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Abstract. A method for gyrokinetic simulation of low frequency (lower than the cy-
clotron frequency) magnetic compressional modes in general geometry is presented.
The gyrokinetic-Maxwell system of equations is expressed fully in terms of the com-
pressional component of the magnetic perturbation, δB‖, with finite Larmor radius ef-
fects. This introduces a ”gyro-surface” averaging of δB‖ in the gyrocenter equations of
motion, and similarly in the perpendicular Ampere’s law, which takes the form of the
perpendicular force balance equation. The resulting system can be numerically imple-
mented by representing the gyro-surface averaging by a discrete sum in the configura-
tion space. For the typical wavelength of interest (on the order of the gyroradius), the
gyro-surface averaging can be reduced to averaging along an effective gyro-orbit. The
phase space integration in the force balance equation can be approximated by sum-
ming over carefully chosen samples in the magnetic moment coordinate, allowing for
an efficient numerical implementation.

PACS: 02.60.-x, 02.70.-c, 52.65.Tt

Key words: Finite Larmor radius effects, gyrokinetic simulation, compressional modes, gyro-
surface average.

1 Introduction

The low frequency compressional magnetic perturbations, δB‖, are commonly neglected
in gyrokinetic simulations [17, 20, 22], which assume a low β plasma (β is the ratio of
kinetic pressure to magnetic pressure). As β increases the role of δB‖ becomes more
important due to plasma diamagnetism, and may no longer be neglected. The finite β
introduces new modes, such as the magnetic trapped particle mode [26], the drift mir-
ror mode [12], or the drift compressional mode [13], in which δB‖ is a dominant field
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perturbation. Even in low β plasmas the compressional component of the magnetic per-
turbation may have to be considered [15].

A numerical difficulty in gyrokinetic simulation of compressional modes is the cal-
culation of finite Larmor radius effects in general geometry. Various numerical tech-
niques have been used in the past to take into account the finite Larmor radius in the
gyrokinetic simulations containing nonzero compressional component of the perturbed
magnetic field (δB‖). One of the key features that distinguishes these techniques is how
they implement gyro-orbit averaging. In case of low frequency compressional modes
(mode frequency smaller than ion cyclotron frequency), the gyro-orbit averaged quan-
tity has been cast into the form of

〈

δA⊥ ·v⊥
〉

, where δA⊥ is the component of the vector

potential perpendicular to the equilibrium magnetic field (δB‖ = b̂·∇×δA⊥), v⊥ is the

perpendicular component of the particle velocity, b̂ is the unit vector along the equilib-
rium magnetic field, and 〈···〉 stands for the gyro-orbit average. In simulations imple-
menting a pseudo-spectral method in a simple geometry, the gyro-orbit averages may
be performed analytically for each spectral component [16]. Another approach has been
to perform the gyro-orbit averages explicitly in configurations space, using the method
described in [17] and [21] to solve the gyrokinetic Vlasov-Poisson system; and extended
in [18] to an electromagnetic case. The method is to average the quantity δA⊥ ·v⊥ directly
in configuration space, over a finite number of samples along the gyro-orbit. Variations
of this technique were used in hybrid simulations of energetic particle effects on low
frequency MHD modes in [2], and gyrokinetic simulations of the mirror mode in [25].

In the gyrokinetic theory [1,3–7,10,19,24,27], the fundamental operation of gyro-orbit
averaging reduces the number of dynamical variables from six, in the particle phase
space (x,v), to five in the gyrocenter phase space (X,v‖,µ). This, in turn, results in the
decrease of the number of independent field quantities appearing in the Maxwell’s equa-
tions. Thus, the perpendicular Ampere’s law has now only one degree of freedom.
Adopting the convention of [8], the independent quantities are the electrostatic potential,
φ; the parallel component of the vector potential, δA‖; and the compressional component
of the magnetic perturbation, δB‖. It is then undesirable to use δA⊥ rather than δB‖ in gy-
rokinetic simulation models, from either a numerical or a physical standpoint, since δB‖
is a scalar and a more physical and fundamental field quantity than δA⊥. In the current
work, a gyrokinetic system for low frequency compressional modes in general geometry
is expressed fully in terms of the compressional component of the magnetic perturba-
tion, δB‖. This introduces a ”gyro-surface” average of δB‖ in the gyrocenter equations
of motion, and similarly in the perpendicular Ampere’s law, which takes the form of the
low frequency perpendicular force balance equation. The resulting system may be nu-
merically approximated by representing the gyro-surface averaging by a discrete sum
in the configuration space. For the typical wavelength of interest (on the order of the
gyroradius), the gyro-surface averaging may be reduced to averaging along an effective
gyro-orbit, for an efficient numerical implementation. The phase space integration which
appears in the low frequency force balance equation, may be approximated by carefully
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choosing samples in the magnetic moment coordinate, and their corresponding weights.
The next section outlines the gyrokinetic simulation model for the low frequency com-

pressional modes. In Section 3.1 the gyrocenter equations of motion are expressed in
terms of δB‖, and Section 3.2 discusses a method of numerical implementation. The per-
pendicular Ampere’s law is discussed in Section 4.1, and a numerical implementation is
presented in Section 4.2. The conclusions are given in Section 5.

2 Simulation model for compressional modes

The gyrokinetic system of equations, for the simplest description of the compressional
modes, consists of the ion gyrokinetic equation [4],

(

∂t+Ẋ·∇+ v̇‖∂v‖

)

F=0, (2.1)

the ion gyrocenter equations of motion,

Ẋ=v‖b̂+
b̂

mΩi
×

(

µB0∇lnB0+mv2
‖b̂·∇b̂

)

− c

B0
b̂×∇

〈

δA⊥ ·
v⊥
c

〉

, (2.2a)

v̇‖=− 1

m
b̂·∇

(

µB0−e
〈

δA⊥ ·
v⊥
c

〉)

+
cv‖
B0

b̂×
(

b̂·∇b̂
)

·∇
〈v⊥

c
·δA⊥

〉

, (2.2b)

and the perpendicular Ampere’s law,

∇⊥δB‖×b̂=4π
e

c

∫

d3vv⊥δ f ; (2.3)

where δ f = f− f0 is the perturbed particle distribution function. The definitions of various
symbols in (2.1)-(2.3) are, (X,v‖,µ) is a set of gyrocenter variables standing for gyrocenter
position, parallel velocity, and magnetic moment, respectively [3]; Ωi = eB0/mc is the
cyclotron frequency; b̂=ê1×ê2 is the unit vector pointing along the equilibrium magnetic
field at the particle position; δF=F−F0 is the perturbed gyrocenter distribution function;
F0 is assumed to be the Maxwellian distribution,

F0 =n0

√

m3

(2πTi)3
exp

[

−T−1
i

(mv2
‖

2
+µB0

)]

,

δB‖ is the magnetic perturbation parallel to the equilibrium magnetic field; δA⊥ is the per-
turbed vector potential perpendicular to the equilibrium magnetic field; and 〈···〉 stands
for the gyro-orbit average, performed by the operation 1

2π

∮

···dξ, where ξ represents the
gyro-angle. The assumption that electrons are cold and the frequency of interest is much
lower than shear Alfvén frequency, allows neglecting δφ, δA‖ and electron contribution in
the Ampere’s law [9], focusing purely on compressional modes. The formulation and im-
plementation for gyrokinetic simulations of δφ and δA‖ have been extensively published,
for example [14] and references therein. Details about the derivation of a gyrokinetic sys-
tem of equations may be found, for example, in the review given in [5].
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3 Equation of motion in terms of δB‖

In Section 3.1 the gyrocenter equations of motion are expressed in terms of δB‖, and in
Section 3.2 the numerical implementation of gyroaveraging is discussed.

3.1 Gyro-surface averaging of δB‖

The field quantity δA⊥ appears in the equations of motion, Eqs. (2.2a) and (2.2b), in the
combination

〈

δA⊥ ·v⊥
〉

. Using the relationship of the differential displacement vector, dl,

to the perpendicular velocity, v⊥, and to the Larmor radius, ρ, given by dl=
(

ρ×b̂
)

dξ,
as shown in Fig. 1; applying the Stoke’s theorem; and using all vector components of
∇×δA=δB,

〈

δA⊥ ·v⊥
〉

may be expressed in terms of δB as

〈

δA·v⊥
〉

=
Ωi

2π

∫

S
dS·δB. (3.1)

〈

δA·v⊥
〉

is thus proportional to the change in the magnetic flux through the gyro-orbit–a
quantity reminiscent of the induced electromotive force. Since dS is the differential of the
area enclosed by the gyro-orbit whose direction is given by the right-hand rule in relation
to the sense of the gyration of the charged particle, dS=−b̂dS; and since

∫

···dS=
∫ 2π

0

∫ ρ

0
···rdrdξ ,

then also

〈

δA·v⊥
〉

=−Ωi

〈

∫ ρ

0
δB‖rdr

〉

=− c

e
µ
〈

〈δB‖〉
〉

, (3.2)

where
〈

〈···〉
〉

≡ 1

πρ2

∫ 2π

0

∫ ρ

0
···rdrdξ

is the ”gyro-surface” average, with r being the gyroradius variable. Therefore, the gyro-
orbit averaging of δA⊥ ·v⊥ is equivalent to gyro-surface averaging of δB‖.

A numerical representation of the gyro-surface averaging may be verified against an
analytic expression in the Fourier space by letting

δB‖(x,t)= eir·k⊥δB‖(X,t),

where r is the position vector pointing from the gyrocenter position (X) to the particle
position. The integral appearing in Eq. (3.2) may then be performed, yielding

〈〈

δB‖
〉〉

=δB‖(X,t)
2

k⊥ρ
J1(k⊥ρ), (3.3)
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Figure 1: Relationship of various vectors involved in expressing
〈

δA⊥ ·v⊥
〉

in terms of δB‖. The displacement

vector along the gyro-orbit is related to the perpendicular velocity of the gyrating charge (in this case, proton),
v⊥, and its Larmor radius, ρ, by dl=

(

ρ×b̂
)

dξ.

Figure 2: The average over the surface (shaded area) enclosed by the gyro-orbit (solid circle), which appears

in Eq. (3.2), may be approximated by averaging over the effective gyro-orbit with the radius of ρ/
√

2 (dashed
circle).

since r·k⊥= rk⊥cosξ, because the origin of ξ is arbitrary; and

〈〈

eirk⊥cosξ
〉〉

=
2

k⊥ρ
J1(k⊥ρ).

Here, J1 is the first order Bessel function of the first kind.

In the dimensionless form, the problem thus reduces to numerically approximating
the double integral on the left-hand side of

1

πa2

∫ 2π

0

∫ a

0
eiucosξududξ =

2

a
J1(a), (3.4)

to reproduce the result on the right-hand side as closely as possible, where a = k⊥ρ, and
u= k⊥r.
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3.2 Numerical implementation

Numerical implementation involves spatial discretization of the integral over the surface
enclosed by the gyro-orbit. Since it is straightforward to implement a gyro-orbit average
to recover the 0th order Bessel function J0, the simplest approximation may be obtained
using the Bessel function identity

2

a
J1(a)= J0(a)− J2(a), (3.5)

which suggests that, since for long wavelength perturbations J0 ≫ J2, in this limit the
integral may be approximated by keeping only J0 in Eq. (3.5), i.e., simple averaging over
the gyro-orbit. However, the accuracy can be significantly improved by averaging over
an ”effective” gyro-orbit. The optimum effective gyro-orbit may be found by expanding
both sides of

2

a
J1(a)≈ J0(b), (3.6)

in the limit a→0, and matching the 2nd order terms. The result is b=a/
√

2. Consequently,
in the limit a→0,

2

a
J1(a)≈ J0

( a√
2

)

+O(a4). (3.7)

The numerical approximation of the double integral in Eq. (3.4) may then be explicitly
represented by the discrete sum

1

πa2

∫ 2π

0

∫ a

0
eiucosξududξ≈ 1

M

M

∑
m=1

exp
[

i
a√
2

cos
(2πm

M

)]

, (3.8)

where M corresponds to the number of grid points in the gyroangle, ξ. An approximation
for M = 4, i.e., the widely used 4-point gyro-averaging [17], is shown in Fig. 3, together
with the relative error. It can be seen that for the range of a= k⊥ρ.3 the approximation
is close to being exact, even for this small value of M. Thus, it is sufficient to use 4 points
around the gyrocenter, at an effective gyroradius of ρ/

√
2, to numerically approximate

the average of δB‖ over the surface enclosed by the gyro-orbit appearing in Eq. (3.2).

4 Perpendicular Ampere’s law in terms of δB‖

Due to the low frequency assumption, the fast magnetosonic waves are removed from
the gyrokinetic theory, and the perpendicular Ampere’s law can be written as a low fre-
quency perpendicular force balance equation, which is entirely expressible in terms of
δB‖. The objective of this section is to derive an expression for the low frequency perpen-
dicular force balance equation, in terms of δB‖, and develop a numerical method for its
evaluation in real space. This is done in Sections 4.1 and 4.2, respectively.
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Figure 3: Comparison of the approximation of the double integral in (3.3), using (3.8) and M=4 (dashed line),
to the exact result 2J1(k⊥ρ)/(k⊥ρ) (solid line). The interrupted line is the relative error. The dotted black line
corresponds to the approximation using J0(k⊥ρ).

4.1 Analytic expression

Using the relation between particle and gyrocenter perturbed distribution for an isotropic
Maxwellian equilibrium F0,

δ f =δF− e

Ti
F0

〈

δA· v⊥
c

〉

,

see [4, 5], the perpendicular Ampere’s law (2.3) may be written as,

∇⊥δB‖×b̂=4π
e

c

∫

d3vv⊥
(

δF− e

Ti
F0

〈

δA· v⊥
c

〉)

. (4.1)

Using

d3v=
B0

m
dµdv‖dξ, v⊥=Ωiρ×b̂, dl=−

(

ρ×b̂
)

dξ,

as shown in Fig. 4, the integral appearing on the right-hand side of Eq. (4.1) becomes,

∫

B0

m
dµdv‖

∫ 2π

0
v⊥

(

δF− e

Ti
F0

〈

δA· v⊥
c

〉)

dξ =−
∫

B0

m
dµdv‖

∮

Ωi

(

δF− e

Ti
F0

〈

δA· v⊥
c

〉)

dl. (4.2)

Unlike in Section 3, the direction of dl is opposite to v⊥, since dl in Eq. (4.2) is not along
the gyro-orbit, because the dξ integration in the present case comes from the summation
over the contributions from gyrocenters lying ρ away from the particle, and not gyro-
orbit averaging. Using

∮

gdl=
∫

S
dS×∇g and dS=−b̂rdrdξ ,
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Figure 4: Vectors involved in expressing the perpendicular Ampere’s law in terms of δB‖.

the integral becomes,

−
∫

B0

m
dµdv‖

∫

S
dS×∇

{

Ωi

(

δF− e

Ti
F0

〈

δA· v⊥
c

〉)}

=
∫

B0

m
dµdv‖

∫ 2π

0

∫ ρ

0
rdrdξb̂×∇

{

Ωi

(

δF− e

Ti
F0

〈

δA· v⊥
c

〉)}

. (4.3)

Finally, using Eq. (3.2) to remove δA, it is found that

∫

B0

m
dµdv‖

∫ 2π

0

∫ ρ

0
rdrdξb̂×∇

{

Ωi

(

δF− e

Ti
F0

〈

δA· v⊥
c

〉)}

=2π
∫

B0

m
dµdv‖

〈

∫ ρ

0
b̂×∇

{

ΩiδF+
e

cTi
F0Ω2

i

〈

∫ ρ

0
δB‖r′dr′

〉}

rdr
〉

. (4.4)

Using 2π/Lk⊥≪1, the b̂×∇ operator can be taken out of the integral and removed from
the Ampere’s law (4.1), which then becomes

δB‖+
8π2Ω2

i

ρ2
i B0

∫

dµdv‖F0

〈

∫ ρ

0

〈

∫ ρ

0
δB‖r′dr′

〉

rdr
〉

=−8π2Ω2
i

∫

dµdv‖
〈

∫ ρ

0
δFrdr

〉

, (4.5)

where

ρi ≡
vthi

Ωi
, vthi ≡

Ti

m
,

ρi

L
≪1,

was used to remove the equilibrium quantities out of the dr integrals. Eq. (4.5) is the low
frequency perpendicular force balance equation. Specifically, Eq. (4.5) can be recast into

δB‖B0

4π
+2πΩ2

i

∫

dµdv‖
(

B0

〈

∫ ρ

0
δFrdr

〉

+
F0

ρ2
i

〈

∫ ρ

0

〈

∫ ρ

0
δB‖r′dr′

〉

rdr
〉)

=0. (4.6)

The first term is the perturbed magnetic pressure, which is balanced by the perturbed
particle pressure. The perturbed particle pressure consists of a perturbed gyrocenter
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pressure (the second term) and another component (the third term) arising from the
coordinate transformation between gyrocenter and particle coordinates. The origin of
this additional component is the perpendicular current from the imbalance between ion
and electron E⊥×B drifts due to the ion finite Larmor radius effects [11, 19]. Here E⊥ =
−c−1∂A⊥/∂t is the inductive electric field from the first time derivative of the perpendic-
ular vector potential A⊥. The second time derivative of A⊥, which gives rise to the fast
magnetoacoustic wave [24], has been dropped as a result of the frequency ordering.

As discussed in the next section, the integral over δF may be numerically evaluated
using the method of Section 3, but a different technique needs to be used for the µ-integral
in the second term on the left-hand side of Eq. (4.5). Again, the numerical method may
be verified against an analytic result by representing the transformation to particle phase
space by e−ir·k⊥ , which results in

8π2Ω2
i

ρ2
i B0

∫

dµdv‖F0

〈

∫ ρ

0

〈

∫ ρ

0
δB‖r′dr′

〉

rdr
〉

=
βδB‖
2k4

⊥ρ4
i

∫ ∞

0
e−x

〈

∫ k⊥ρi

√
2x

0

〈

∫ k⊥ρi

√
2x

0
eiu′cosξu′du′

〉

e−iucosξudu
〉

dx

=βδB‖
1

k2
⊥ρ2

i

∫ ∞

0
e−xxJ2

1

(

k⊥ρi

√
2x

)

dx (4.7)

=βδB‖
[

I0(k2
⊥ρ2

i )− I1(k2
⊥ρ2

i )
]

e−k2
⊥ρ2

i , (4.8)

where u= rk⊥, x=µB0/Ti, β=8πn0Ti/B2
0, In is the nth order Modified Bessel function of

the first kind, and the v‖ integration was performed explicitly. Comparing (4.7) to (4.8),
the objective is to find the numerical approximation of the left-hand side of

1

k2
⊥ρ2

i

∫ ∞

0
e−xxJ2

1

(

k⊥ρi

√
2x

)

dx=
[

I0(k2
⊥ρ2

i )− I1(k2
⊥ρ2

i )
]

e−k2
⊥ρ2

i , (4.9)

to reproduce the result on the right-hand side as closely as possible.

4.2 Numerical implementation

Numerical implementation involves discretization of the integrals of Eq. (4.5) over the
surface enclosed by the gyro-orbit. The term involving δF may be approximated using
the same method as outlined in Section 3. However, the second term on the left-hand side
contains an integral over the magnetic moment whose integrand depends on µ through
the equilibrium distribution function F0, and through the upper limits of the r-integrals.
A method similar to the one devised in [21] may be used to approximate this integral.
The method enables expressing the perpendicular Ampere’s law in a matrix form, which
may then be solved for δB‖ using standard numerical techniques.
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The approximation may be obtained by discretizing the integrand on the left-hand
side of Eq. (4.9) as,

1

k2
⊥ρ2

i

∫ ∞

0
e−xxJ2

1

(

k⊥ρi

√
2x

)

dx≈ 1

k2
⊥ρ2

i

∫ ∞

0

S

∑
s=1

csδ(x−xs)xJ2
1

(

k⊥ρi

√
2x

)

dx

=
1

k2
⊥ρ2

i

S

∑
s=1

csxs J2
1

(

k⊥ρi

√
2xs

)

. (4.10)

The deviation of the numerical approximation from the exact analytic result may be rep-
resented by,

∫ k⊥ρi|max

0

(

[

I0(k2
⊥ρ2

i )− I1(k2
⊥ρ2

i )
]

e−k2
⊥ρ2

i − 1

k2
⊥ρ2

i

S

∑
s=1

xs J2
1

(

k⊥ρi

√
2xs

)

cs

)

d(k⊥ρi). (4.11)

Since it is desirable that the approximation is best for k⊥ρi → 0, the optimal values of cs

and xs may be determined by expanding both sides of Eq. (4.9) in the limit k⊥ρi →0,

[

I0(k2
⊥ρ2

i )− I1(k2
⊥ρ2

i )
]

e−k2
⊥ρ2

i ≈1− 3

2
k2
⊥ρ2

i +O(k4
⊥ρ4

i ), (4.12a)

1

k2
⊥ρ2

i

S

∑
s=1

xs J2
1

(

k⊥ρi

√
2xs

)

cs ≈
S

∑
s=1

x2
s cs

2

(

1− xs

2
k2
⊥ρ2

i

)

+O(k4
⊥ρ4

i ), (4.12b)

and matching the lowest order terms. From the two lowest orders, the constraints on cs

and xs were thus found to be

2=
S

∑
s=1

x2
s cs, (4.13a)

6=
S

∑
s=1

x3
s cs. (4.13b)

The constraints (4.13a) and (4.13b) decrease the number of degrees of freedom by two,
yielding

c1 =
(

2−
S

∑
s=2

x2
s cs

)3(

6−
S

∑
s=2

x3
s cs

)−1
, (4.14a)

x1 =
(

6−
S

∑
s=2

x3
s cs

)(

2−
S

∑
s=2

x2
s cs

)−1
. (4.14b)

The optimum values of
{

cs,xs

}

, are those that minimize (4.11), given the constraints
(4.14a) and (4.14b), for some desired S.

To decrease the computational cost, the number of grid points, S, should be as low as
possible. For S=1, the Eqs. (4.14a) and (4.14b) give c1 =2/9 and x1=3. The approximation
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Figure 5: Comparison of the approximation of Eq. (4.8) (solid line) by Eq. (4.10), for S =1 and S =2 (dotted
line and dashed line, respectively). S is the upper limit of the sum in Eq. (4.10), and corresponds to the number
of grid points in the x=µB0/Ti variable.

is significantly improved for S=2. These results are shown in Fig. 5, according to which,
for k⊥ρi . 2, the integral over magnetic moment, appearing in the perpendicular force
balance equation (4.5), is well approximated by two points at xs ={4.268,1.278}, with the
weight of cs ={0.0632,0.518}. The surface integrals appearing in (4.5) may be performed
using the method outlined in Section 3, with the corresponding values of ρs =ρi

√
2xs.

5 Conclusions

The finite Larmor radius effects in gyrokinetic simulations of low frequency compres-
sional modes, may be included by expressing the gyrokinetic model entirely in terms of
δB‖. This introduces a gyro-surface average operation into the equations of motion. For
long wavelength perturbations, it has been demonstrated that it is sufficient to approxi-
mate the surface integral using the 4-point gyro-orbit averaging technique at an effective
gyroradius. In addition, the perpendicular Ampere’s law may be expressed as the low
frequency perpendicular force balance equation, and the resulting magnetic moment in-
tegral may be approximated by carefully choosing samples in the µ-coordinate, and their
corresponding weights. The method may be used in gyrokinetic simulations of low fre-
quency compressional modes in space or laboratory plasmas, and has been used to study
the drift compressional mode [23].
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