
duced more successful results than other methods in a range of M∞ =0.001−0.5.

3.3 Case 3: Low speed (M∞ =0.01), viscous flow

This test case has also been used to investigate the effects of preconditioning [3, 11].
Here, however, we focus on the viscous effects. Again, typical computed flow fields
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(a) (b) (c)

Figure 8: Computed flow fields (-1 < C  < 1), 3 sub-iterations, Case 3 (M =0.01, viscous): a) LU-SGS/Roe
Figure 8: Computed flow fields (−1<Cp <1), 3 sub-iterations, Case 3 (M∞ =0.01, viscous): (a) LU-SGS/Roe
(Unphysical), (b) LU-SGS/SLAU (Stable, slow convergence), and (c) pLU-SGS/SLAU (Stable, fast conver-
gence).
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Figure 9: Drag coefficient and residual histories, Case 3 (M∞ = 0.01, viscous), 3 sub-iterations: (a) CD, (b)
Residual.

and drag/residual histories are shown in Figs. 8 and 9, respectively. As can be seen from
these figures and Tables 4 and 5, these computations behaved in a broadly similar manner
to their inviscid counterparts (Case 2B; Figs. 5, 6(b), and 7):

• Non-preconditioned cases showed excessive drag and/or slow convergence.

• Fully preconditioned computations yielded satisfactory solutions with fast convergence.

• SLAU is again only one flux which showed accepted solutions without time-derivative precondi-
tioning (Preconditioning A), in expense of slow convergence, though.

Therefore, viscous effects played a minor role in the present cases with only one ex-
ception: A-Roe flux (without sub-iterations) yielded a satisfactory solution only in the
viscous case, probably because its pressure stabilization term (Eqs. (2.9c)-(2.9e)) in com-
bination with the viscous source term (Fv in Eq. (2.1b)) had a favorable contribution to
the solution.

We also point out that the difference between inviscid and viscous cases will be en-
hanced with the use of local time stepping as shown later in 3.5.
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Table 8: Summary of CFL Effect, S (Successful), U (Unphysical or oscillatory), and F (Failure, diverged).

Sub-iterations: 1 Case 2B) M∞ =0.01, Re∞ =∞ (Inviscid) [CD] Case 3) M∞ =0.01, Re∞ =2,000
Implicit Scheme Euler Fluxes CFL=20 200 2,000 20,000 CFL=20 200 2,000 20,000

P-Roe S [0.0055] S [0.0055] S [0.0055] S [0.0055] S S S S
pLU-SGS A-Roe F F F F S S S S

AUSM+-up S [0.0049] S [0.0049] S [0.0049] U [0.0035] S S S U
SLAU S [0.0037] F F F S F F F

Table 9: Summary of CFL Effect, S (Successful), U (Unphysical or oscillatory), and F (Failure, diverged).

Sub-iterations: 3 Case 2B) M∞ =0.01, Re∞ =∞ (Inviscid) [CD] Case 3) M∞ =0.01, Re∞ =2,000
Implicit Scheme Euler Fluxes CFL=20 200 2,000 20,000 CFL=20 200 2,000 20,000

P-Roe S [0.0055] S [0.0055] S [0.0055] S [0.0055] S S S S
pLU-SGS A-Roe S[0.0019] F F F S S S S

AUSM+-up S [0.0049] S [0.0049] S [0.0049] F S S S F
SLAU S [0.0037] F F F S F F F

3.4 Effect of CFL numbers

Now that we have confirmed pLU-SGS/Low-dissipation-flux combinations are recom-
mended for low speeds and that their performances are almost irrelevant to Mach num-
ber at least in the range of M∞ = 0.1−0.001, we compared convergence rates of these
combinations with different CFL numbers ranging from 20 to 20,000 for M∞ =0.01, both
in inviscid (Case 2B) and viscous (Case 3) cases. The results are summarized in Tables 8
and 9, respectively. According to the results, the larger the CFL number, the more oscilla-
tory or unstable the computation tends to be. Fig. 10 shows residual histories for the cases
with sub-iterations (diverged cases are excluded, e.g., pLU-SGS/SLAU with CFL=200).
Judging from this figure, pLU-SGS/P-Roe with CFL = 2,000 and CFL = 20,000 (with no
remarkable difference), followed by pLU-SGS/AUSM+-up with CFL = 2,000, gave the
fastest convergence (to machine zero) with a satisfactory solution both in the inviscid and
the viscous cases; whereas these combinations of methods with CFL=200 achieved faster
convergence for four-order reduction of residual (about 100-200 time steps; Figs. 10(a),
and (b)), which is twice as fast as that of the CFL = 20 case. Thus, in general, CFL=200-
2,000 appeared to be ”optimum.” CFL larger than such values led to stagnated accelera-
tion of convergence (e.g., CFL = 20,000 with P-Roe), or oscillatory or unstable solutions
(e.g., CFL = 20,000 for fluxes other than P-Roe). SLAU is the exception which showed
the smallest maximum allowable CFL =20 among four low-dissipation fluxes for stable
computations.

In Fig. 11, only successful cases with CFL =200 or 2,000 both with and without sub-
iterations are shown together for inviscid (Case 2B) and viscous (Case 3) computations,
again (as ”residual histories versus CPU time”). It is confirmed that using sub-iterations
generally yielded faster convergence. With the effect of number of sub-iterations taken
into account, the choice of pLU-SGS/P-Roe with CFL=2,000 (3 sub-iterations), followed
by pLU-SGS/P-Roe with CFL = 2,000 (no sub-iterations) (inviscid, Case 2B) or pLU-
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Figure 10: Residual histories with different CFL numbers for M∞ = 0.01, 3 sub-iterations: (a) inviscid (Case
2B) and (b) viscous (Case 3) computations.
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Figure 11: Residual histories with different CFL numbers, with and without sub-iterations, for M∞ =0.01: (a)
inviscid (Case 2B) and (b) viscous (Case 3) computations.

SGS/AUSM+-up with CFL=2,000 (3 sub-iterations) (viscous, Case 3), showed the fastest
convergence rate towards machine zero; for 4-order drop of residual, pLU-SGS/P-Roe
with CFL = 200 (3 sub-iterations) is the fastest in the inviscid cases (Case 2B), whereas
in the viscous simulations (Case 3) pLU-SGS/P-Roe with CFL = 200 and 2,000 (3 sub-
iterations), pLU-SGS/A-Roe with CFL = 200 (3 sub-iterations), and pLU-SGS/AUSM+-
up with CFL=200 (3 sub-iterations) are in the fastest group. From those results, in terms
of efficiency, pLU-SGS/P-Roe appeared to be the best with the maximum allowable CFL
numbers, followed by pLU-SGS/AUSM+-up. Based on this limited set of results, numer-
ical dissipation in P-Roe and AUSM+-up seemed to be compatible with those produced
by LU-SGS (or pLU-SGS) for large CFL numbers§, probably due to their use of M∞.

§From Eqs. (2.34) and (2.37), the larger the CFL, the smaller the scalar D becomes, degrading its diagonal
dominance and hence, introducing more numerical dissipation into the system of equations.
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3.5 Effect of local time-stepping

All the computations above were conducted with global time stepping so that discus-
sions therein could be applied to unsteady flow computations with the use of dual-time
stepping, in which temporal convergence is attained in each time step [4] (not actually
covered in this work, though). On the other hand, it is commonly known that the local
time-stepping technique (Eq. (2.37)) accelerates convergence rate for steady flow compu-
tations. Thus, in case one is interested only in steady solutions, we employed local-time-
stepping technique for the test cases here.

The computations were conducted for the same cases and methods as in the above
discussions, and three sub-iterations were adopted. The results are summarized in Ta-
bles 10 (CFL = 20) and 11 (CFL = 20−20,000 for pLU-SGS/Low-dissipation-flux cases),
and residual histories are shown in Figs. 12 and 13.

• The portions of successful cases and others are roughly similar to the global time-stepping cases
shown in Table 5.

• However, SLAU seemed to be destabilized by employing the local time-stepping and showed no
successful cases when coupled with pLU-SGS, although this flux is only one which showed relative
robustness at low speeds when used with LU-SGS, again.

• pLU-SGS/P-Roe is the most robust against increasing CFL whether the local time-stepping is
used or not.

Table 10: Computed results of three sub-iteration cases (CFL=20 with local time stepping), S (Successful), U
(Unphysical or oscillatory), and F (Failure, diverged).

Sub-iterations: 3 Case 1 Case 2 Case 3
Implicit Euler M∞ =0.5 A) M∞ =0.1 B) M∞ =0.01 C) M∞ =0.001 M∞ =0.01
Schemes Fluxes Re∞ =5,000[Sep.point(%)] Re∞ =∞ (Inviscid) Re∞ =2,000

Roe S[84.9]
AUSM+ S[84.9] U U
SHUS S[84.9]

LU-SGS P-Roe S[83.8] F F F F
A-Roe S[82.7] S F F F
AUSM+-up S[82.7] F F F F
SLAU S[82.7] S S S U

Roe S[82.7]
AUSM+ F F F
SHUS U[82.9]

pLU-SGS P-Roe S[82.7] S S S S
A-Roe S[82.7] S S S S
AUSM+-up F F S S S
SLAU U[83.8] F F F F

Table 11: Summary of CFL Effect, S (Successful), U (Unphysical or oscillatory), and F (Failure, diverged).

Sub-iterations: 3 with local time stepping Case 2B) M∞ =0.01, Re∞ =∞ (Inviscid) [CD] Case 3) M∞ =0.01, Re∞ =2,000
Implicit Scheme Euler Fluxes CFL=20 200 2,000 20,000 CFL=20 200 2,000 20,000

P-Roe S [0.0055] S [0.0055] S [0.0055] S [0.0055] S S S S
pLU-SGS A-Roe S[0.0019] F F F S S S S

AUSM+-up S [0.0049] F F F S F F F
SLAU F F F F F F F F
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Figure 12: Residual histories with different CFL numbers, with and without sub-iterations: (a) viscous, M∞=0.5
(Case 1), (b), (c) inviscid, M∞ =0.01 (Case 2B), and (d) viscous, M∞ =0.01 (Case 3) computations.
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Figure 13: Residual histories with different CFL numbers, with and without local time stepping, for M∞ =0.01:
(a) inviscid (Case 2B) and (b) viscous (Case 3) computations.

• As shown in Fig. 12(a), the local time-stepping clearly accelerated the convergence for viscous,
moderate Mach number flow of M∞ = 0.5 (Case 1). At this flow speed, local time-stepping
appeared to be more effective than preconditioning, and this is explained from the formulation of
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Eqs. (2.30), (2.32), and (2.37). The spectral radius, σ = |Vn|+c+(viscous term), is dominated
by |Vn| and varies from one cell to another with the order of c. This change is amplified by
changes of cell sizes of the order of 10 or more (in this case, about 100; Fig. 2(b)), significantly
affecting the time step ∆ti, compared with preconditioning σ→σ′, which leaves the order of the
spectral radius remained.

• At low Mach numbers, on the other hand, the local time-stepping is less effective than time-
derivative preconditioning (Fig. 12(b)-(d)). Again, this is clearly explained from Eqs. (2.30),
(2.32), and (2.37). If preconditioning technique is used at low speeds, c is reduced to c′ with
the order of |Vn| (which is orders smaller than original c), resulting in orders larger time steps
in the whole computational domain; on the contrary, if only the local time-stepping is used, this
technique has little effect on the spectral radius σ= |Vn|+c+(viscous term), since |Vn|≪ c.

• Combination of the time-derivative preconditioning and the local time stepping is considered
quite effective, but this set led to unstable or oscillatory solutions under some conditions (e.g.,
pLU-SGS/AUSM+-up with CFL=200 or more).

• According to Fig. 13, in which residual histories for cases with the time-derivative preconditioning
and the local time stepping both are shown, convergence acceleration by increasing CFL is
stagnated at CFL=200, showing comparable convergence rate with CFL=2,000 without local
time-stepping, in either the inviscid (Case 2B) or viscous (Case 3) simulation for M∞ =0.01.

3.6 The ”Best” schemes

According to the error estimation above (M∞ = 0.01, inviscid case of Case 2B), pLU-
SGS/A-Roe, followed by pLU-SGS/SLAU, produced the most accurate solution if it suc-
cessfully worked.

In terms of efficiency, we counted minimum required CPU time for machine zero con-
vergence for each method with its maximum allowable CFL (usually 2,000, except for
pLU-SGS/SLAU with CFL=20) in M∞=0.01, viscous case of Case 3 (Fig. 10(b)). Accord-
ing to this criterion, pLU-SGS/P-Roe (357 sec.), followed by pLU-SGS/AUSM+-up (473
sec.), appears to be the best.

To compare robustness, we simply counted numbers of successful cases marked in
Tables 4 and 5 for global time-stepping cases: pLU-SGS/P-Roe (10), pLU-SGS/A-Roe
(7), pLU-SGS/AUSM+-up (6), pLU-SGS/SLAU (10). Thus, pLU-SGS/P-Roe and pLU-
SGS/SLAU produced more successful cases than other methods in a range of M∞ =
0.001−0.5, and these combinations seem to be the most robust among all the methods.
In local time-stepping cases, on the other hand, pLU-SGS/SLAU failed and pLU-SGS/P-
Roe and pLU-SGS/A-Roe are the best.

Based on all the discussions above, evaluation of each combination of preconditioned
LU-SGS scheme and a low-dissipation flux is presented in Table 12. All in all, in low
speed flow computations, each method is suggested for use in the following occasions:

• pLU-SGS/P-Roe: One seeks the fastest convergence, and Mco is available.

• pLU-SGS/A-Roe: Obtaining the most accurate solutions is the top priority.

• pLU-SGS/AUSM+-up: One seeks fast convergence, and M∞ is available.
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Table 12: Evaluation of Preconditioned LU-SGS Scheme/Low-Dissipation Euler Fluxes.

Accuracy Efficiency Robustness
(indicated by numerical (indicated by minimum (numbers of successful cases)
errors, CD, in M∞ =0.01, CPU time for machine global time local time step
inviscid flow simulation) zero convergence) step (10 cases) (5 cases)

P-Roe 0.0055 357 sec. 10 5
pLU-SGS A-Roe 0.0019 546 sec. 7 5

AUSM+-up 0.0049 473 sec. 6 3
SLAU 0.0037 More than 4,000 sec. 10 0

• pLU-SGS/SLAU: One is not sure whether the computation reaches stable solutions, or there is
no reference (uniform) flow present. In addition, if computational time really does not matter,
LU-SGS/SLAU would be an alternative choice.

Therefore, it is expected that a promising flux function can be developed if, for instance,
SLAU is improved by incorporating numerical dissipation while its robustness is main-
tained, by using reference flow values as in P-Roe, A-Roe or AUSM+-up only when they
are available.

4 Conclusions

We carried out a comparative study for several well-known or recently-developed
low-dissipation Euler fluxes coupled with preconditioned LU-SGS (pLU-SGS) implicit
scheme in the framework of steady flows. It is confirmed that pLU-SGS along with
low-dissipation Euler fluxes gave accurate solutions with significant improvement of the
computational efficiency. The system of non-preconditioned counterparts, on the other
hand, suffered from unphysical solutions (no preconditioning at all), divergence or slow
convergence (control of dissipation in numerical flux only), or divergence of calculations
(preconditioning of time integration only). It is also confirmed that the recommended
lower limit of non-preconditioned methods for use be over M∞ = 0.1. All in all, in low
speed flow computations, pLU-SGS/P-Roe, pLU-SGS/A-Roe, pLU-SGS/SLAU or pLU-
SGS/AUSM+-up combination is suggested for use in the following occasions:

• pLU-SGS/P-Roe: One seeks the fastest convergence, and the cutoff Mach number Mco are
available.

• pLU-SGS/A-Roe: Obtaining the most accurate solutions is the top priority.

• pLU-SGS/AUSM+: One seeks fast convergence, and the freestream Mach number M∞ is avail-
able.

• pLU-SGS/SLAU: One is not sure whether the computation reaches stable solutions, or there is
no reference (uniform) flow present. Moreover, if computational time really does not matter,
LU-SGS/SLAU would be an alternative choice.

In addition, SLAU is the only all-speed scheme which is totally free from restrictions of
specifying reference values, such as Mco or M∞.
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Therefore, it is expected that a promising flux function can be developed if, for in-
stance, SLAU is improved by incorporating numerical dissipation while its robustness is
maintained, by using reference flow values as in A-Roe or AUSM+-up only when they
are available.

Furthermore, we would like to point out the following:

1. Viscous effects played a minor role.

2. The local time stepping technique was proven to be effective to accelerate convergence, but
its effect decreased with decreasing Mach number M∞. At low speeds, the effect of local time
stepping is recovered if it is coupled with preconditioning of time integration, but this combination
led to unstable or oscillatory solutions under some conditions.

Appendix

The transformation matrix from primitive variables to conservative variables is written
as

∂Q

∂q
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, q2 =u2+v2+w2, (A.1)

where Q is the conservative state vector (ρ,ρu,ρv,ρw,ρE)T , and q is the primitive one
employing pressure [14] (ρ,u,v,w,T)T.

Then, the preconditioner of Weiss and Smith for conservative variables is written as
follows due to Turkel [5], although this form is not used in the actual implementation.
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, (A.3)
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where K is constant usually taken as 0.25-1.0, and Mco is cutoff Mach number which is as
the same order as freestream Mach number M∞.

As stated in the main text, Eq. (2.36) shown below is used instead and the computa-
tional cost for the implementation of Γ

−1∆F is trivial according to Turkel [5]:

Γ
−1∆F=∆F−

(1−ε)dp

c2
(1 u v w H)T, (A.4)

dp=(γ−1)
( u2+v2+w2

2
∆F1−u∆F2−v∆F3−w∆F4+∆F5

)

, (A.5)

where ∆Fl stands for the l-th row of ∆F (e.g., ∆F1 =∆(ρVn)).
With the above expression one can easily obtain preconditioned variables by avoiding

actual matrix operation of Γ
−1∆F.

Nomenclature

CD drag coefficient

cp specific heat at constant pressure

Cp pressure coefficient

c2 pressure stabilization coefficient in All-Speed-Roe, 0.05

∆ minimum spacing of grid, 1.0e−3 in viscous cases (based on the airfoil chord len-

gth of 1)

E total energy

F,Fv inviscid (Euler) and viscous flux vectors

ε preconditioning coefficient

γ specific heat ratio, 1.4

Γ preconditioning matrix

H total enthalpy

i, j cell indices

K coefficient in preconditioning matrix, 1.0

κ thermal conductivity,κ =µcp/Pr,

M Mach number

ṁ mass flux, ṁ=ρu,

µ molecular viscosity

n normal vector to the cell-interface, (nx,ny,nz)
T

P pressure

Pr Prandtl number, 0.72

Q (conservative) state vector
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Re Reynolds number (based on the airfoil chord length of 1)

ρ density

T temperature

u,v,w velocity components in x,y,z-directions, respectively

x,y,z Cartesian coordinates

Vi volume of cell i

Vn velocity component normal to the cell-interface

Vn =(u,v,w), n=unx+vny+wnz

(−) arithmetic averaged value

(̂) Roe averaged value

()′ preconditioned value

Subscripts

co cutoff

L,R left and right running wave components

∞ freestream condition

∗ maximum value in whole computational domain in All-Speed-Roe

Superscripts

m value at m-th sub-iteration

n value at n-th timestep
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