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1 Introduction

System biology, which studies integrated cellular reacting networks involving multiple
levels of biological activities from gene expression, protein interaction, metabolism to
signal transduction, has emerged as a new scientific discipline. Within such functional
networks, many types of molecular processes take place on a wide range of time and
population scales, under significant influence of random perturbations. From the point
of view of modeling, Gene Regulatory Networks (GRNs), unlike protein and metabolic
networks, involve fewer number of species and lower population of molecules in a small
volume within a cell [1]; therefore stochastic effects have a significant impact on the sys-
tem and stochastic models are particularly well suited to the study of the functionality of
GRNs [2]. The Stochastic Simulation Algorithm (SSA) introduced by Gillespie in [3,4] has
been the most successful and promising meso-scale bio-chemical reacting model, as well
as an accurate simulation scheme that incorporates stochastic effects. Meanwhile, it is
well known that bio-chemical reactions in intracellular networks involving gene expres-
sion occur on different time scales, e.g. the fast binding of RNA Polymerase to the DNA
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chain versus the relatively slower transcription process, which makes SSAs necessarily
inefficient despite its accuracy.

In recent years, the stochastic simulation of intracellular bio-chemical reacting net-
works with multiple time scales has received a great deal of attention and important
progress has been made. The main idea, pursued in different forms by many people, is
to capture the effective dynamics on the slow time scale, by assuming the fast processes
to be in a quasi-equilibrium distribution [5–11]. In [5], a scheme based on the quasi-
equilibrium assumption was proposed supposing that the probability density of the fast
species is known exactly as a function of the slow species or can be approximated, e.g.
by a Gaussian. The same quasi-equilibrium assumption was used in [6, 7], where the ef-
fective slow rates are obtained by solving a system of approximate algebraic equations,
which are based on extra assumptions on both the reaction rates and the equilibrium dis-
tributions of the fast reactions. These limitations are removed in the recent work [8,9], in
which stochastic simulation algorithms with nested structures are proposed to deal with
the time scale issue. The Nested Stochastic Simulation Algorithm (Nested SSA, or NSSA)
proposed in [8,9] relies only on the disparity of the rates, and makes no a priori assump-
tion on the form of the slow and fast variables, nor upon the analytic form of the rate
functions. Similar schemes are also proposed in [10, 11], with different implementations
on sampling the quasi-equilibrium of the fast reactions and time advancing of the slow
reactions.

The purpose of the current paper is to test the Nested SSA on the cell cycle model for
budding yeast [12]. The cell-division cycle is the sequence of events that take place in
a eukaryotic cell leading to its replication. A growing cell replicates all its components
and divides them into two daughter cells, so that each daughter has the information and
machinery necessary to repeat the process. To account for random fluctuations in the
molecular numbers of some major regulatory proteins, it is imperative to incorporate
stochastic effects in the dynamics. A stochastic version of the budding yeast cell cycle
model has been proposed in the framework of SSA [13, 14], which consists of 55 reacting
species involved in 82 reactions. Using Nested SSA, we are able to significantly speed up
the simulation of the model without losing much accuracy in the key dynamical features
of the system, such as the period of the cell cycle. In the following, we will first briefly
introduce the Nested SSA and the stochastic cell cycle model for budding yeast. Then we
will discuss in detail how NSSA can be applied to improve the efficiency of the stochastic
simulation.

2 The nested stochastic simulation algorithm

2.1 Direct SSA

The Stochastic Simulation Algorithm [3, 4] describes the time evolution of a spatially ho-
mogeneous mixture of chemically reacting molecules contained in a fixed volume V. The
solution is assumed to be well mixed and iso-thermal so the details of the diffusion and
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transport processes can be neglected and the reaction rates only depend on the popula-
tions of reacting molecules. We take NS species of molecules Si=1,···,NS

involved with MR

reactions Rj=1,···,MR
, with xi∈N being the number of molecules of species Si. The state of

the system is defined by
x=

(

x1,··· ,xNS

)

∈N
NS . (2.1)

Each reaction Rj is characterized by a rate function aj(x) and a state change vector νj ∈
N

NS . We write
Rj =

(

aj, νj

)

. (2.2)

Given state x, the occurrences of the reactions on an infinitesimal time interval dt are
independent of each other and the probability of reaction Rj during this time interval is
given up to the first order by aj(x)dt. The state of the system after reaction Rj is x+νj.
The time evolution of the probability distribution of the system P(x,t) is governed by the
forward Kolmogorov equation:

∂P(x,t)

∂t
=∑

j

(

aj(x−νj)P(x−νj,t)−aj(x)P(x,t)
)

. (2.3)

The SSA (see also [15] for similar schemes) constructs numerical realizations of the
time evolution of the state vector xt, i.e. simulated trajectories xt advancing with time t
in the state space. To describe the method, we assume that the current time is t= tn, and
the state of the system is at x=xn. One version of SSA called the Direct Method performs
the following steps:

1. Let a0(x)=∑j aj(x). Generate independent random numbers r1 and r2 with uniform distribution

on the unit interval [0,1]. Let

δtn+1 =
1

a0(x)
ln

(

1

r1

)

, (2.4)

and kn+1 be the positive integer such that

kn+1−1

∑
j=1

aj(x)< r2a0(x)≤
kn+1

∑
j=1

aj(x). (2.5)

2. Update time and state of the system by

tn+1 = tn+δtn+1, xn+1 =xn+νkn+1
. (2.6)

Goto 1. unless certain stopping criterion is met.

A slightly different implementation known as the First Reaction Method, was also
introduced in [3, 4]. In both versions, the SSA skips time intervals on which there is
no reaction event, going directly to the occurrence of the next reaction. Because more
random numbers are generated at each time step, the First Reaction Method is usually
less efficient than the Direct Method. This was improved in [16] by reusing the random
times for reactions that are not affected by the chosen reaction event at each time step.
The SSA is exact in the sense that the process generated by SSA has the same probability
distribution as the chemical reacting network being simulated.
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2.2 Nested SSA

To present the Nested SSA, we focus on the case when there are only two times scales.
The general cases is treated in [8, 9]. We assume that the rates {aj(x)}’s can be divided
into two groups: One group corresponding to the fast processes with rates of order 1/ǫ
and the other group corresponding to the slow processes with rates of order 1, with ǫ≪1:

a(x)=
(

as(x),a f (x)
)

, (2.7)

where
as(x)=

(

as
1(x), ··· , as

Ms
(x)

)

=O(1),

a f (x)=
(

a
f
1(x), ··· , a

f
M f

(x)
)

=O
(1

ǫ

)

,
(2.8)

in dimensionless units. The corresponding reactions and the associated state change vec-
tors can be grouped accordingly:

Rs =(as,νs), R f =(a f ,ν f ). (2.9)

The Nested SSA consists of two SSAs organized in a hierarchical fashion: an outer
SSA on the slow processes only, which uses modified slow rates, and an inner SSA on
the fast processes only, which uses the original fast rates and serves to give the modified
slow rates. Let t= tn , x= xn be the current time and state of the system. The steps of the
Nested SSA are the following:

1. Inner SSA
Run N independent replicas of SSA with the fast reactions R f =(a f ,ν f ) only, for a time interval

of Tf . During this calculation, compute the modified slow rates: For j=1,··· ,Ms, these are

ãs
j =

1

N

N

∑
k=1

1

Tf

∫ T0+Tf

T0

as
j (xk(τ))dτ, (2.10)

where xk(τ) is the k-th replica of the auxiliary fast processes at virtual time τ whose initial value

is xk(0)= xn. T0 is a parameter we choose in order to minimize the effect of the transients in

the auxiliary fast processes.

2. Outer SSA
Run one step of SSA for the modified slow reactions

R̃s =(ãs,νs), (2.11)

to generate (tn+1,xn+1) from (tn,xn). Then goto 1. until a certain stopping criterion is met.

The justification of the Nested SSA is the following. The slow-fast chemical reacting
network can be viewed as a singular perturbation problem [17–19]. It is can be proved [9]
that the effective dynamics on the slow time scale can be given, up to order O(ǫ), by:

R̄=(ā(y),νs), (2.12)
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where y is the effective slow variables defined to be linearly independent functions con-
served in the fast reactions and

āj(y)= 〈aj(x)〉y≡ ∑
x∈X

aj(x)µy(x), (2.13)

with µy(x) being the quasi-equilibrium distribution of the fast reactions. Moreover, a
rigorous and optimal error estimate for the Nested SSA, as well as generalizations to
dynamically partitioning of slow-fast reaction sets and to simulating systems with more
than 2 time scales, can be found in [9]. As applications, the virus infection model [20]
and the Heat Shock Response of E. Coli. [21] were studied. The same scheme has also
been applied to stochastic differential equations with multiple time scales [22], where a
rigorous error analysis is also provided.

3 The cell cycle model of budding yeast

Cell cycle is the essential mechanism by which all living things reproduce themselves
[23]. It consists of the succession of events whereby one cell grows and divides into two
daughter cells that each contains the information and machinery necessary to repeat the
process. Between one cell division and the next, all essential components of the cell must
be duplicated. The most important component is the genetic material (DNA molecules
present in chromosomes), which must be accurately replicated and the two copies care-
fully segregated to the two daughter cells. The eukaryotic cell cycle consists of 4 phases.
The 2 most dramatic events that constitutes the M phase are called mitosis and cytoki-
nesis, in which the nucleus divides and the cell splits into two. During the S (synthesis)
phase, the cell replicates its nuclear DNA. The G1 is the interval between the completion
of M phase and the beginning of S phase, while the G2 phase is the interval between the
end of S phase and the beginning of M phase. During the G1−S−G2 phases, the cell
continues to transcribe genes, synthesize proteins and grow in mass. 2 checkpoints are
imposed before the cell enters the S and M phases to make sure that there is no damage
to the DNA and its replication.

A lot of knowledge has been accumulated on the molecular mechanism of eukary-
otic cell cycle control for budding yeast, which makes Saccharomyces cerevisiae, the uni-
cellular budding yeast, an excellent example to study cell cycle regulation. Molecular
biologists have dissected and characterized individual cell cycle components and their
interactions that regulate the cell cycle. Read from bottom left toward top right, Fig. 1
shows a consensus picture of the regulatory network of the budding yeast [12]. More in-
formation on the model can be found at http://jigcell.biol.vt.edu. The original cell
cycle model was only deterministic in the form of a system of ODEs. Although being able
to reproduce the time scales of the dynamical interactions between different modules of
the network, it does not take into account the population scales of the reacting species,
which is influenced significantly by random fluctuations. To understand the impact of
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Figure 1: Reaction diagram for the cell cycle regulation of budding yeast.

stochastic effects on the dynamics, a stochastic version of the model has been recently
proposed in [13, 14] in the framework of SSA using experimentally collected data on the
populations of the reacting species [24] (also available at http://www.yeastgenome.org).
In Table 1, we list the total 82 reaction channels and the corresponding reaction rates
of the model. We use struct to represent the structural proteins making up the reacting
species. We also denote it by degraded when a reacting species is degraded or dissociated.
There are also 25 algebraic relations between the reaction species populations and the re-
action rates that are listed in Table 1. The parameters in the reaction rates and the initial
conditions for the simulations are given in Table 2.

In Table 1, Swi5T denotes the total population of Swi5, while Swi5 denotes the active
population of Swi5. Reaction a43 implies that they share the same decay rate. At each
reaction event of the degradation of Swi5, a random number is generated according to
the proportion of active Swi5 among total Swi5 to determine whether an active Swi5
should be degraded. The same notation is also used for the reacting species Cdc20, Cdh1,
Cdc14, Net1 in reaction a50, a53, a61, a69, respectively.

Besides the reacting species that are in discrete quantities, there are also continuous
variables in the system. The mass of the cell is supposed to grow exponentially until the
cell division:

d

dt
mass= kg ·mass. (3.1)

Notice that mass enters the dynamical system as a multiplier of the rates of synthesis
of cyclins Cln2, Clb2 and Clb5. At division of the cell, the mass is divided between the
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Table 1: The cell cycle model of the budding yeast.

I. Reaction channels and reaction rates

Cln2
a1 = kd,n2·Cln2

−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−
a2 =(k′s,n2+k′′s,n2·SBF)·mass

struct/degraded (*)

Clb5
a3 =Vd,b5·Clb5

−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−
a4 =(k′s,b5+k′′s,b5·MBF)·mass

struct/degraded

C5P
a5 = kd3,c1·C5P

−−−−−−−−−−−−−−−−→ Clb5

Clb5 + Sic1
a6 = kas,b5·Sic1·Clb5

−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−
a7 = kdi,b5·C5

C5

F5P
a8 = kd3, f 6·F5P

−−−−−−−−−−−−−−−−→ Clb5

Clb5 + Cdc6
a9 = kas, f 5·Cdc6·Clb5

−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−
a10 = kdi, f 5·F5

F5

Clb2
a11 =Vd,b2·Clb2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−
a12 =(k′s,b2+k′′s,b2·Mcm1)·mass

struct/degraded

C2P
a13 = kd3,c1·C2P

−−−−−−−−−−−−−−−−→ Clb2

Clb2 + Sic1
a14 = kas,b2·Sic1·Clb2

−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−
a15 = kdi,b2·C2

C2

F2P
a16 = kd3, f 6·F2P

−−−−−−−−−−−−−−−−→ Clb2

Clb2 + Cdc6
a17 = kas, f 2·Cdc6·Clb2

−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−
a18 = kdi, f 2·F2

F2

Sic1
a19 = k′s,c1+k′′s,c1·Swi5

←−−−−−−−−−−−−−−−−−−−− struct/degraded

C2
a20 =Vd,b2·C2

−−−−−−−−−−−−−−−→ Sic1

C5
a21 =Vd,b5·C5

−−−−−−−−−−−−−−−→ Sic1

Sic1
a22 =Vkp,c1·Sic1

−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−
a23 = kpp,c1·Cdc14·Sic1P

Sic1P

Sic1P
a24 = kd3,c1·Sic1P

−−−−−−−−−−−−−−−−−→ degraded

C2P
a25 =Vd,b2·C2P

−−−−−−−−−−−−−−−−→ Sic1P

C5P
a26 =Vd,b5·C5P

−−−−−−−−−−−−−−−−→ Sic1P

Continued on next page
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Table 1 – continued from previous page

C2
a27 = PVkp,c1·C2

−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−
a28 = kpp,c1·Cdc14·C2P

C2P

C5
a29 = PVkp,c1·C5

−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−
a30 = kpp,c1·Cdc14·C5P

C5P

Cdc6
a31 = k′s, f 6 +k′′s, f 6·Swi5+k′′′s, f 6·SBF

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− struct

F2
a32 =Vd,b2·F2

−−−−−−−−−−−−−−−→ Cdc6

F5
a33 =Vd,b5·F5

−−−−−−−−−−−−−−−→ Cdc6

Cdc6
a34 =Vkp, f 6·Cdc6

−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−
a35 = kpp, f 6·Cdc14·Cdc6P

Cdc6P

Cdc6P
a36 = kd3, f 6·Cdc6P

−−−−−−−−−−−−−−−−−−→ degraded

F2P
a37 =Vd,b2·F2P

−−−−−−−−−−−−−−−−→ Cdc6

F5P
a38 =Vd,b5·F5P

−−−−−−−−−−−−−−−−→ Cdc6

F2
a39 =Vkp, f 6·F2

−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−
a40 = kpp, f 6·Cdc14·F2P

F2P

F5
a41 =Vkp, f 6·F5

−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−
a42 = kpp, f 6·Cdc14·F5P

F5P

Swi5T\Swi5
a43 = kd,swi·(Swi5T\Swi5)

−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−
a44 = k′s,swi+k′′s,swi·Mcm1

struct/degraded

Swi5
a45 = ki,swi·Clb2·Swi5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a46 = ka,swi·Cdc14·(Swi5T−Swi5)

struct/degraded

APC P
a47 = ki,apc·APC P/(Ji,apc+APC P)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a48 = ka,apc·Clb2·(1.15e3−APC P)/(Ja,apc+1.15e3−APC P)

struct/degraded

Cdc20T
a49 = k′s,20 +k′′s,20·Mcm1

←−−−−−−−−−−−−−−−−−−−−− struct

Cdc20T\Cdc20A
a50 = kd20·Cdc20T\Cdc20A

−−−−−−−−−−−−−−−−−−−−−−−−−→ degraded

Cdc20A
a51 = kmad2·Cdc20A−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a52 =(k′a,20+k′′a,20·APC P)·(Cdc20T−Cdc20A)

struct/degraded

Cdh1T\Cdh1
a53 = kd,cdh·(Cdh1T\Cdh1)

−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−
a54 = ks,cdh

struct/degraded

Continued on next page
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Table 1 – continued from previous page

Cdh1
a55 =Vi,cdh·Cdh1/(Ji,cdh+Cdh1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a56 =Va,cdh·(Cdh1T−Cdh1)/(Ja,cdh+Cdh1T−Cdh1)

struct/degraded

Tem1
a57 = kbub2·Tem1/(Ji,tem+Tem1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a58 = klte1·(Tem1T−Tem1)/(Ja,tem+Tem1T−Tem1)

struct/degraded

Cdc15
a59 = ki,15·Cdc15

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a60 =(k′a,15·(Tem1T−Tem1)+k′′a,15·Tem1+k′′′a,15·Cdc14)·(Cdc15T−Cdc15)

struct/degraded

Cdc14T\Cdc14
a61 = kd,14·(Cdc14T\Cdc14)

−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−
a62 = ks,14

struct/degraded (**)

RENT
a63 = kd,net·RENT

−−−−−−−−−−−−−−−−−−→ Cdc14 (**)

Cdc14
a64 = kas,rentp·Net1P·Cdc14

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a65 = kd,net·RENTP, a66 = kdi,rentp·RENTP

struct/degraded (**)

Cdc14 + Net1
a67 = kas,rentp·Net1·Cdc14

−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−
a68 = kdi,rent·RENT

RENT (**)

Net1T\Net1
a69 = kd,net·(Net1T\Net1)

−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−
a70 = ks,net

struct/degraded (**)

RENT
a71 = kd,14·RENT

−−−−−−−−−−−−−−−−−→ Net1 (**)

Net1
a72 =Vkp,net·Net1

−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−
a73 =Vpp,net·Net1P

struct/degraded (**)

RENT
a74 =Vkp,net·RENT

−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−
a75 =Vpp,net·RENTP

struct/degraded (**)

PPX
a76 =Vd,ppx·PPX

−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
a77 = ks,ppx

struct/degraded

Pds1
a78 =Vd,pds·Pds1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a79 = k′s,pds+k′′s1,pds·SBF+k′′s2,pds·Mcm1

struct/degraded

Pds1 + Esp1
a80 = kas,esp·Esp1·Pds1

−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−
a81 = kdi,esp·PE

struct/degraded

Esp1
a82 =Vd,pds·PE

←−−−−−−−−−−−−−−−− degraded

II. Algebraic relations

GK(Va,Vi, Ja, Ji)= 2.·Ji ·Va

Vi−Va+Ja·Vi+Ji·Va+
√

(Vi−Va+Ja·Vi+Ji·Va)2−4.·(Vi−Va)·Ji ·Va

Continued on next page
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Table 1 – continued from previous page

Vd,b5 = k′d,b5+kp′′d,b5·Cdc20A

Vd,b2 = k′d,b2+k′′d,b2·Cdh1+kd,b2p·Cdc20A

Cln3=[C0·Dn3·mass/(Jn3+Dn3·mass)]

Bck2=[B0·mass]

Va,sb f = ka,sb f ·(ǫsb f ,n2·Cln2+ǫsb f ,n3a·Cln3+ǫsb f ,n3b·Bck2+ǫsb f ,b5·Clb5)

Vi,sb f = k′i,sb f +k′′i,sb f ·Clb2

SBF= long(4.55e4·GK(Va,sb f ,Vi,sb f , Ja,sb f , Ji,sb f ))

MBF=SBF

Mcm1=[2.1e4·GK(ka,mcm·Clb2,ki,mcm, Ja,mcm, Ji,mcm)]

Clb5T=Clb5+C5+C5P+F5+F5P

Clb2T=Clb2+C2+C2P+F2+F2P

Sic1T =Sic1+Sic1P+C2+C2P+C5+C5P

Cdc6T =Cdc6+Cdc6P+F2+F2P+F5+F5P

Vkp,c1 = kd1,c1+kd2,c1·(ǫc1,n3·Cln3+ǫc1,k2·Bck2+ǫc1,n2·Cln2+ǫc1,b5·Clb5+ǫc1,b2·Clb2)/(Jd2,c1+Sic1T)

Vkp, f 6 = kd1, f 6+kd2, f 6·(ǫ f 6,n3·Cln3+ǫ f 6,k2·Bck2+ǫ f 6,n2·Cln2+ǫ f 6,b5·Clb5+ǫ f 6,b2·Clb2)/(Jd2, f 6+Cdc6T)

CKIT=Sic1T+Cdc6T

RENTP=Cdc14T−RENT−Cdc14

Net1P= Net1T−Net1−Cdc14T+Cdc14

PE= Esp1T−Esp1

Va,cdh = k′a,cdh+k′′a,cdh·Cdc14

Vi,cdh = k′i,cdh+k′′i,cdh·(ǫcdh,n3·Cln3+ǫcdh,n2·Cln2+ǫcdh,b2·Clb2+ǫcdh,b5·Clb5)

Vpp,net = k′pp,net+k′′pp,net·PPX

Vkp,net =(k′kp,net+k′′kp,net·Cdc15)·mass

Vd,ppx = k′d,ppx+k′′d,ppx·(J20,ppx+Cdc20A)·Jpds/(Jpds +Pds1)

Vd,pds = k′d1,pds+k′′d2,pds·Cdc20A+k′′d3,pds·Cdh1
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Table 2: Parameters and initial conditions.

A. Parameters for the cell cycle model

kg =0.007702 k′s,n2 =0. k′′s,n2 =4.12e−3 kd,n2 =0.12 k′s,b5 =1.8 k′′s,b5 =2.47e−4

k′d,b5 =0.01 k′′d,b5 =1.4e−3 k′s,b2 =2.25 k′′s,b2 =4.29e−3 k′d,b2 =0.003 k′′d,b2 =0.004

kd,b2p =1.31e−3 k′s,c1 =27. k′′s,c1 =0.191 kd1,c1 =0.01 kd2,c1 =1. kd3,c1 =1.

kpp,c1 =1.65e−3 k′s, f 6 =54. k′′s, f 6 =0.191 k′′′s, f 6 =1.98e−4 kd1, f 6 =0.01 kd2, f 6 =1.

kd3, f 6 =1. kpp, f 6 =1.65e−3 kas,b5 =0.0222 kdi,b5 =0.06 kas, f 5 =4.44e−6 kdi, f 5 =0.01

kas,b2 =0.0222 kdi,b2 =0.05 kas, f 2 =6.67e−3 kdi, f 2 =0.5 k′s,swi =7.05 k′′s,swi =5.37e−3

kd,swi =0.08 ka,swi =8.26e−4 ki,swi =2.22e−5 ka,apc =5.11e−2 ki,apc =1.72e2 k′s,20 =0.687

k′′s,20 =3.27e−3 kd,20 =0.3 k′a,20 = .05 k′′a,20 =1.74e−4 ks,cdh =1. kd,cdh =0.01

k′a,cdh =1. k′′a,cdh =0.0331 k′i,cdh =0.1 k′′i,cdh =8. ks,14 =484 kd,14 =0.1

ks,net =203 kd,net =0.03 k′a,15 =3.5e−6 k′′a,15 =1.75e−3 k′3a,15 =4.13e−7 ki,15 =0.5

k′pp,net =0.05 k′′pp,net =3.e−4 k′kp,net =0.01 k′′kp,net =2.52e−3 kasrent=8.26e−2 kas,rentp=4.13e−4

kdi,rent=1. kdi,rentp=2. ks,ppx =100. k′d,ppx =0.17 k′′d,ppx =1.75e−2 k′s,pds =0.

k′′s1,pds =6.6e−5 k′′s2,pds =2.62e−4 k′d1,pds =0.01 k′′d2,pds =1.75e−3 k′′d3,pds =4.e−4 kas,esp =0.5

kdi,esp =0.5 ks,ori =2. kd,ori =0.06 ks,bud =0.2 kd,bud =0.06 ks,spn =0.1

kd,spn =0.06 ka,sb f =0.38 k′i,sb f =0.6 k′′i,sb f =3.56e−3 ka,mcm =4.45e−5 ki,mcm =0.15

kmad2 =8. (for ORI >1. and SPN <1.) or =.1 (otherwise).

kbub2 =573. (for ORI >1. and SPN <1.) or =114.6 (otherwise).

klte1 =573. (for SPN >1. and Clb2<Kez) or =57.3 (otherwise).

ǫsb f ,n2 =1.6e−3 ǫsb f ,n3a =0.0102 ǫsb f ,n3b =0.0125 ǫsb f ,b5 =8.89e−4 ǫc1,n3 =0.689 ǫc1,n2 =0.108

ǫc1,k2 =0.0847 ǫc1,b5 =0.1 ǫc1,b2 =0.45 ǫ f 6,n3 =0.689 ǫ f 6,n2 =0.108 ǫ f 6,k2 =0.0844

ǫ f 6,b5 =0.1 ǫ f 6,b2 =0.55 ǫcdh,n3 =2.55e−4 ǫcdh,n2 =3.2e−4 ǫcdh,b5 =3.56e−3 ǫcdh,b2 =5.33e−4

ǫori,b5 =4.e−4 ǫori,b2 =2.e−4 ǫbud,n3 =5.1e−5 ǫbud,n2 =2.e−4 ǫbud,b5 =4.44e−4

C0 =392. Dn3 =1. B0 =43.2 Tem1T=573 Cdc15T =238 Esp1T=100

Jd2,c1 =112.5 Jd2, f 6 =112.5 Ja,apc =115. Ji,apc =115. Ja,cdh =3. Ji,cdh =3.

Ja,tem =57.3 Ji,tem =57.3 Ja,sb f =0.01 Ji,sb f =0.01 Ja,mcm =0.1 Ji,mcm =0.1

Jspn =315. Jn3 =6. J20,ppx =17.2 Jpds =4. Kez =2700. Kez2 =1800.

f = exp(−1.026+32.·kg)

B. Initial conditions for the daughter cell

mass=1.2060 F5=1 Cdc14=1133 Cln2=82 F2P=62 Net1T=6776

Clb5=117 F5P=1 Net1=45 Clb2=331 Swi5T =1377 RENT=2540

Sic1=52 Swi5=1348 PPX =1232 Sic1P=14 APCP =117 Pds1=3

C2=536 Cdc20T =220 Esp1=30 C5=158 Cdc20A=51 C2P=54

Cdh1T =100 C5P =16 Cdh1=93 Cdc6=242 Tem1=518 Cdc6P=35

Cdc15=156 F2=531 Cdc14T =4840
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mother cell and the daughter cell such that (1− f )·mass is given to the new born daughter
and f ·mass remains with the mother cell.

Governed by the following equations, flag variables are also introduced to continu-
ously monitor and regulate the progress of critical events of the cell cycle:

dBUD

dt
= ks,bud ·(ǫbud,n2 ·Cln2+ǫbud,n3 ·Cln3+ǫbud,b5 ·Clb5)−kd,bud ·BUD,

dORI

dt
= ks,ori ·(ǫori,b5 ·Clb5+ǫori,b2 ·Clb2)−kd,ori ·ORI,

dSPN

dt
= ks,spn ·Clb2/(Jspn +Clb2)−kd,spn ·SPN. (3.2)

BUD represents proteins that are phosphorylated and subsequently initiate a new bud
for the new daughter cell when the phosphorylation state reaches a threshold, BUD=1.
In a similar manner, ORI = 1 signals the onset of DNA synthesis. ORI is reset to zero
only if Clb2+Clb5 drops below another threshold Kez2. The checkpoint is lifted when
SPN=1, which represents alignment of all chromosomes on the metaphase plate. When
Clb2 drops below Kez, we reset BUD and SPN to zero and the division of the cell is
initiated.
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Figure 2: Reaction rates for the cell cycle model.

4 Simulation of cell cycle model with NSSA

We used both Direct SSA and Nested SSA to simulate the cell cycle model. The time
scale separation can be illustrated by Fig. 2, which gives the magnitude of the reaction
rates at time t = 2000. It can be seen that the time scale separation is of the order of
O(102), with the fastest rates to be of order O(103), while most of other rates are of
O(10). The corresponding fast reactions are marked with (∗) and (∗∗) in Table 1. Notice
that the fast reactions belong to the modules that synthesis and degrade Cln2 and Cdc14,
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Figure 3: Reaction rates for Cln2 and Cdc14.

corresponding to reactions marked with (∗) and (∗∗), respectively. The cyclin Cln2 is
primarily responsible for bud emergence while Cdc14 is the phosphatase required the
cell for exit of M phase and return to G1 phase. The net effect of these reactions are for
Cln2 and Cdc14 to reach an quasi-equilibrium while the other species in these modules
do not influence the rest of the network. Therefore even the reaction rates a63−a64 and
a69−a71 are onlyO(101)−O(102), they are still counted in the fast module for Cdc14 since
they are dominated by faster reactions in the module. Notice that the fast modules are
affected by the slow modules through populations of species like Clb5 and Cdc15. To
justify the validity of Nested SSA, we need to verify the quasi-equilibrium assumption,
which requires the time scale separation to hold. For this purpose, we evaluate the rates
of the synthesis and degradation of Cln2 and Cdc14. It can be seen from Fig. 3 that the
reactions for Cdc14 remain fast all the time and the corresponding rates remain balanced
most of time. But the reactions for Cln2 constantly switch between slow and fast sets,
with the magnitude of the rates spanning a wide range of O(1)−O(103). This means
we have to dynamically partition between the fast and slow reactions sets in Nested
SSA. We make the following rule for the reactions marked with (∗) in Table 1 such that
if a1+a2 >1000, then the synthesis and degradation of Cln2 is counted as fast reactions,
otherwise if a1+a2<=1000, they are treated as slow reactions. Although the convergence
for the adaptive NSSA is still not well addressed, the numerical result here shows that
this simple mechanism still achieve efficiency while keeping accuracy of NSSA.

To handle the continuous variable mass, we simply solve (3.1) such that

mass(t+τ)=mass(t)exp(kgτ), (4.1)

where τ is generated at each time step of Outer SSA. The flag variables BUD, ORI and
SPN are solved using the Duhamel’s principle:

BUD(t+τ)=
1−exp(−kd,budτ)

kd,bud
·ks,bud ·

(

ǫbud,n2 ·Cln2+ǫbud,n3 ·Cln3+ǫbud,b5 ·Clb5
)

−exp(−kd,budτ)·BUD,
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ORI(t+τ)=
1−exp(−kd,oriτ)

kd,ori
·ks,ori ·

(

ǫori,b5 ·Clb5+ǫori,b2 ·Clb2
)

−exp(−kd,oriτ)·ORI,

SPN(t+τ)=
1−exp(−kd,spnτ)

kd,spn
·ks,spn ·Clb2/

(

Jspn+Clb2
)

−exp(−kd,spnτ)·SPN, (4.2)

where all the variables on the right hand side are evaluated at time t.
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Figure 4: Cell cycles obtained by SSAs.

In Fig. 4, we show the numerical results obtained using both Direct SSA and Nested
SSA. We have chosen the numerical parameters in Nested SSA such that

N =1, T0 =0, Tf =10−6. (4.3)

To further test the efficiency of Nested SSA quantitatively, we run the simulation till about
104 periods of cycles and measure the average and variance of the effective period. The
direct SSA will require 2.42×104 CPU seconds to finish the computation, and give an
average mean cycle period of 101.2246 seconds with a variance of 9.4288. In Nested SSA,
the parameter Tf is increased gradually each time, which will require a longer CPU time
but increase accuracy. The results are given in Table 3. It can be seen that the Nested
SSA is about 4 times faster than Direct SSA while the relative error on the key dynamical
feature of the effective period is only .0014%.

Table 3: Efficiency of Nested SSA for the period of cell cycle.

Tf 10−9 10−8 10−7 10−6

CPU 5900 5820 6074 6032

Period 101.2257 101.2261 101.2260 101.2260

var(Period) 11.4156 9.8154 11.1637 10.3799
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5 Conclusion

We tested the Nested Stochastic Simulation Algorithm on the cell cycle model of budding
yeast. The results show Nested SSA as a very efficient and accurate methods for simulat-
ing large scale reacting networks with multiple time scales. Future investigations will be
focused on analyzing convergence of adaptive schemes and applying the method to the
study of more biological problems.
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