
Commun. Comput. Phys.
doi: 10.4208/cicp.020810.161210a

Vol. 10, No. 3, pp. 695-715
September 2011

The Parameter Averaging Technique in Finite-Difference

Modeling of Elastic Waves in Combined Structures

with Solid, Fluid and Porous Subregions

Wei Guan∗ and Hengshan Hu

Department of Astronautics and Mechanics, Harbin Institute of Technology,
Postbox 344, 92 West Dazhi Street, Harbin 150001, China.

Received 2 August 2010; Accepted (in revised version) 16 December 2010

Communicated by Boo Cheong Khoo

Available online 1 June 2011

Abstract. To finite-difference model elastic wave propagation in a combined structure
with solid, fluid and porous subregions, a set of modified Biot’s equations are used,
which can be reduced to the governing equations in solids, fluids as well as fluid-
saturated porous media. Based on the modified Biot’s equations, the field quantities
are finite-difference discretized into unified forms in the whole structure, including
those on any interface between the solid, fluid and porous subregions. For the dis-
crete equations on interfaces, however, the harmonic mean of shear modulus and the
arithmetic mean of the other parameters on both sides of the interfaces are used. These
parameter averaging equations are validated by deriving from the continuity condi-
tions on the interfaces. As an example of using the parameter averaging technique, a
2-D finite-difference scheme with a velocity-stress staggered grid in cylindrical coor-
dinates is implemented to simulate the acoustic logs in porous formations. The finite-
difference simulations of the acoustic logging in a homogeneous formation agree well
with those obtained by the analytical method. The acoustic logs with mud cakes cling-
ing to the borehole well are simulated for investigating the effect of mud cake on the
acoustic logs. The acoustic logs with a varying radius borehole embedded in a hori-
zontally stratified formation are also simulated by using the proposed finite-difference
scheme.

AMS subject classifications: 76M20, 65M06, 76S05, 35L05, 86A15

Key words: Finite-difference, wave equation, porous medium, acoustic logging, numerical simu-
lation.

1 Introduction

In petroleum exploration a reservoir can be described as a fluid-saturated porous medium,
which consists of solid frame and pore fluid. Studies of elastic wave propagation in
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such a medium become increasingly important to obtain more detailed reservoir infor-
mation and monitor pore fluid flow. Biot [3–5] put forward the theory of wave prop-
agation in a homogeneous fluid-saturated porous medium allowed for the interaction
between the solid frame and the pore fluid. An important achievement of Biot’s the-
ory was the prediction of the second kind compressional wave in one-fluid-saturated
porous media [19]. After the establishment of Biot’s theory, many investigators have
used it to study the wave propagation in porous formations. For example, Deresiewicz
and Skalak [10] provided the boundary conditions on an interface between two different
porous media. Rosenbaum [22] and Schmitt [23] calculated the monopole acoustic logs
in homogeneous porous formations by applying the real-axis integration (RAI) method.
Norris [18] derived the analytical fundamental solutions in the form of Green’s function
for a point force applied in an unbounded poroelastic medium. Based on the Green’s
function, the wave propagation in horizontally stratified porous formations was simu-
lated by Boutin et al. [7]. However, analytical solutions for Biot’s equations are in general
impossible for arbitrary heterogeneous porous formations. In order to simulate poroe-
lastic wave propagation in complex cases, finite-difference methods were applied (e.g.,
Zhu and McMechan [31], Dai et al. [9], Zhang [29], Zeng et al. [30], Song et al. [24], and
Masson et al. [16]).

In a finite-difference algorithm, the heterogeneous formation is divided into discrete
grid, so that the field quantities and governing equations for wave propagation are dis-
cretized to the grid. Due to the parameter discontinuities across an interface between
different homogeneous media, the discrete equations for field quantities on the interface
are commonly different from those for the ones in homogeneous media. Masson et al. [16]
directly formulated the discrete equations on an interface between two different porous
media by replacing the parameters in the discrete equations in homogeneous media with
the averages of the two porous media. This parameter averaging technique is originated
from the finite-difference modeling of electromagnetic waves. It has been derived that
the discrete equations with average parameters comply with the continuity conditions
of the electromagnetic fields on the interface [14]. For the finite-difference modeling of
elastic wave propagation, however, the parameter averaging technique has not been val-
idated by derivation in literature. Thus in previous papers the parameters in the discrete
equations on interfaces were averaged by different manners. For example, the harmonic
mean of shear modulus was used in Masson et al. [16] and in Song [25], while the arith-
metic mean was used in Mittet [17]. Moreover, the parameter averaging technique was
used only for interfaces between two media of the same type, such as porous-porous and
solid-solid interfaces. If the wave equations on both sides of the interfaces are in different
forms, such as for a fluid-porous interface, the parameter averaging technique cannot be
used. Dong et al. [11] and Guan et al. [13] respectively formulated the discrete equations
on fluid-porous interface by solving the linear equations based on the continuity condi-
tions across the interface. Nevertheless, their method complicates the algorithm imple-
mentation because of the additional deriving on various interfaces at different locations,
and is inconvenient for the intersection between three different media.
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In this paper, the validity of the parameter averaging technique is determined. We
derive the discrete equations on an interface between two media of the same type by
using the discrete equations in the two homogeneous porous media and the continuity
conditions of the field quantities across the interface. These discrete equations on the
interface have the same forms as those in homogeneous media, but use the harmonic
mean of shear modulus and the arithmetic mean of the other parameters. Furthermore,
using a set of modified Biot’s equations to express elastic wave propagation in solid,
fluid as well as porous media, we extend the parameter averaging technique for inter-
faces between different kinds of media, such as a fluid-porous interface. Based on the
modified Biot’s equations and the parameter averaging technique, a 2-D finite-difference
time-domain scheme is presented for simulating elastic wave propagation in combined
structures with solid, fluid and porous subregions. In this scheme, the finite-difference
discrete equations are formulated in unified forms in the whole computational region
including those on any interface.

The paper is organized as follows: in Section 2, we briefly review Biot’s equations
which govern elastic wave propagation in homogeneous fluid-saturated porous media.
In Section 3, we derive the discrete equations with average parameters on an interface
between two different porous media. In Section 4, Biot’s equations are modified to govern
elastic wave propagation in solid, fluid as well as porous media. Based on the general
equations, the parameter averaging technique is applied for any interface between solid,
fluid and porous media. In Section 5, we discretize the modified Biot’s equations and
implement the 2-D finite-difference scheme for the modeling of elastic wave propagation
in combined structures with solid, fluid and porous subregions. The perfectly matched
layer absorbing boundary condition without splitting the fields is applied to eliminate the
spurious reflections from the artificial boundaries of the computational region. By using
the proposed scheme the monopole acoustic logs in fluid-saturated porous formations
are simulated in Section 6. The finite-difference modeled acoustic logs in a homogeneous
porous formation are compared with the analytical results obtained by the RAI method.
The effect of mud cake on acoustic logs is investigated by calculating the waveforms of
the acoustic logging with a mud cake clinging to the borehole wall. Simulations of the
acoustic logs in horizontally stratified porous formations are also given.

2 Biot’s equations

Biot [3–5] studied the interaction between the solid framework strain and the pore fluid
filtration when elastic waves propagate through a fluid-saturated porous medium and
established a set of governing equations. In his works, a generalized Darcy’s law is pro-
posed to allow for both the flow due to the induced pressure gradient and the flow cre-
ated by the acceleration of the solid framework which is the frame of reference for the
relative fluid flow. Assuming an e−iωt time dependence, the generalized Darcy law is
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written in the frequency domain as (e.g., Masson et al. [16])

vω =
κ(ω)

η
(−∇p+iωρ f vu), (2.1)

where vu is the solid phase velocity, vω is the velocity of the relative flow between the
pore fluid and the solid phase, which can be expressed as vω=φ(v f−vu), φ is the porosity
and v f is the pore fluid velocity, p is the pore fluid pressure, ρ f and η are the density and
the viscosity of the pore fluid, respectively, κ(ω) is the dynamic permeability function
defined by Johnson et al. [15], which has the following form

κ(ω)=κ0

[(

1− 4iω

mωc

)
1
2 −i

ω

ωc

]−1
. (2.2)

Here κ0 is the Darcy permeability, the term (1−4iω/mωc)1/2 dependent on frequency de-
notes the frequency correction function for the viscous force term in Biot’s equations, and
the critical frequency ωc =φη/α∞ρ f κ0 separates the low-frequency viscous flow from the

high-frequency inertial flow, where α∞ is the tortuosity, m=φΛ2/α∞κ0 is a dimensionless
parameter, Λ is the weighted volume-to-surface radio.

In order to finite-difference discretize (2.1) in the time domain, Taylor expansion is
applied to the term (1−4iω/mωc)1/2 in (2.2) under the condition that |4ω/mωc|<1, one
obtains

(

1− 4iω

mωc

)
1
2
=1− 1

2

( 4iω

mωc

)

− 1

8

( 4iω

mωc

)
1
2
+O

(ω3

ω3
c

)

. (2.3)

For a typical sandstone (where m ≈ 8) and ω < 2ωc, the third term in the right hand
side of (2.3) is a small quantity of higher order and can be ignored, thus the term (1−
4iω/mωc)1/2 is approximated as 1−2iω/mωc. Then (2.1) is approximately rewritten in
the time domain as

ρ f
∂vu

∂t
+C1vω +C2

∂vω

∂t
=−∇p, (2.4)

where C1 =η/κ0 and C2 =(1+2m−1)α∞ρ f /φ.

The remaining Biot’s equations with respect to velocities and stresses in the time do-
main are given by

∂τ

∂t
=(H−2µ)(∇·vu)I+C(∇·vω)I+µ(∇vu+vu∇), (2.5a)

∂p

∂t
=−(C∇·vu+M∇·vω), (2.5b)

ρ
∂vu

∂t
+ρ f

∂vω

∂t
=∇·τ, (2.5c)
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where τ is the bulk stress tensor, I is the identity tensor, ρ is the density of the porous
medium, which is expressed by the solid grain density ρs and the pore fluid density ρ f

as ρ = (1−φ)ρs +φρ f , µ is the shear modulus, H, C and M are porous medium moduli
defined by Biot [5], which are written as

M=
K f Ks

φKs+(α−φ)K f
, (2.6a)

C= Mα, (2.6b)

H =Ku+
4µ

3
. (2.6c)

Here Ks and K f are the bulk moduli of the solid grain and pore fluid, respectively, Ku

is the undrained bulk modulus, i.e., the bulk modulus of the fluid-saturated porous
medium, α=1−Kd/Ks is the Biot-Willis constant [6], where Kd is the drained bulk mod-
ulus, i.e., the bulk modulus of the solid framework, and the relation Ku = α2M+Kd is
known as the Gassmann equation [12].

3 Parameter averaging technique

An axisymmetric cylindrical coordinate system (r,θ,z), in which all field components are
independent of θ, is used as an example for deriving the finite-difference discrete equa-
tions on an interface between two different porous media. The velocity and stress fields
for Biot’s poroelastic waves in the 2-D cylindrical coordinates are discretized by using a
staggered finite-difference grid (Randall [20], Song et al. [24]), as shown in Fig. 1. The
staggered grid is composed of rectangular cells formed by solid grid lines. The integers j
and k denote the indices of the solid lines arrayed in the r and z directions, respectively.
The normal stresses τrr, τθθ and τzz are located at the center of cells, while the shear stress
τrz is located at the corners. All the velocity components are centered on the cell sides.

The medium parameters are set to be constant within a cell, thus the interfaces can
be only located along the solid grid lines between different cells. In this case, according

,ur wrv v

rz

,uz wzv v

, , ,rr zz p

j

k

1k

1j

r

z

Figure 1: Velocity-stress finite-difference staggered grid in axisymmetric cylindrical coordinates.
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Figure 2: Schematic of the interface between two different porous media.

to the boundary conditions given by Deresiewicz and Skalak [10], the quantities νur , νωr

and τrz located on an interface perpendicular to the r direction are continuous across the
interface and the quantities νuz, νωz and τrz located on an interface perpendicular to the
z direction are also continuous across the interface. Note that if the locations of field
quantities on the cells are changed (for example the cells are formed by the dotted lines
in Fig. 1), the quantity τθθ allowed to be discontinuous will be on an interface. Due to
the discontinuity, the values of τθθ may be different on the left and right sides of the
interface. Representing the two different values by a single variable in a finite-difference
scheme will lead to incorrect simulations.

Shown in Fig. 2 is an interface between two different porous media at rα= jα∆r, where
∆r is the cell size in the r direction. It is seen that the velocities νur , νωr and the shear
stress τrz are located on this interface. To calculate these three field quantities, one has to
use the following component equations in the 2-D cylindrical coordinates (e.g., Berryman
and Pride [2]),

ρ
∂νur

∂t
+ρ f

∂νωr

∂t
=

∂τrr

∂r
+

1

r
τrr−

1

r
τθθ +

∂τrz

∂z
, (3.1a)

ρ f
∂νur

∂t
+C1νωr +C2

∂νωr

∂t
=−∂p

∂r
, (3.1b)

∂τrz

∂t
=µ

(∂νuz

∂r
+

∂νur

∂z

)

. (3.1c)

For the grid points in a homogeneous porous medium (r = j∆r, j 6= jα), the partial differ-
ential equations (3.1a)-(3.1c) can be finite-difference discretized directly. For example, the
discrete expression of (3.1a) is written as

ρj

(∂νur

∂t

)

j
+ρ f j

(∂νωr

∂t

)

j
=

(∂τrr

∂r

)

j
+

1

r

(τrr−τθθ)j+ 1
2
+(τrr−τθθ)j− 1

2

2
+

(∂τrz

∂z

)

j
, (3.2)

where ρj and ρ f j are the densities of the homogeneous porous medium at r = j∆r, j 6= jα.
Because τrr and τθθ are not assigned at r= j∆r, their values are approximated as

(τrr)j =
1

2

(

(τrr)j− 1
2
+(τrr)j+ 1

2

)

and (τθθ)j =
1

2

(

(τθθ)j− 1
2
+(τθθ)j+ 1

2

)
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in (3.2).
Due to the break of medium parameters on the interface, (3.2) is invalid for the grid

points at rα = jα∆r. In order to formulate the discrete equations on the interface, we
select two space points (numbered ”1” and ”2” in Fig. 2) that respectively close to the left
and right sides of the interface. For the two points that in homogeneous media, (3.1a) is
discretized as

ρ1

(∂νur

∂t

)

1
+ρ f 1

(∂νωr

∂t

)

1
=

(∂τrr

∂r

)

1
+

(1

r
τrr

)

1
−

(1

r
τθθ

)

1
+

(∂τrz

∂z

)

1
, (3.3a)

ρ2

(∂νur

∂t

)

2
+ρ f 2

(∂νωr

∂t

)

2
=

(∂τrr

∂r

)

2
+

(1

r
τrr

)

2
−

(1

r
τθθ

)

2
+

(∂τrz

∂z

)

2
, (3.3b)

where ρ1 and ρ f 1 denote the densities of the porous medium and the pore fluid at the
location ”1”, while ρ2 and ρ f 2 denote those at the location ”2”. Using the continuities of
νur and νωr on the interface, we obtain (νur)1≈(νur)2≈(νur)rα and (νωr)1≈(νωr)2≈(νωr)rα .
Introducing the parameters ρAM =(ρ1+ρ2)/2 and ρ f AM =(ρ f 1+ρ f 2)/2, yields

ρ1

(∂νur

∂t

)

1
+ρ2

(∂νur

∂t

)

2
=2ρAM

(νur

∂t

)

rα

, (3.4a)

ρ f 1

(∂νωr

∂t

)

1
+ρ f 2

(∂νωr

∂t

)

2
=2ρ f AM

(νωr

∂t

)

rα

. (3.4b)

The continuity of τrz on the interface leads to an approximation of (τrz)1≈(τrz)2≈(τrz)rα .
Then the following equation is obtained

(∂τrz

∂z

)

1
+

(∂τrz

∂z

)

2
=2

(∂τrz

∂z

)

rα

. (3.5)

Using the continuity of the stress component τrr on the interface gives

(∂τrr

∂r

)

1
+

(∂τrr

∂r

)

2
=

(∆r

2

)−1[

τrr

(

rα+
1

2
,k+

1

2

)

−τrr

(

rα−
1

2
,k+

1

2

)]

=2
(∂τrr

∂r

)

rα

. (3.6)

Then adding (3.3a) and (3.3b) together, using (3.4a)-(3.6), and introducing the common
finite-difference approximations (τrr)1≈(τrr)rα−1/2, (τrr)2≈(τrr)rα+1/2, (τθθ)1≈(τθθ)rα−1/2

and (τθθ)2 ≈ (τθθ)rα+1/2, the discrete expression of (3.1a) on the interface at rα = jα∆r is
obtained

ρAM

(∂νur

∂t

)

rα

+ρ f AM

(∂νωr

∂t

)

rα

=
(∂τrr

∂r

)

rα

+
1

r

(τrr−τθθ)rα+ 1
2
+(τrr−τθθ)rα− 1

2

2
+

(∂τrz

∂z

)

rα

. (3.7)

It is seen that (3.7) has the same form as (3.2) in the homogeneous medium, but the pa-
rameters ρAM and ρ f AM are used instead, which are the arithmetic means of those in the
homogeneous media on both sides of the interface.
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Adopting a similar way to the derivation of (3.7), the discrete expression of (3.1b) on
the interface is given by

ρ f AM

(∂νur

∂t

)

rα

+C1 AM(νωr)rα +C2 AM

(∂νωr

∂t

)

rα

=−
(∂p

∂r

)

rα

, (3.8)

where C1 AM = (C11+C12)/2, C2 AM = (C21+C22)/2, C1q and C2q (q = 1,2), denote the
parameters C1 and C2 of the porous media on both sides of the interface.

To discretize (3.1c) on the interface, shifting the shear modulus µ to the left hand and
using the continuities of τrz, νuz and νur on the interface gives

( 1

µ

)

AM

(∂τrz

∂t

)

rα

=
(∂νuz

∂r
+

∂νur

∂z

)

rα

. (3.9)

As the shear stress is assigned at the corners of a cell, (1/µ)AM in (3.9) is calculated by
the arithmetic mean of 1/µ in the four cells neighboring the shear stress position, which
is formulated as

( 1

µ

)

AM
=

1

4

4

∑
q=1

1

µq
.

Shifting the parameter (1/µ)AM into the right hand of (3.9) yields

(∂τrz

∂t

)

rα

=µHM

(∂νuz

∂r
+

∂νur

∂z

)

rα

, (3.10)

where µHM is the reciprocal of (1/µ)AM, i.e., the harmonic mean of µ.
It is shown by (3.7), (3.8) and (3.10) that the discrete equations on a porous-porous

interface can be formulated directly in the forms of those in a homogeneous medium, if
the harmonic mean of shear modulus µ and the arithmetic mean of the other parameters
are used. Although the above discrete equations with average parameters are derived
in the 2-D coordinates, the parameter averaging technique is available for 3-D finite-
difference modeling problems because the field quantity in a 3-D finite-difference grid is
still calculated by using its adjacent field quantities on the 2-D plane.

4 General equations for solid, fluid and porous media

From the above derivation it is seen that the governing equations on both sides of the
interface must be in the same form when using the parameter averaging technique. For
wave propagation in a combined structure with solid, fluid and porous subregions, there
are interfaces between distinct kinds of media. For example, in the acoustic logging in
porous formations, the borehole wall is a fluid-porous interface between the borehole
fluid and the porous formation. If there is a mud cake that regarded as a solid medium
clinging to the borehole wall, the solid-fluid and solid-porous interfaces are also exist.
On both sides of these interfaces between solid, fluid and porous media, the governing
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equations have different forms. In order to extend the parameter averaging technique
for any kind of interface, we will use a set of general equations to describe elastic wave
propagation in solid, fluid as well as porous media.

Biot’s equations governing elastic wave propagation in fluid-saturated porous media
can be reduced to the equations for solids and fluids by setting the limits of certain field
quantities and material parameters. A porous medium whose pore spaces are filled with
solid grain corresponds to an elastic solid. In this limiting case, the field quantities and
parameters in Biot’s equations change to φ=0, Kd =Ks =K f =Kms, µ=µms, α=0, M=∞,
C = Kms, H = Kms+4µms/3, ρ f = ρ = ρms, τ = τms, vu = v f = vms, and vω = 0, thus (2.5a)
and (2.5c) are reduced to the basic Newton’s motion law and continuity equation of the
stress and velocity fields in the solid, i.e.,

∂τms

∂t
=λ(∇·vms)I+µms(∇vms+vms∇), (4.1a)

ρms
∂vms

∂t
=∇·τms, (4.1b)

where λ = Kms−2µms/3, the variables with subscript ”ms” denote the stress, velocity, or
material parameters in the solid.

A porous medium whose solid frame is replaced by the pore fluid corresponds to a
fluid. In this limiting case, the field quantities and parameters in Biot’s equations become
φ = 1, Kd = 0, Ks = K f = Km f , µ = 0, α = 1, C = M = H = Km f , ρ f = ρ = ρm f , τ =−pm f I,
v f =vu =vm f , and vω =0, hence (2.5a) and (2.5c) are reduced to the governing equations
in the fluid, i.e.,

∂pm f

∂t
=−ρm f ν2

m f∇·vm f , (4.2a)

ρm f

∂vm f

∂t
=−∇pm f , (4.2b)

where the variables with subscript ”m f ” denote the fluid pressure, velocity, or density.

It is seen that elastic wave propagation in a solid or fluid can be solved by using Biot’s
equations (2.5a) and (2.5c) in limiting cases. The rest of Biot’s equations (2.4) and (2.5b)
are not required. The variables vu and τ respectively denote the velocity and stress field
of the solid or fluid, while vω and p are redundant. The variable vω is directly set as zero
when solving (2.5a) and (2.5c), and p is simply set to be the negative value of the mean
normal stress after the calculation of τ. For the fluid, the normal stresses in different
directions are of the same value and are equal to the negative fluid pressure, while the
shear stress components of τ are zero.

In order to implement the finite-difference scheme of using general equations in solid,
fluid and porous media, shifting the second term in the left hand side of (2.5c) to the right
hand side and then substituting it into (2.4), Biot’s equations (2.4) and (2.5c) are rewritten
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as

C1vω+
(

C2−
ρ2

f

ρ

)∂vω

∂t
=−∇p− ρ f

ρ
∇·τ, (4.3a)

ρ
∂vu

∂t
=∇·τ−ρ f

∂vω

∂t
. (4.3b)

The field quantities in solid, fluid as well as porous media can be discretized from the
modified Biot’s equations composed of (2.5a), (2.5b), (4.3a), and (4.3b). For a staggered
finite-difference grid, velocities and stresses are calculated alternately in time. When
calculating the velocities, vω is obtained by solving (4.3a) for a porous medium or it is set
as zero for a solid or a fluid. Then the velocity vu is determined by substituting the known
value of vω into (4.3b). Compared with using (4.1a) and (4.1b) for the solid or (4.2a)
and (4.2b) for the fluid, it does not spend too much CPU time by using the modified
Biot’s equations. The reason is that only two of the four Biot’s equations are actually
used in calculation, the redundant field quantities vω and p need not to be solved from
the equations.

The advantage of using the modified Biot’s equations in solid, fluid and porous media
is that the parameter averaging technique can be extended for solid-fluid, solid-porous
and fluid-porous interfaces. For an open pore fluid-porous interface, there is fluid flow
across the interface and consequently the relative flow velocity vω need to be calculated
from (4.3a). We give an example to derive the discrete equations of νωr on the fluid-
porous interface perpendicular to the r direction. Multiplying (3.7) by ρ f AM/ρAM and
then substituting it into (3.8) yields

C1 AM(νωr)rα +
(

C2 AM−
ρ2

f AM

ρAM

)(∂νωr

∂t

)

rα

=−
(∂p

∂r

)

rα

− ρ f AM

ρAM

[(∂τrr

∂r

)

rα

+
1

r

(τrr−τθθ)rα+ 1
2
+(τrr−τθθ)rα− 1

2

2
+

(∂τrz

∂z

)

rα

]

. (4.4)

The relative flow velocity νωr on the fluid-porous interface is discretized by using (4.4)
with the arithmetic means of C1, C2, ρ f and ρ on both sides of the interface. In the fluid,
both of the parameters ρ f and ρ are equal to the fluid density, and C1 =0 and C2 =1 are
calculated by using the limiting values κ0 =∞, Λ=∞, α∞ =1, ωc =0, m=∞.

As the relative flow velocity is not possible across a solid-fluid or solid-porous inter-
face, it is set to be zero instead of being calculated from (4.3a). Even though, we briefly
analyze the limiting values of C1, C2, ρ f , and ρ in a solid. The parameters ρ f , and ρ are
equal to the solid density, and C1 =∞, and C2 =∞ are calculated by using κ0 =0, α∞ =∞,
φ/α∞κ0 =0, and m=0. The values of C1 and C2 in the solid make the variable vω in (4.3a)
identically equal to zero, which accords with the physical fact. Similarly, M = ∞ in the
solid makes vω =0 in (2.5b). These three input parameters are not used for the simulation
of elastic waves in solids, thus they are set as -1.0 in our finite-difference scheme, only to
identify them to be the solid parameters.
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Based on the general equations and the parameter averaging technique, the velocities
and stresses in the whole structure with solid, fluid and porous subregions are finite-
difference discretized in the same forms. Hence it takes less CPU time than using the
continuity conditions to derive additional equations as in the previous schemes [11, 13]
and it has the advantage of easy treatment of complex interfaces, for example, at the
intersection of three different media.

5 Finite-difference scheme

For the finite-difference modeling of wave propagation in unbounded structures, as in
the case of acoustic logging, the spurious reflections need to be absorbed at the artificial
boundaries of the computational region and therefore absorbing boundary conditions
must be defined. The perfectly matched layer (PML) absorbing boundary condition with
nonsplitting-fields technique (e.g., Roden and Gedney [21], Wang and Tang [28]) is ex-
tended to our scheme of the poroelastic wave problem.

To introduce the PML, we rewrite the modified Biot’s equations in the complex
stretched coordinates (e.g., Chew and Weedon [8], Wang and Tang [28]). The complex
coordinate-stretching variable is chosen as sq=1+Ωq/iω (q=r,z), where Ωq is the stretch-
ing function with respect to q. In the complex stretched coordinates, the regular coordi-
nate variable q is replaced by the complex coordinate variable q̃, where

r̃ =
∫ r

0
sr(r′)dr′ = r(1+Ωr/iω), and Ωr =

1

r

∫ r

0
Ωr(r′)dr′,

and the spatial derivative ∂/∂q̃ is expressed in terms of the complex coordinate-stretching
variable as ∂/∂q̃ =(1/sq)∂/∂q. The component forms of the modified Biot’s equations in
the complex stretched coordinates are given by
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, (5.1a)
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, (5.1d)

where φq=−Ωqe−Ωqt∗ (q=r,z) and φ̄r=−Ωre−Ωrt∗ are convolution operators. Eqs. (5.1a)-
(5.1d) are the modified Biot’s equations in the PML region. These equations automatically
reduce to the equations in the computational region, where Ωq and Ωr become zero.

Now we discretize the velocities and stresses by using the staggered finite-difference
grid as shown in Fig. 1. The grid sizes ∆r and ∆z in the r- and z-directions, respectively,
are constant. All the velocities are temporally discretized at the time points t=n∆t, while
all the stresses are discretized at t=(n+1/2)∆t. Knowing νur , νωr, νuz, νωz at times t=n∆t,
t=(n−1)∆t, and τrr, τθθ , τzz, τrz, p at the time t=(n−1/2)∆t, the discrete forms of (5.1a)
and (5.1b) are used to update τrr, τθθ , τzz, τrz, p at time t=(n+1/2)∆t. For example,
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where Pn
urr, Pn

uzz, Qn
urr, Pn

ωrr, Pn
ωzz, Qn

ωrr, Pn
uzr and Pn

urz denote convolution integrals, for
example,
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which can be further approximated with the trapezoidal rule as
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The shear modulus µ at the location (j,k) is
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The formulations to calculate τθθ, τzz and p have the similar forms as (5.2a).
Knowing τrr, τθθ , τzz, τrz, p at times t=(n−1/2)∆t, t=(n+1/2)∆t and νωr, νωz at time

t=n∆t, the discrete expression of (5.1c) is used to update νωr and νωz at time t=(n+1)∆t.
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where the values of ρ f , ρ, C1 and C2 at the location (j,k+1/2) are the averages of those at
the locations (j−1/2,k+1/2) and (j+1/2,k+1/2), while the values at (j+1/2,k) are the
averages of those at (j+1/2,k−1/2) and (j+1/2,k+1/2). The variables Pn+1/2
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rzr in Eq. (5.6b) have the

similar forms as (5.4a)-(5.4c).
Then using the calculated νωr , νωz at time t=(n+1)∆t and νur , νuz at time t=n∆t, the

discrete form of (5.1d) is used to update νur and νuz at time t=(n+1)∆t.
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Thus in our scheme the field quantities are discretized in the unified forms in the whole
region, including those on any interface in the computational region and those in the
PML region.

6 Numerical examples

As an example of using the finite-difference scheme proposed above, we simulate the
monopole acoustic logs in fluid-saturated porous formations. For all the simulations in
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the following work, the borehole fluid velocity and density are assumed to be 1500m/s
and 1000kg/m3, respectively. A stretching function of Ωq(q) =−Vmax(aγ+bγ2)lnβ/T,
(q = r,z) is taken, as given in Wang and Tang [28], where Vmax is the maximum wave
velocity, γ = q/T, T is the width of the PML, a = 0.25, b = 0.75 and β = 10−6 denotes a
predefined level of wave absorption. The point source employed is the same as described
by Tsang and Rader [26], with the peak pressure being 100Pa at a location of 0.01m away
from the source. The source pulse function s(t) used in this paper is

s(t)=







1

2

[

1+cos
2π

Tc

(

t− Tc

2

)]

cos2π f0

(

t− Tc

2

)

, 0≤ t≤Tc,

0, t>0 or t>Tc,
(6.1)

where f0 and Tc denote the centre frequency and the pulse width of the source, respec-
tively.

To check the scheme, the finite-difference simulations of the acoustic logs in a homo-
geneous porous formation are compared with the RAI solutions in Figs. 3 and 4. The
parameters of the porous formation are listed in the first column (Formation I) of Table 1.
The borehole radius is set to 0.10m.

Table 1: Parameters of the porous formations. The relationships between φ and Kb and Gb are assumed to
obey the experimental results of Vernik [27].

Parameter Property Formation
I II

φ Porosity (%) 20 40
κ0 Darcy permeability (Darcy) 1 10
Kb Frame bulk modulus (GPa) 14.39 10.93
Gb Frame shear modulus (GPa) 13.99 3.01
Ks Solid bulk modulus (GPa) 35.70 33.17
K f Pore fluid bulk modulus (GPa) 2.25 2.0

ρs Solid density (kg/m3) 2650 2670
ρ f Pore fluid density (kg/m3) 1000 1290

η Pore fluid viscosity (Pa· s) 10−3 10−2

α∞ Tortuosity 3 3
m Dimensionless parameter 8 8

In Fig. 3, the source has a centre frequency and a pulse width of f0 = 1kHz and
Tc = 2.0ms, respectively. The finite-difference grid sizes are set to ∆r = ∆z = 0.0125m ac-
cording to the formula ∆r <Vmin/10 fmax in Alford et al. [1], where Vmin is the minimum
wave velocity, and fmax is the maximum source frequency, where fmax=2 f0. The time step
is chosen as ∆t=2×10−3ms, following the Courant stability condition ∆t<∆r/

√
2Vmax.

There are 160 and 320 cells respectively in the r- and z- directions of the computational
region. The PML contains 40 cells in both directions outside the computational region.
Fig. 3(a) gives the comparison of the acoustic pressure full waveforms at different loca-
tions along the borehole axis. The waveforms are normalized with respect to the peak
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Figure 3: Comparisons between the finite-difference (Solid lines) and the RAI (Dash dot lines) methods of the
monopole acoustic logs in a homogeneous porous formation. The centre frequency of the source is f0 =1.0kHz.
(a) Pressure waveforms at different locations along the borehole axis. (b) The waveforms of (a) at the location
z=2.0m.

0.0 1.0 2.0 3.0 4.0

D
is

ta
n
ce

 (
m

)

Time (ms)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0 1.0 2.0 3.0
-2.0

-1.0

0.0

1.0

2.0

 RAI

A
m

p
it

u
d

e 
(P

a)

Time (ms)

0.0 1.0 2.0 3.0

-2.0

-1.0

0.0

1.0

2.0

 Finite-difference

Compressional

    wave

Stoneley

 wave 
Shear and pseudo-Rayleigh

         wave

(a) (b)

Figure 4: Same as Fig. 3 except that the centre frequency of the source is f0 =6.0kHz. (a) Pressure waveforms
at different locations along the borehole axis. (b) The waveforms of (a) at the location z=2.0m.

value of the response at a location of receiver-to-source distance z = 0.5m. More de-
tails at z = 2.0m are given in Fig. 3(b). At these frequencies, compressional and shear
waves are not very well excited, while Stoneley wave dominates the full waveforms.
The Stoneley wave attenuation is obvious because the wave energy is gradually leaked
into the porous formation by the slow compressional wave. As depicted in Fig. 3, the
finite-difference simulations (Solid lines) show excellent agreement with the RAI solu-
tions (Dash dot lines) at different locations from z=0.5m to z=4.0m.

In Fig. 4, the source center frequency and the pulse width are changed to f0 = 6kHz
and Tc = 0.5ms, respectively. The finite-difference grid sizes are set to ∆r = ∆z = 0.005m
and the time step is chosen as ∆t = 8×10−4ms. Shown in Fig. 4(a) is the comparison of
the waveforms at different locations from z=0.5m to z=4.0m. At these frequencies, it is
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clear that the full waveforms consist of the compressional wave, the shear and pseudo-
Rayleigh wave, and the Stoneley wave. More details at z=2.0m are given in Fig. 4(b). It
shows that the phase and the amplitude of the three wave groups agree well between the
two methods.

Next the finite-difference scheme is used to simulate the acoustic logs with mud cakes
clinging to the borehole wall for investigating the effects of the mud cake on acoustic logs.
Shown in Fig. 5 are the acoustic logs at z=2.0m with different mud cake thicknesses being
from 0.25cm to 4.0cm. The mud cake is considered as a soft elastic medium between the
borehole fluid and the porous formation. The mud cake whose density, bulk and shear
moduli are set to 2000kg/m3, 3.60GPa and 2.16GPa, respectively, has a compressional
velocity of 1800m/s and a shear velocity of 1040m/s. The source and the formation
parameters are as same as that in Fig. 4. For comparison, the acoustic log without the
mud cake is also given in Fig. 5. From the Stoneley wave amplitudes of all the cases
provided on the right hand of Fig. 5, it is seen that the amplitude without the mud cake is
much less than those with the mud cakes clinging to the borehole wall. The reason is that
Stoneley wave generated at the borehole wall is greatly influenced by the wall conditions.
When there is no mud cake the borehole wall which is an open pore interface leads to the
exchange between the borehole fluid and the pore fluid, thus large wave energy in the
borehole is leaked into the formation. For the cases with mud cakes, the sealed pores on
the borehole wall which is filled with mud cake block the wave energy into the formation.
It is also seen that Stoneley wave amplitude increases with mud cake thickness when the
mud cake thickness is less than 1.0cm. Beyond that, the amplitude and the velocity of
the Stoneley wave start to decrease because it reflects the characteristics of the mud cake
instead of that of the porous formation outside. Fig. 6 is same as Fig. 5 except that the
shear modulus of the mud cake decreases five times. The mud cake in Fig. 6 has slower
compressional velocity of 1445m/s and shear velocity of 465m/s, having more effect on
the acoustic logs than that in Fig. 5. When the mud cake thickness is more than 1.0cm,
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Figure 5: Waveforms of the acoustic logs with different mud cake thicknesses being from 0.25cm to 4.0cm.
The source center frequency is f0 =6.0kHz.
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Figure 6: Same as Fig. 5 except that the shear modulus of the mud cake decreases five times.

the waveforms in Fig. 6 become so complex and the amplitude and the velocity of the
Stoneley wave decrease more significantly than those in Fig. 5.

Then the acoustic logs in a horizontally stratified porous formation are simulated in
Fig. 7. The porous formation around the borehole has three layers, and the medium
parameters of the layers are list in Table 1. The layer, which lies between 1.5m and 2.5m
above the source, is of Formation II (with higher porosity and permeability). The other
two layers are of Formation I. In order to distinguish the reflections of the Stoneley wave
at the interfaces between the two layers, the source center frequency and the pulse width
are employed as f0 =2kHz and Tc =2.0ms, respectively. It is clearly shown in Fig. 7 that
there are two series of waves reflected respectively from the interfaces at z=1.5m and at
z = 2.5m. The one from the second interface at z = 2.5m is smaller because most of the
wave energy is attenuated in the interlayer and transmitted from the interface.

Finally we simulate the acoustic logs in a varying radius borehole embedded in a
horizontally stratified porous formation. The formation is the same as in Fig. 7. The
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Figure 7: Waveforms of the acoustic logs in a horizontally stratified porous formation. The source center
frequency is f0 =2.0kHz.
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Figure 8: Field distribution of the pressure at five instants of 0.4, 0.8, 1.2, 1.6, and 2.0ms of the acoustic logs in
a varying radius borehole embedded in a horizontally stratified porous formation. The source centre frequency
is f0 =10kHz.

borehole radius is set to 0.2m at the range between 1.5m and 2.5m above the source,
while it is set to 0.1m at the other locations. In order to identify different wave groups in
the wave-field, a higher center frequency f0=10kHz and a shorter pulse width Tc=0.2ms
are used in this simulation. Fig. 8 shows the wave-field distributions at instants of 0.4,
0.8, 1.2, 1.6, and 2.0ms. The variable borehole radii and the locations of the horizontal
interfaces are clearly reflected from the wave-field distributions. In the figure, no obvious
wave reflection is observed from the outer boundaries, indicating that the wave-field
is well absorbed in the PML. Shown in the first slide at 0.4ms, the fastest pulse in the
formation is the transmitted compressional wave from the borehole, and then the pulse
with larger amplitude is the transmitted shear wave. The compressional head wave in the
borehole can also be seen. In the slide at 0.8ms, the large-amplitude arrival propagates
to the interface at z =1.5m, which is the pseudo-Rayleigh wave in the borehole. For the
frequency range in this simulation, the Stoneley wave is too weak to be identified within
the pseudo-Rayleigh wave packet. In the three later slides at 1.2, 1.6, and 2.0ms, it is
seen that part of the pseudo-Rayleigh wave energy in the borehole is reflected back at the
interface, and part of the wave energy is leaked into the porous formation by the slow
compressional wave and is rapidly dissipated.

7 Conclusions

In this paper, we have validated using the parameter averaging technique to discretize
the field quantities on interfaces in finite-difference modeling of elastic waves. On solid-
solid and porous-porous interfaces, the discrete equations can be formulated in the forms
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of those in the homogeneous media on both sides of the interfaces, if the harmonic mean
of shear modulus and the arithmetic means of the other parameters are used. The param-
eter averaging technique is extended for the interfaces between different kinds of media,
such as the solid-fluid, solid-porous, and fluid-porous interfaces.

We have observed that the quantities on a staggered grid must be assigned in this
manner that the discontinuous ones are not located on a grid boundary. Once the right
staggered grid is used, using the parameter averaging technique to obtain the discrete
equations on interfaces is equivalent to deriving from the continuity conditions. The
former avoids the additional derivations, thus it takes less computing time and has the
advantage of easy treatment of complex interfaces, such as the intersection of three dif-
ferent media.

We have developed a velocity-stress staggered finite-difference scheme for simulating
elastic wave propagation in combined structures with solid, fluid and porous subregions.
In our scheme, the modified Biot’s equations are used to express elastic wave propagation
in solid, fluid as well as porous media. Based on the general equations and the parameter
averaging technique, the discrete equations have the same forms in the whole computa-
tional region including those on any kind of interface that the medium parameters are
discontinuous.

We have implemented the 2-D finite-difference scheme in axisymmetric cylindrical
coordinates and used it to simulate the acoustic logs in fluid-saturated porous forma-
tions. For the case in a homogeneous formation, this algorithm requires three minutes
and thirty-six seconds of CPU time, which is four seconds faster than using the previ-
ous scheme (Guan et al. [13]). This indicates that the computing efficiency is not reduced
when using Biot’s equations to express the acoustic fields in the borehole fluid. The finite-
difference simulations have been compared with those obtained by the RAI method. The
excellent agreement confirms the correctness of the finite-difference scheme. The acoustic
logs with a mud cake clinging to the borehole wall have been simulated. The Stoneley
wave amplitude without mud cake is much less than those with the mud cakes because
the sealed pores block the wave energy into the formation. The Stoneley wave amplitude
and velocity are influenced by the thickness and the shear modulus of the mud cake.
When the mud cake thickness is more than 1.0cm both the amplitude and the veloc-
ity decrease with the increasing thickness, which is more significant for a smaller shear
modulus. In a more complex example we simulated the acoustic logs in a varying ra-
dius borehole embedded in a horizontally stratified porous formation. Clearly reflected
in the simulated wave-field are the variation of the borehole radius and the locations of
the horizontal interfaces.
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