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Abstract. The classical discrete element approach (DEM) based on Newtonian dy-
namics can be divided into two major groups, event-driven methods (EDM) and time-
driven methods (TDM). Generally speaking, TDM simulations are suited for cases with
high volume fractions where there are collisions between multiple objects. EDM sim-
ulations are suited for cases with low volume fractions from the viewpoint of CPU
time. A method combining EDM and TDM called Hybrid Algorithm of event-driven
and time-driven methods (HAET) is presented in this paper. The HAET method em-
ploys TDM for the areas with high volume fractions and EDM for the remaining areas
with low volume fractions. It can decrease the CPU time for simulating granular flows
with strongly non-uniform volume fractions. In addition, a modified EDM algorithm
using a constant time as the lower time step limit is presented. Finally, an example is
presented to demonstrate the hybrid algorithm.

AMS subject classifications: 70F05, 65K05, 74S30, 70F10
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1 Introduction

Granular materials are very commonly used in industry and in our daily life. Yet many
aspects of granular flows are poorly understood. Granular materials are complex sys-
tems composed of a very large number of solid particles. The motion of each particle
is defined by classical Newtonian mechanics and contact mechanics. Based on the rela-
tive velocity between particles, granular material is classified into three phases, as gas-
like, liquid-like and solid-like [1]. Important parameters used to determine the phase are
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the volume fraction φ and coefficients of restitution (COR) [2]. With respect to the flow
cases and the accuracy required, various methods can be used to simulate the motion
of granular materials numerically. According to Hogue and Newland [3], the methods
are classified into two approaches: continuum mechanics methods (CMM) and discrete
element methods (DEM). The CMM uses the Eulerian approach to simulate granular ma-
terial behavior. Several reviews of CMM are available [4–6]. The DEM is based on the
Lagrangian approach to simulate the motion of each particle at the microscopic scale. It
can be divided into three main classes [4]: Statistical mechanics models [7], Newtonian dy-
namics models, and Hybrid models [3]. Furthermore, the Newtonian dynamics models can
be divided into two major groups, Event-driven methods (EDM) and Time-driven methods
(TDM). A detailed review of the Newtonian dynamics models is presented in the next
sections. This paper presents a new hybrid algorithm EDM and TDM. It can be used
for strongly non-uniform flow field with a higher efficiency than TDM. In this hybrid
algorithm, the choice of using either EDM or TDM depends on the local volume fraction.
Hence it is required that the velocity changes determined from these two models should
be close to each other for the same binary collision. To characterize the velocity changes,
two COR, e and β are introduced for the normal direction and the tangential direction
respectively. The definitions of these two coefficients are expressed as the ratio of the
post-collisional relative velocities over the pre-collisional relative velocities at the contact
point, given by

e=−
k·u′o

ij

k·uo
ij

, (1.1a)

β=−
k×u′o

ij

k×uo
ij

, (1.1b)

where k is the unit vector along the center line from particle i to j and uo
ij is the relative

velocity at the contact point. In this paper, vector variables are represented by bold font
and scaler variables are represented by italic font. The ranges of the two COR are 06e61,
and −16β61 respectively.

2 Time-driven method

The calculation of the contact force between each discrete element in the time-driven
method used in the HAET algorithm is based on the original method of Cundall and
Strack [8]. An integration method, which is introduced in Section 4, can be employed
to calculate the changes in velocity and position for each particle after a certain time by
considering all the forces on the particle. Some of the forces acting between particles orig-
inate from the deformation of the particles when they are in contact with their neighbors,
as shown in the Fig. 1. Ramirez [9] suggested that the normal particle-particle collision
process could be modeled as a spring-dashpot system, where the normal force, Fn, is the



J. Huang and O. J. Nydal / Commun. Comput. Phys., 10 (2011), pp. 1027-1043 1029

O Oi j O Oi g

w
all

(a) (b)

Figure 1: Spring-dashpot models: (a) binary collision and (b) collision with the wall.

sum of an elastic term, Fe
n, and a viscous term, Fd

n ,

Fn = Fe
n+Fd

n =Knδ
ζ
n+ηnδ

ξ
nδ̇n, (2.1)

where ζ=3/2 (see [10,11]), ξ=0.5 (see [12]), δn is the overlap, δn=ri+rj−dij (δn>0), Kn is
the effective stiffness, ηn is the damping coefficient, ri,j is the radius of each particle and
dij is the distance between the two centers of the particles. The coefficients in Eq. (2.1)
are described in more detail in [13, 14] for a constant COR in the normal direction, e.
The magnitude of tangential force, |Ft,i |, is obtained from Coulomb’s friction law where
|Ft,i |=µ |Fn,i |.

The normal and tangential components of impulse are given by dJn =Fn ·dt, and dJt =
Ft ·dt, respectively, where dt is the time step in the integration. Considering the balance
of impulses and the exchanges of momentum due to collisions of all particles in contact,
the velocities of a particle after the time step, dt, are given by

u′
n,t =un,t+

∑Jn,t

m
, (2.2a)

ωωω′=ωωω+
∑Jt

I
, (2.2b)

where u is velocity in translation and ωωω is the angular velocity in rotation. The prime
means the status at the end of the time step and the corresponding symbols without
prime are the status at the beginning of the time step. I =0.4mr2 is the moment of inertia
for a spherical particle.

According to [15, 16], the time step in TDM should be less than 2% of the shortest
binary collision time, and it cannot exceed the Rayleigh time. The Rayleigh time is the
time required for a Rayleigh wave to travel the diameter of an elastic particle. Since the
Rayleigh time is proportional to the binary collision time, the time steps calculated from
the collision time and the Rayleigh time are very close [15, 17].
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3 Event-driven method

In the Event-driven method (EDM), also called hard particle model, there is an event,
e.g., collision, inside the system which controls the system dynamics. When an event
occurs, there is a change in the system dynamics. This change needs to be updated at
the next time step. The Event-driven method typically has two functions to perform, cal-
culating the next collision time and the implementing of collision dynamics. Whenever
the distance between spherical particles equals the sum of the two radii, then an event,
a collision, occurs. The velocities of the particles will change suddenly [18]. Consider a
pair of spherical particles, as shown in Fig. 2, with radii ri and rj, and positions at time t,
pi and pj respectively. The time gap for the coming collision is given by the smaller real
root of the equation

δtij =
−bij−

√

−b2
ij−u2

ij

(

p2
ij−(ri+rj)2

)

uij
, (3.1)

where uij is the magnitude of the relative velocity between the two particles, uij =ui−uj,
and bij is defined as bij =uijpij with pij =pi−pj. For a multi-body system, the time step
is the time gap between consecutive events, that dtEDM =min(δtij). In other words, it is
determined by the shortest free flight time between all the particles [4]. The number of
particles in the system also affects the time step in the EDM simulations. From a statistical
point of view, the larger the number of particles in the system, the higher probability of
the existence of a short free flight path even when the global volume fraction is the same.
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Figure 2: Illustration of relative position vectors before and at the collision time with the corresponding velocity
vectors.

There are several EDM models for the relationships between the coefficients e and β.
According to Zamankhan and Huang [19], β can be written as

β=−1+µ
1+e

mr

(

mr +
mi

Ind,i
+

mj

Ind,j

)∣

∣

∣

un
ij

ut
ij

∣

∣

∣
, (3.2)

where Ind is the non-dimensional moment of inertia. For spherical particles, Ind =0.4. un
ij

and ut
ij are the two components of relative velocity in the normal and tangential direction
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Figure 3: Illustration of different collision models: dashed line for TDM, solid line for the original EDM algorithm
using δtij as time step and the dash-dotted line for the modified EDM algorithm in the HAET method using a

constant time step dtc
EDM.

respectively. Lun and Bent [20] suggested a phenomenological constant β0 characteriz-
ing the COR in the tangential direction for a sticking collision. The measurements of
Maw [21], suggest that β cannot be greater than 0.4. Follow the spring-dashpot model for
the normal direction given above, a similar form for the tangential component is given
by Zamankhan and Bordbar [22].

Combining the law of conservation of momentum and the relations between the velocity
changes in the tangential direction and in rotation [23],

∣

∣

∣

∆ui,t

∆ωωωi

∣

∣

∣
=

ri

2.5
. (3.3)

The details of the derivation are given in the appendix.

The omission of the collision process in the original EDM algorithm also causes some
difference with the TDM model. As shown in Fig. 3, the relative velocity from TDM is
plotted by a dashed line and that of the original EDM algorithm is by a solid line. The
origin of the time axis starts at the last time step. In the original EDM algorithm, the time
step is obtained from Eq. (3.1). The difference in the distances between the two particles
after collisions obtained from the two methods is the area between these two curves,
which is given by

ε=
uij(1+e)

4
tc+O(uij). (3.4)

If a constant time dtc
EDM is used as the time step instead of δtij, such that

δtij <dtc
EDM <δtij+tc, (3.5)
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the EDM curve shifts from BC to B
′
C
′ and the difference ε becomes smaller. However, this

longer time step may also cause the two particles to overlap with each other. This is not
allowed in the hard particle model, if the integration method introduced in Section 4 is
used. To avoid the overlap, two artificial displacements are introduced at the end of time
step, dtc

EDM. The artificial displacements for particles i and j are given as follows:

pi(t+dtc
EDM)=ui

( pij(t)

un
j −un

i

)

, (3.6a)

pj(t+dtc
EDM)=uj

( pij(t)

un
j −un

i

)

. (3.6b)

This modification to the original EDM algorithm is only valid for particles in contact with
one neighbor at the end of a particular time step, because the artificial displacements
cannot ensure that multi-body systems do not overlap. The solution to this limitation is
discussed in Section 6. To avoid solving the complex quadratic equation, Eq. (3.1), and the
comparison for min(δtij), a constant time step, dtc

EDM, can be used in the modified EDM
algorithm. When the number of particles is huge, the probability of obtaining min(δtij)≪
tc is high, which is undesirable.

4 Integration algorithm

The Verlet algorithm is a second-order method for integrating the equations of motion [24].
The original equation for the position is given by

p(t+dt) =2pt−p(t−dt)+atdt2, (4.1)

and the velocity can be obtained from the formula

ut =
p(t+dt)−p(t−dt)

2dt
. (4.2)

Various modifications have led to several different forms of the Verlet algorithm. Il-
lustrators of these forms are shown in Fig. 4. No matter which form is used, the accel-
eration plays an important role in the integration. For well-packed particles located in
an acceleration field, all the forces should be balanced at rest, ∑F = 0. However, due to
the lack of contact forces the forces at rest do not sum to zero again when EDM is used.
Hence, the acceleration, a, the changes of velocity, du, and position, dp, will not be zero.
These errors are proportional to the time step dtEDM, which may increase the total energy
in the whole system meaning the simulation will not converge, unless dtEDM approaches
zero.
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Figure 4: Various forms of the Verlet algorithm. (a) The original form, (b) the leapfrog form, and (c) the
velocity form.

5 Neighbor list

If there is a possibility of binary interaction between any pair of particles in an N-particle
system, it needs N(N−1)/2 operations to calculate the interactions in each time step.
This procedure takes up most of the CPU time. Fortunately, the only interaction among
particles in granular material when they contact. This is a kind of short-range force. The
conventionally Verlet table method and Link cell method have been introduced by Allen and
Tildesley [18] for such short-range potential.

The Verlet table method sets up a list of neighbors for every particle in the system [18,
24]. This list is updated periodically after a certain number of time steps as some particles
move in and out of the neighboring region. Once the neighbor list is constructed, the
evaluation of the position of a colliding pair is efficient. This procedure requires on the
order of N ·Nneighbor steps, where Nneighbor is the average number of neighbors for each
particle in the Verlet table.

One important problem in the Verlet table method is how to set it up effectively. The
link cell list algorithm is a method that can reduce that when the number of particle
is huge. In this method, the simulation domain is partitioned into several cells where
the size of the cells is larger than that of the particles. The particles are assigned a cell
according to their positions. There are eight neighboring cells for a 2-D problem (and 26
cells for a 3-D problem) as shown in Fig. 5. Thus for each particle, all particles in the same
cell and the neighboring cells are added to the neighbor list and are evaluated [25]. The
amount of time between consecutive Verlet table searches is given by

dtBL =
Lcell−(ri+rj)

2|u|max
, (5.1)

where Lcell is the side length of the cells and |u|max is the maximum magnitude of the
velocity of the particles in the system. To prevent |u|max increase in the time dtBL, a
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Figure 5: Illustration of the link cell method: for the black particle located in the central dark gray cell, only
those solid particles in the gray cells are added to its Verlet table.

conservative estimation dtBL is given by

dtBL =C
Lcell−(ri+rj)

2|u|max
, (5.2)

where C is a coefficient less than 1.

6 Hybrid algorithm

Usually, EDM simulations are faster than TDM simulations, because the colliding process
is modeled and the time step dtEDM can be much larger than dtTDM. However, particles
in EDM cannot overlap with each other due to the lack of some mechanics to balance the
overlap and interaction force. This is a particular disadvantage for well-packed particles
in an accelerating field at quasi-steady state. Because there is no feedback system to
control the magnitude of overlap, the volume of particles becomes un-physical if the
overlap approaches an unreasonable value. Controlling dtEDM is a valid way to avoid
the overlap in the original EDM algorithm. For example, a particle arrives at steady state,
|u|=0 at time, t. The displacement of particle is |p|=0.5|a|dt2

EDM after a time step, and
therefore dtEDM approach finite to avoid overlap. TDM is better suited for such cases.

The volume fraction of granular flow is not always uniform, especially when there
are obstacles or corners in the flow field. For example, when granular flow passes over
an obstacle, a dynamic dune with an inner triangular region with zero velocity and high
volume fraction is reported [26–28]. If the advantages of both EDM and TDM can be
combined together, the simulation can be more effective. The basic idea of the improved
algorithm, HAET, is to use the TDM for those areas with high volume fraction, φ, and the
EDM for the remaining areas. A flow chart of the decision part in the new algorithm is
given in Fig. 6. Here, the output, K, is an N-element array, in which every element is a
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Figure 6: Flowchart about the conditional parameter Ki. The flowchart for TDM does not include the dark
parts and only the accelerations due to collision are obtained. Here, T for True and F for Fail.

conditional parameter that chooses whether to use TDM or EDM for the corresponding
particle. The flow chart of the integration part is shown in Fig. 7.

The main challenge of this hybrid algorithm is to define the critical volume fraction,
φc. As discussed previously, for a particle, the next collision must occur with one of the
particles located in the link cells. For the EDM algorithm, the binary collision, the event,
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Figure 7: Flowchart of the integration part in HAET. The flowchart for TDM without the dark parts. Here, T
for True and F for Fail.

happens instantaneously. The simplest solution is that the number of neighbors in the
link cells is one for each of the two colliding particles. In other words, the particles are
each other’s only neighbor, and, therefore, the modified EDM algorithm can be used in
HAET. Because of the valid range shown in Eq. (3.5), the time step for the EDM algorithm
can be as long as the collision time, and

dtTDM≪dtc
EDM ≪dtBL. (6.1)

Secondly, avoiding overlap is necessary in the EDM algorithm. Hence, another nec-
essary condition for using the EDM in the hybrid algorithm is that the distance between
the two colliding particles should be no less than the sum of the radii before collision,

|pij|≥ ri +rj. (6.2)
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Thirdly, the technique for solving the particle-wall contact can also be very impor-
tant. Like the methods for the particle-particle collision, the particle-wall collision also
can be classified as EDM or TDM. When a particle collides with the wall, an imaginary
particle is created temporarily. The imaginary particle is a mirror of the real one and the
surface of the wall is the plane of symmetry. A collision happens between the real and
the imaginary particles.

Lastly, the time step dtEDM in the hybrid algorithm is used for describing the instan-
taneous collision. The forces at rest, e.g., gravity and interaction with the wall, are still
integrated using the time step of TDM, dtTDM. In other words, only some of the CPU
time is reduced by using the EDM model.

7 Effect of the hybrid algorithm

Although hoppers are very common industrial and agricultural appliances, the dynam-
ics of the granular materials flowing inside them is not clearly understood [29]. The
dilute-to-dense and dense-jamming transition of granular flow was investigated in a two
dimensional channel by Hou et al. [30]. If the size of grain is smaller than the exit, two
wedges will be formed at both sides of the exit for the 2-D problem shown in Fig. 8(a).
According to the velocity profile and volume fraction, the entire system can be classified
into three regions: free drop zone; condensed zone in the wedges, also called fast collision
zone; and chute zone. For these two wedges, TDM is more suited than EDM because of
the high volume fraction. However, for the simulation of the other regions, EDM is much
better.

Here, three simulations of the hopper are run by using TDM, EDM and HAET respec-
tively with the same geometry and initial conditions, as shown in Fig. 8(b). The hopper is
0.25m high and 0.06m wide. A total of 1200 particles with diameter 0.5mm were put into
the hopper. The initial positions of these particles are random and the initial velocities
are 10m/s downward. In other words, the initial area fraction of the solid phase is 0.0157.
The gravity force is also downward. The normal coefficient of restitution e=0.8, the sur-
face roughness µ=0.2 and the binary collision models introduced in Sections 2 and 3 were
used in the simulations. The size of link cell used is Lcell =4r and the three different time
steps are dtBL =2.5×10−5s, dtc

EDM = tc=2.8×10−8s, and dtc
TDM =5.6×10−10s respectively.

Because the size of the particles is much greater than that suggested by Midi [31], the
drag force from the interstitial air was omitted. The result indicates that EDM cannot be
used for such strongly nonuniform volume fraction distribution. Figs. 8(c) and (d) show
the instantaneous particle distributions at t = 0.02s by using TDM and HAET methods,
respectively. The contour figures of volume fraction φ and averaged magnitude of veloc-
ity are presented in Figs. 8(e)-(h), for TDM and HAET at the same time. The units for the
magnitude of velocity are m/s. The results of the two methods are close to each other
and the condensed zones in the wedges are obvious.

Fig. 9(a) presents the dimensionless CPU time, t∗CPU , from the three methods. Here,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Comparison between the experiment and simulations (only the lower parts are shown) (a) experi-
mental result, (b) initial condition of numerical simulations, (c) instantaneous velocity vector of TDM and (d)
instantaneous velocity vector of HAET at t = 0.02s, (e) contour of volume fraction of TDM, (f) contour of
volume fraction of HAET, (g) contour of averaged magnitude of velocity of TDM and (h) contour of averaged
magnitude of velocity of HAET (m/s).
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Figure 9: Analysis of CPU time: (a) comparison of dimensionless CPU time t∗CPU between EDM and HAET;
(b) the change of the number of particles integrated using dtEDM in HAET with the simulation time.

the dimensionless CPU time is defined as the ratio between the CPU time, tCPU , and the
simulation time, t. These three tests were carried out with SISD (single instruction single
data) implementation by the same computer (HP Compaq DC7900 Minitower with dual-
core processor E8600@3.3GHz and 4G RAM). The HAET simulation used 15% less CPU
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time than the TDM simulation, but used much more than EDM at the very beginning.
However, with the formation and growth of the condensed zone, the time step, dtEDM,
decreased steeply and the simulation with EDM had to be stopped at t=0.01s. The other
two curves also increased but at low rate until enough particles entered the chute zone.
This is because with the growth of the wedges, more and more collisions occur in these
regions and more CPU time is required to reach a solution. Fig. 9(b) shows the number
of particles integrated by using the longer time step, dtc

EDM in HAET. It can be seen that
this number, NEDM, decreases during the whole process when t∗CPU is increasing. Lastly,
although the HAET algorithm can reduce the CPU time in some binary collision and
integration processes, more conditional decisions need be done before-hand. Therefore,
if NEDM is too small, a simulation using TDM is faster than that using HAET.

8 Conclusions

DEM is a useful tool in the simulation of granular materials. The two main branches of
DEM, EDM and TDM, are combined into a hybrid algorithm, which is presented. In this
new algorithm, the regions with low volume fraction are simulated with EDM and the
others are simulated with TDM. Wheatear the volume factions is high or low is deter-
mined by the link cell method. In addition, a new EDM algorithm based on the link cell
method can be used which has a constant lower limit of time step. Compared with the
original EDM algorithm, this modified one is simpler and reduces the error. The advan-
tage of the hybrid algorithm is for simulating cases with strongly non-uniform volume
fractions distribution, which cannot be solved by EDM. Additionally, it requires less CPU
time than TDM does for such cases.
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Appendix

Consider two spherical particles in a Cartesian coordinate system [X,Y,Z]T as shown in
Fig. 10(a), each of the particles has 6 degrees of freedom (DOF), three for translation and
three for rotation.

A Jacobian J can be found, which rotates the coordinate system as shown in Fig. 10(b)
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(a) (b) (c)

Figure 10: Rotation of coordinate system for binary collision. (a) the coordinates [X,Y,Z]T and the velocity

components before rotation, (b) the coordinates [x,y,z]T and the velocity components after rotation, (c) The

Eular angles in [X,Y,Z]T coordinate system. The gray areas in (a) and (b) are the contact circles.

and makes the unit vector k parallel to the z-axis [32],

J[kX , kY, kZ]T =[0, 0, 1]T , (A.1)

where

J=





cosα −sinα 0
sinα cosα 0

0 0 1









1 0 0
0 cosβ −sinβ

0 sinβ cosβ









cosγ −sinγ 0
sinγ cosγ 0

0 0 1



, (A.2)

α, β and γ are the Euler angles of the vector k in the original coordinate system, as shown
in Fig. 10(c). If β=0, the Jacobian becomes

J=





cosγcosα−sinγsinα −cosγsinα−sinγcosα 0
sinγcosα+cosγsinα −sinγsinα+cosγcosα 0

0 0 1



. (A.3)

The pre-collisional velocities in the rotated coordinate system are given by

[ux,uy,uz]
T = J[uX ,uY,uZ]T , (A.4a)

[ωωωx,ωωωy,ωωωz]
T = J[ωωωX,ωωωY,ωωωZ]T. (A.4b)

The relative velocity at the contact point is composed of three parts, one in the normal
direction (along z-axis) and the other two in the tangential directions (x- and y-axis re-
spectively). The law of momentum conservation in the normal direction (z-axis) is given
by

m1u1,z+m2u2,z =m1u′
1,z+m2u′

2,z. (A.5)
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Eq. (1.1a) can be rewritten as

e=−
u′

1,z−u′
2,z

u1,z−u2,z
. (A.6)

Combining Eqs. (A.5) and (A.6) leads to

u′
1,z =

m1u1,z+m2u2,z−em2(u1,z−u2,z)

m1+m2
, (A.7a)

u′
2,z =u′

1,z+e(u1,z−u2,z). (A.7b)

The two components in the tangential directions are independent of each other. Here,
only the component in x-direction is considered. The y-component can be obtained using
a similar method. The shear coefficient of restitution given in Eq. (1.1b) can be rewritten
as

β=
(u1,x+∆u1,x+ωωω1,y ·r1+∆ωωω1,y ·r1)−(u2,x−∆u2,x+ωωω2,y ·r2+∆ωωω2,y ·r2)

(u1,x+ωωω1,y ·r1)−(u2,x−ωωω2,y ·r2)
. (A.8)

In addition, the change in angular velocity for any sphere i in the binary system is

Ii∆ωωωi,y =
∫

tc

(Fx,iri)·dt, (A.9)

where the moment of inertia is I = 0.4mir
2
i and tc is the collision time. The change in

tangential velocity is given by

∆ux,i =

∫

tc
Fx,i ·dt

mi
. (A.10)

These two equations not only lead to the relationship between the change of angular
velocity and the tangential velocity as given by Eq. (3.3), but also the relationship between
the two spheres, as follows

∆u1,y

∆u2,y
=−

m2

m1
, (A.11a)

∆ωωω1,x

∆ωωω2,x
=

I2r1

I1r2
. (A.11b)

Thus, ∆ωωω1,y, ∆ωωω2,y, ∆u1,x can be written as functions of ∆u2,x. Substituting all of these
four terms into Eq. (A.8) gives ∆u2,x, as

∆u2,x =−(1+β)
u2,x +ωωω2,y ·r2−u1,x−ωωω1,y ·r1

1.5+3.5m2/m1
. (A.12)
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The post-collisional velocity components are given by

u′
1,x =u1,x−∆u1,x, (A.13a)

u′
2,x =u2,x+∆u2,x, (A.13b)

ωωω′
1,y =ωωω1,y−∆ωωω1,y, (A.13c)

ωωω′
2,y =ωωω2,y−∆ωωω2,y, (A.13d)

where ∆ωωω1,y, ∆ωωω2,y and ∆u1,x can be obtained from Eqs. (A.11a) and (3.3). Substituting
these post-collisional velocities and negative the Euler angles shown in Fig. 10(c). into the
coordinate rotating equation (Eq. (A.4b)), the corresponding post-collisional velocities in
the original Cartesian coordinate system [X,Y,Z]T can be obtained.
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