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1 Introduction

The resonant tunneling diode(RTD) is a diode with a resonant tunneling structure in
which electrons can tunnel through some resonant states at certain energy levels. It
has been widely studied both theoretically and experimentally [7, 8, 10] for its impor-
tant role in constituting different functions of the nanoscale semiconductor devices, e.g.
integrated circuit, microprocessor, memory devices, wide-band wired and wireless com-
munications [21, 27]. The RTD is made up of two large reservoirs and an active region.
The reservoirs, which are highly conducting, can be used for exchanging electrons with
external electrical circuit. The active region (see Fig. 1) can be a double barrier, triple
barrier, quantum well, quantum wire, quantum dot, etc.
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Figure 1: The picture of two dimensional device for the active region of RTD. This figure is copied from [24].

Since the length scale is small in RTD, quantum effects should be considered. There-
fore a general approach to model such device is through the Schrödinger equation for
wave function coupled to Poisson equation for the electric potential [20].

There are two primary issues in the numerical simulation. One is the numerical inte-
gration of the Schrödinger equation, e.g. finite difference method [18, 19], spectral type
method [5, 6, 22], the WKB-scheme [3, 4], and the Gaussian beam method [14, 15]. The
other is the reduction of energy grid points [4,9,23]. Besides these, the artificial boundary
conditions [1, 2, 17], the dimensionality reduction [3, 24], the Gummel iteration [11, 23],
the Green function’s method [12, 13, 26] and many other related topics are investigated.

The well known numerical difficult in RTD is that the curve of transmission coefficient
versus energy tends to be singular in the vicinity of resonant energies. Therefore, a very
fine energy mesh is needed to capture the correct integral of the density, which results a
large supplementary numerical cost for computing these Schrödinger equations. In order
to deal with this problem, an adaptive energy mesh method was developed in [23]. But
it still consume lots of computational resource since the mesh should be very fine near
the resonant energies. Moreover, it doesn’t work for the time dependent case because the
resonances move.

Lately, the one mode approximation [4, 16, 25] was proposed to compute the density.
The method decompose the wave function into an exterior part and an interior part. The
exterior part is smooth in energy mesh and thus does not require a fine energy mesh.
The interior part can be well approximated by its projection on the resonant state. The
one-mode approximation does save the computational cost, but this approximation may
not work for some applications, e.g. multiple barrier problem and high dimensional
problem.

In this paper, we present the multi-mode approximation to overcome these difficul-
ties. The one dimensional problem is discussed in Section 2. In Section 3, it is extended
for high dimensions. We conduct numerical examples in Section 4 to verify the accu-
racy of the numerical methods. In Section 5, we give some discussions on the algorithm
efficiency. Finally, we make the conclusive remarks in Section 6.
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2 The one dimensional stationary algorithm

Consider the dimensionless Schrödinger equation with open boundary condition on the
domain [a,b]











− 1
2 ǫ2 ϕ′′

p +Vϕp =Ea
pϕp, (p≥0),

ǫϕ′
p(a)+ipϕp(a)=2ip,

ǫϕ′
p(b)−i

√

p2+2(V(a)−V(b))ϕp(b)=0,

(2.1)

for electrons injected at x= a with momentum p≥0 and











− 1
2 ǫ2 ϕ′′

p +Vϕp =Eb
p ϕp, (p≤0),

ǫϕ′
p(b)+ipϕp(b)=2ip,

ǫϕ′
p(a)−i

√

p2+2(V(b)−V(a))ϕp(a)=0,

(2.2)

for electrons injected at x=b with momentum p≤0. Here

Ea
p =

1

2
p2+V(a), Eb

p =
1

2
p2+V(b),

ϕp(x) is the wave function, ǫ is the re-scaled Planck constant, and the electrostatic poten-
tial V is split into the external potential Ve and the self-consistent potential Vs:

V(x)=Ve(x)+Vs(x).

The self-consistent potential Vs satisfies the Poisson equation

{

V ′′
s (x)=− 1

ε0
(n(x)−nD(x)),

Vs(a)=Vs(b)=0,
(2.3)

in which ε0 is the dielectric constant, nD is the doping density, and the electronic density
n(x) is given by

n(x)=
∫ +∞

−∞
g(p)

∣

∣ϕp(x)
∣

∣

2
dp. (2.4)

In the integral, g(p) is the statistics of the electrons injected at x = a or x = b, e.g. the
Fermi-Dirac statistic. The external potential (Fig. 2)

Ve(x)=Vb(x)+Vw(x)+Va(x),

is a summation of quantum barrier, quantum well

Vb(x)=V01[a2,b2], Vw(x)=−V01[c1,d1]∪[c2,d2]∪···∪[cF ,dF],

and the applied bias

Va(x)=−V1

(

x−a1

b1−a1
1[a1 ,b1)+1[b1,b]

)

.
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Figure 2: The external potential Ve(x).

Here V0≥0 and V1≥0 denotes the height of the barrier and the amplitude of the applied
bias respectively. And we have

a< a1 < a2 < c1 <d1 < ···< cF <dF <b2 <b1 <b.

To solve the stationary Schrödinger-Poisson equations (2.1)-(2.4) iteratively, there are
mainly three steps:

1. Compute the wave function ϕl
pk

(x) from Vl
s (x) with different momentum pk by solving the

Schrödinger equation (2.1)-(2.2).

2. Numerical integrate the quantity g(pk)
∣

∣

∣
ϕl

pk
(x)
∣

∣

∣

2
into the density nl(x) with the integration

formula (2.4).

3. Compute the self-consistent potential at next iteration Vl+1
s (x) from nl(x) by solving the poisson

equation (2.3).

Here l denotes the times of iteration and {pk} gives the energy mesh discretization. In
this paper, we focus on improving the first step, which is to implement the multi-mode
approximation into the numerical schemes for (2.1)-(2.2). For the second and the third
step, we refer readers to the adaptive mesh approach for the integration [4, 23] and the
Gummel iteration for the coupling [11, 23].

2.1 Multi-mode approximations

To concentrate on the multi-mode approximation for the Schrödinger equation, we ignore
the effect of the self-consistent potential Vs(x)=0, and only inject electrons at x = a with
momentum p≥0. Then we rewrite the equation (2.1) as











− 1
2 ǫ2 ϕ′′

p +Ve ϕp = 1
2 p2 ϕp,

ǫϕ′
p(a)+ipϕp(a)=2ip,

ǫϕ′
p(b)−i

√

p2+2V1ϕp(b)=0.

(2.5)
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The transmission coefficients versus energy is defined by

T(E)=

√

E+V1

E

∣

∣ϕp(b)
∣

∣

2
,

with E= 1
2 p2. Following the previous paper [4,9,16,25], we decompose the wave function

ϕp into an exterior part ϕext
p and an interior part ϕint

p ,

ϕp(x)= ϕext
p (x)+ϕint

p (x).

The exterior wave function is defined as the solution of










− 1
2 ǫ2∂xx ϕext

p +(Vb+Va)ϕext
p = 1

2 p2 ϕext
p ,

ǫ∂x ϕext
p (a)+ipϕext

p (a)=2ip,

ǫ∂x ϕext
p (b)−i

√

p2+2V1 ϕext
p (b)=0.

(2.6)

Since ϕext
p is smooth on the energy direction p, it can be computed initially on a coarse

mesh of p and then interpolated for finer requirements [4]. Then the interior wave func-
tion satisfies the nonhomogeneous Schrödinger equation











− 1
2 ǫ2∂xx ϕint

p +Ve ϕint
p = 1

2 p2 ϕint
p −Vw ϕext

p ,

ǫ∂x ϕint
p (a)+ipϕint

p (a)=0,

ǫ∂x ϕint
p (b)−i

√

p2+2V1ϕint
p (b)=0.

(2.7)

The direct simulation of (2.7) is waste of computational resource. Instead, we approxi-
mate it by the multi-mode form

ϕint
p (x)=

N

∑
n=1

θn(p)

λn− 1
2 p2

φn(x). (2.8)

Here φn(x) is the non trivial solution of the eigenvalue problem










− 1
2 ǫ2∂xxφ+Veφ=λφ,

ǫ∂xφ(a)+i
∗√

2λφ(a)=0,

ǫ∂xφ(b)−i ∗
√

2(λ+V1)φ(b)=0,

(2.9)

here ∗√z denotes the determination of the square root which is holomorphic on C\iR−
and defined as follows: for z=ρeiθ , with ρ>0 and θ∈

(

−π
2 , 3π

2

)

, ∗√z=
√

ρei θ
2 . The complex

eigenvalue λ=ER−iΓ/2 has necessary a non vanishing imaginary part. Taking (2.8)-(2.9)
into (2.7) leads to the linear system for the coefficients θn(p):

N

∑
n=1

〈φn,φn′〉θn(p)=−〈Vw ϕext
p ,φn′〉. (2.10)

Here 〈·,·〉 denotes the inner product. Since Eq. (2.9) is nonlinear eigenvalue problem,
the eigenfunctions are not orthogonal to the others. It is easy to see that the multi-mode
approximation is consistent with the one mode approximation.
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Remark 2.1. Note the boundary conditions are different in (2.7) and (2.9), but this is still
a good approximation. The detailed explanation can be found in [4].

Remark 2.2. The numerical method of non trivial eigenvalue problem (2.9) can be found
in [4, 9]. For this reason, we do not discuss here.

3 Generalization to higher dimensions

The idea of multi-mode approximation can be generalized to higher dimensions natu-
rally. Here we take the 2d problem as an example to explain the necessary processes. The
modeling approach used here can be as well extended to 3d problems. Consider the 2d
Schrödinger equation

−1

2
ǫ2
(

∂xx ϕE+∂yy ϕE

)

+Ve(x,y)ϕE =EϕE, (3.1)

on computational domain Ω=[a,b]×[−d,d]. Let ∂Ω=Γd∪Γa∪Γb with

Γd =
{

(x,y)
∣

∣ x∈ [a,b], y=±d
}

,

Γa =
{

(a,y)
∣

∣ y∈ [−d,d]
}

,

Γb =
{

(b,y)
∣

∣ t∈ [−d,d]
}

.

Then the boundary conditions are

ϕE(x,y)|Γd
=0, (3.2a)

ǫ∂x ϕE(a,y)= ∑
E>Ea

m

i
√

2(E−Ea
m)(2am−ϕa

E,m)χa
m(y)+ ∑

E≤Ea
m

√

2(Ea
m−E)ϕa

E,mχa
m(y), (3.2b)

ǫ∂x ϕE(b,y)= ∑
E>Eb

m

i
√

2(E−Eb
m)ϕb

E,mχb
m(y)− ∑

E≤Eb
m

√

2(Eb
m−E)ϕb

E,mχb
m(y). (3.2c)

Here (E∗
m,χ∗

m(y)) (∗= a,b) are solutions of the eigenvalue problem

{

− 1
2 ǫ2∂yyχ∗(y)+Ve(∗,y)χ∗(y)=E∗χ∗(y),

χ∗(±d)=0, 〈χ∗(y),χ∗(y)〉=1.
(3.3)

We also have

ϕE(a,y)=
∞

∑
m=1

ϕa
E,mχa

m(y), where ϕa
E,m = 〈ϕE(a,y),χa

m(y)〉,

ϕE(b,y)=
∞

∑
m=1

ϕb
E,mχb

m(y), where ϕb
E,m = 〈ϕE(b,y),χb

m(y)〉.
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The coefficients of incoming waves am and the energy E are given here. The external
potential

Ve(x,y)=Vb(x,y)+Vw(x,y)+Va(x,y)

is also a summation of quantum barrier, quantum well

Vb(x,y)=V01Ωb
, Vw(x,y)=−V01Ω1∪Ω2∪···∪ΩF

and the applied bias

Va(x,y)=− x−a

b−a
V1(y).

Here V0 ≥ 0 and V1(y) ≥ 0 denotes the height of the barrier and the amplitude of the
applied bias respectively. And we have

Ω f ⊂Ωb⊂Ω (1≤ f ≤F), Ω f ∩Ω f ′ =∅ (1≤ f < f ′≤F).

Similarly with the one dimensional case, we decompose the wave function ϕE into an
exterior part ϕext

E and an interior part ϕint
E ,

ϕE(x,y)= ϕext
E (x,y)+ϕint

E (x,y).

The exterior wave function is defined as the solution of

−1

2
ǫ2
(

∂xx ϕext
E +∂yy ϕext

E

)

+(Vb+Va)ϕext
E =Eϕext

E , (3.4)

with the same condition as (3.2). And the interior wave function satisfies the nonhomo-
geneous Schrödinger equation

−1

2
ǫ2
(

∂xx ϕint
E +∂yy ϕint

E

)

+Ve ϕint
E =Eϕint

E −Vw ϕext
E , (3.5)

with the boundary condition

ϕint
E (x,y)

∣

∣

∣

Γd

=0, (3.6a)

ǫ∂x ϕint
E (a,y)=− ∑

E>Ea
m

i
√

2(E−Ea
m)ϕint,a

E,m χa
m(y)+ ∑

E≤Ea
m

√

2(Ea
m−E)ϕint,a

E,m χa
m(y), (3.6b)

ǫ∂x ϕint
E (b,y)= ∑

E>Eb
m

i
√

2(E−Eb
m)ϕint,b

E,m χb
m(y)− ∑

E≤Eb
m

√

2(Eb
m−E)ϕint,b

E,m χb
m(y). (3.6c)

Then we approximate it by the multi-mode form

ϕint
E (x,y)=

N

∑
n=1

θn(E)

λn−E
φn(x,y). (3.7)
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Here φn(x,y) is the non-trivial solution of the eigenvalue problem

−1

2
ǫ2
(

∂xxφ+∂yyφ
)

+Veφ=λφ, (3.8)

with the boundary condition

φ(x,y)|Γd
=0, (3.9a)

ǫ∂xφ(a,y)=− ∑
Reλ>Ea

m

i ∗
√

2(λ−Ea
m)φa

mχa
m(y)+ ∑

Reλ≤Ea
m

∗
√

2(Ea
m−λ)φa

mχa
m(y), (3.9b)

ǫ∂xφ(b,y)= ∑
Reλ>Eb

m

i ∗
√

2(λ−Eb
m)φb

mχb
m(y)− ∑

Reλ≤Eb
m

∗
√

2(Eb
m−λ)φb

mχb
m(y). (3.9c)

Taking (3.7)-(3.9) into (3.5)-(3.6) leads to linear system for the coefficients θn(E):

N

∑
n=1

〈φn,φn′〉θn(E)=−〈Vw ϕext
E ,φn′〉. (3.10)

4 Numerical examples

In this section, we give two numerical examples to verify the accuracy of the method.
We use central difference approximation to discretize the Schrödinger equation. And the
boundary conditions are discretized by second order one sided approximation. The ‘true’
solution of the Schrödinger equation (2.5) and (3.1)-(3.2) is solved using small enough
mesh size.

Example 4.1. Consider the 1D Schrödinger equation (2.5) on the computational domain
[0,1] with parameters

a1 =0.1, a2 =0.27, b2 =0.73, b1 =0.9,

F=2, c1 =0.33, d1 =0.47, c2 =0.53, d2 =0.67,

V0 =2, V1 =1.45, ǫ=0.035.

This is a double barrier model. We give the curve of transmission coefficients T(E) in
Fig. 3 (top). From the figure, we can see three peaks. They correspond to the fourth to
sixth eigenvalues of (2.9), see Fig. 4. We plot the absolute and relative l2 error of the wave
function

eN
a (p)=

∥

∥

∥

∥

∥

ϕp(x)−ϕext
p (x)−

N

∑
n=1

θn(p)φn(x)

∥

∥

∥

∥

∥

l2

,

eN
r (p)=

∥

∥

∥
ϕp(x)−ϕext

p (x)−∑
N
n=1θn(p)φn(x)

∥

∥

∥

l2
∥

∥ϕp(x)
∥

∥

l2

,
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Figure 3: Example 4.1: the top figure is the transmission coefficients T(E), the bottom figures are absolute

error eN
a (p) and relative error eN

r (p) of wave function for N =1,2,3.
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Figure 4: Example 4.1: the first six eigenvalues λn and absolute value of eigenfunctions |φn(x)| to the nonlinear
eigenvalue problem (2.9).
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Table 1: Example 4.1: the relative errors with different space mesh size ∆x and energy E= 1
2 p2 for N =3.

E=0.2 E=0.4 E=0.6 E=0.8 E=1.0

∆x = 1
200 6.10% 6.99% 9.03% 8.69% 8.52%

∆x = 1
400 3.60% 3.63% 4.39% 4.86% 5.47%

∆x = 1
800 2.04% 1.99% 2.49% 3.07% 4.43%

with different energy E = 1
2 p2 and number of mode N in Fig. 3 (bottom). Here the space

mesh size is fixed as ∆x = 1
800 . We can see the multi-mode approximation gives more

accurate solutions. In Table 1, we output the relative errors with different space mesh
size ∆x and energy E = 1

2 p2 for N =3. We can see the errors decay with respect to mesh
size ∆x. The convergence rate is about first order. This can be improved by specially
handing the discontinuity of the external potential Ve(x) in the eigenvalue problem (2.9)
and make use of a higher order numerical integral in (2.10).

Remark 4.1. Note the real part of first three eigenvalues are negative, but there is almost
no interaction with the incoming wave on the left with momentum p≥0. Therefore, we
ignore these eigenvalues in the multi-mode approximation.

Remark 4.2. The convergence rate in Table 1 is not exact first order. The reason is that
there are mainly two parts of the error. The first part error comes from the discretization
of space which related to ∆x. Another part error comes from the decomposition which
related to N. Since we fixed N=3, the decomposition error would effect or even dominate
the total error when the discretization error is small during the space mesh size ∆x is
reducing.

Example 4.2. Consider the 2D Schrödinger equation (3.1)-(3.2) on the computational do-
main Ω=[0,1]×[−0.5,0.5] with parameters

Ωb =([0,1]×[−0.5,−0.3])∪([0,1]×[0.3,0.5])∪([0.2,0.8]×[−0.3,0.3]) ,

F=1, Ω1 =[0.4,0.6]×[−0.1,0.1], V0 =1, V1(y)=0, ǫ=0.1.

Then we have
Ea

m =Eb
m, χa

m(y)=χb
m(y),

to the eigenvalue problems (3.3). In Table 2, we output their first eight eigenvalues. From
which we can believe that M = 8 is accurate enough for the boundary conditions (3.2),

Table 2: Example 4.2: the first eight eigenvalues of (3.3).

m 1 2 3 4 5 6 7 8
Ea

m 0.027 0.109 0.245 0.431 0.663 0.925 1.159 1.289
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Figure 5: Example 4.2: the first three eigenvalues
λn and absolute value of eigenfunctions |φn(x,y)|
to the nonlinear eigenvalue problem (3.8)-(3.9).
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(II) a2 =1, am =0 (m 6=2)

Figure 6: Example 4.2: absolute error eN
a (E) and relative error eN

r (E) of wave function for N =1,2,3.

(3.6) and (3.9) when E≤1. We also plot the first three eigenfunctions of (3.8)-(3.9) in Fig. 5,
which correspond to the resonance effect. In Fig. 6, we plot the absolute and relative l2
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error of the wave function

eN
a (E)=

∥

∥

∥

∥

∥

ϕE(x,y)−ϕext
E (x,y)−

N

∑
n=1

θn(E)φn(x,y)

∥

∥

∥

∥

∥

l2

,

eN
r (E)=

∥

∥

∥
ϕE(x,y)−ϕext

E (x,y)−∑
N
n=1θn(E)φn(x,y)

∥

∥

∥

l2

‖ϕE(x,y)‖l2

,

with different energy E and number of mode N. Here the space mesh size is fixed as
∆x=∆y= 1

200 and the incoming waves in (3.2) are given by

(I) a1 =1, am =0 (m 6=1), see Fig. 6 (top),

(II) a2 =1, am =0 (m 6=2), see Fig. 6 (bottom).

From the figure, we can draw the same conclusion as in Example 4.1.

5 Discussion for algorithm efficiency

In this section, we discuss the algorithm efficiency in computing the electronic density
n(x). To compute the integral (2.4) numerically

n(x)=
∫ +∞

−∞
g(p)

∣

∣ϕp(x)
∣

∣

2
dp,

we need to first discretize the energy mesh then compute ϕp(x) for each energy mesh

point E = 1
2 p2. Because ϕp(x) would be very large near the resonant energy, the en-

ergy mesh should resolve these peaks to acquire enough accuracy. There are mainly four
methods to compute n(x).

1. The multi-mode approximation.

1. Solve the nonlinear eigenvalue problem (2.9) to get the smallest Ke resonant energies and the

related eigenfunctions. The space mesh size is ∆x, and the following steps are the same.

2. Compute Nc times nonhomogeneous Schrödinger equation (2.6) to get these exterior wave func-

tions ϕext
p . Here Nc also denote the number of energy nodes for coarse mesh.

3. Interpolate on the energy direction KeNa times to get the additional exterior wave functions ϕext
p

on a refined energy mesh. Here Na denotes the number of added energy nodes we need for each

single resonant energy.

4. Construct the interior wave functions using equation (2.8) and (2.10). The number of interior

wave functions we need to solve is equal to the total number of the energy node on the refined

mesh Nc+KeNa. The space mesh for the interior wave functions ϕint
p should be ∆x.
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2. The nonuniform energy grid method. Assume that we prior know where the res-
onant energy is, then we can design the best nonuniform energy grid. The number of
node on the nonuniform energy grid is Nc+KeNa. Then we solve Nc+KeNa times full
Schrödinger equation (2.5) on space mesh ∆x to get ϕp. In practical simulation, this
method can not be applied unless the resonant energy are prior known.

3. The adaptive mesh on energy grid method. In the beginning, we don’t know how
to design the nonuniform energy grid. The adaptive mesh method would detect and
rebuild the energy mesh. Then, we need to compute no less than Nc+KeNa times full
Schrödinger equation (2.5) on space mesh ∆x to get ϕp.

4. The full method. We directly compute N f time full Schrödinger equation (2.5) space
mesh ∆x to get ϕp. Here N f related to a very fine energy mesh and N f ≫Nc, N f ≫KeNa.

In all these method, we ignore the last step: compute the integral (2.4) to get the
electronic density n(x). Because this computational cost is minor compare to other steps.
It is easy to see the computational cost of the last three methods are

nonuniform grid < adaptive mesh < full method.

Our goal is to show that the computational cost satisfies

multi-mode approximation < nonuniform grid < full method,

since the nonuniform is more efficient than the adaptive mesh method in practically sim-
ulation. This will be done analytical in Subsection 5.1 and numerically in Subsection 5.2.

5.1 A rough estimate of the computational time

Let M = [ 1
∆x ], here [x] gives the nearest integral to real number x. For solving a M×M

linear sparse system, we write the computational cost as L(M). For conjugate gradient
method L(M) = P1M, with P1 related to the numbers of iteration and the averaged ele-
ment number in each row of the matrix. For a standard interpolation method, we write
the computational cost as P2, which related to the number of nodes used in the inter-
polation. Now we estimate the computational cost of the d dimension problem for the
multi-mode approximation and the nonuniform energy grid method.

1. The multi-mode approximation. The computational cost of each steps are list here

Cmm,a≈KeKiL(Md),

Cmm,b≈NcL(Md),

Cmm,c≈KeNaP2Md,

Cmm,d≈ (KeNa+Nc)Md.
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Here Ki comes from solving the nonlinear eigenvalue (2.9). If we use the Newton-like
algorithm, Ki denotes number of the iterations. Therefore the total computational cost is

Cmm≈ (KeKi+Nc)L(Md)+(KeNa(1+P2)+Nc)Md.

2. The nonuniform energy grid method. The total computational cost is

Cne≈ (KeNa+Nc)L(Md).

3. The full method. The total computational cost is

C f m≈N fL(Md).

In later subsection, we will compare this result with the experiment tests.

5.2 The numerical experiments of the computational time

In this subsection, we give two numerical examples to verify the efficiency of the method.
The reference solution is computed on a very small energy mesh and space mesh. We use
conjugate gradient method to solve the linear system. The linear interpolation is used
here, with P2≈10. And Ki=6 would be good enough to give an accurate iteration solution
of the eigenvalue problem (2.9).

Example 5.1. Consider the same condition in Example 4.1, the other parameters are

d=1, ∆x=
1

1600
, M=1600, P1≈280,

Ke =3, Nc =100, Na =50, N f ,1 =500, N f ,2 =1000,

g(p)=
3

5
log(1+e

10−25p2

8 ).

In Table 3, we output the estimate computational cost, practical computational time and
the relative l2 error of the electronic density n(x) for different methods. From the table,
we can see the multi-mode approximation is more efficient.

Table 3: Example 5.1: comparisons of the multi-mode approximation, nonuniform grid method and the full
method.

estimate cost CPU time l2 error
multi-mode approximation 1.00 48.6s 2.06%

nonuniform grid 2.02 97.7s 2.21%
full method (N f ,1 =500) 4.02 202.0s 4.12%

full method (N f ,2 =1000) 8.05 400.7s 1.70%
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Example 5.2. Consider the same parameters as in Example 4.2, the other parameters are

d=2, ∆x=
1

400
, M=400, P1≈2200,

Ke =3, Nc =100, Na =40, N f =1000,

g1(E)=

{

0, E<Ea
1,

3
5 log(1+e

5−25E
4 ), E≥Ea

1,

g2(E)=

{

0, E<Ea
2,

3
5 log(1+e

5−25E
4 ), E≥Ea

2.

Then the electronic density are given by

n(x,y)=
∫ +∞

0

(√

2

E−Ea
1

g1(E)
∣

∣

∣
ϕ1

E(x,y)
∣

∣

∣

2
+

√

2

E−Ea
2

g2(E)
∣

∣ϕ2
E(x,y)

∣

∣

2

)

dE,

here ϕs
E(x) (s=1,2) is the solution to Eqs. (3.1)-(3.2) with as =1, am =0(m 6= s). In Table 4,

we output the estimate computational cost, practical computational time and the relative
l2 error of the electronic density n(x,y) for different methods. From the table, we can
draw the same conclusion as in Example 5.1.

Table 4: Example 5.2: comparisons of the multi-mode approximation, nonuniform grid method and the full
method.

estimate cost CPU time l2 error

multi-mode approximation 1.00 1.9×104s 2.81%
nonuniform grid 1.85 3.7×104s 2.55%

full method 8.43 1.5×105s 2.70%

6 Conclusion

In this paper, we developed the multi-mode approximation to compute the Schrödinger
equation, that is the basic mode for the RTD. This kind of approximation can handle
multiple barrier problems and high dimensional situations. Several examples are given
to demonstrate the accuracy and efficiency of this numerical method.
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[25] C. Presilla and J. Sjöstrand, Transport properties in resonant tunneling heterostructures, J.

Math. Phys., 37(1996), no. 10, 4816-4844.
[26] S.H. Shao, W. Cai and H.Z. Tang, Accurate calculation of Green’s function of the Schrödinger

equation in a block layered potential, J. Comput. Phys., 219(2006), no. 2, 733-748.
[27] C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Appli-

cations, Academic Press, 1991.


