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Abstract. This paper presents a novel high-order space-time method for hyperbolic
conservation laws. Two important concepts, the staggered space-time mesh of the
space-time conservation element/solution element (CE/SE) method and the local dis-
continuous basis functions of the space-time discontinuous Galerkin (DG) finite ele-
ment method, are the two key ingredients of the new scheme. The staggered space-
time mesh is constructed using the cell-vertex structure of the underlying spatial mesh.
The universal definitions of CEs and SEs are independent of the underlying spatial
mesh and thus suitable for arbitrarily unstructured meshes. The solution within each
physical time step is updated alternately at the cell level and the vertex level. For
this solution updating strategy and the DG ingredient, the new scheme here is termed
as the discontinuous Galerkin cell-vertex scheme (DG-CVS). The high order of accu-
racy is achieved by employing high-order Taylor polynomials as the basis functions
inside each SE. The present DG-CVS exhibits many advantageous features such as
Riemann-solver-free, high-order accuracy, point-implicitness, compactness, and ease
of handling boundary conditions. Several numerical tests including the scalar advec-
tion equations and compressible Euler equations will demonstrate the performance of
the new method.

AMS subject classifications: 65M99, 76M25
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1 Introduction

To numerically solve hyperbolic conservation laws, many methods including the classic
finite difference and finite volume methods, discontinuous Galerkin (DG) method [1, 6,
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9, 17] and the spectral volume method [31] use exact or approximate Riemann solvers
to provide inter-cell fluxes. Since Riemann fluxes are based on the local characteristic
structure of the governing equations, they are expected to provide the correct fluxes and
stabilize the numerical methods. However, in the actual implementation, Riemann fluxes
are dependent on trace values which are obtained numerically. Riemann fluxes computed
this way may deviate from the actual physical values. This might explain why many
(approximate) Riemann solvers capable of resolving contact discontinuities as well as
shocks often exhibit some pathological phenomena among which the so-called carbuncle
problem [10, 21, 24] is the most notorious one. Instead of finding the ”cure” for such
phenomena, some researchers resort to the so-called Riemann-solver-free approaches to
avoid such phenomena. Examples include the space-time Conservation Element and
Solution Element (CE/SE) method [3, 5], the Nessyahu-Tadmor (NT) scheme [19] and its
improved variant [12, 15]. Indeed, these schemes are often referred to as central schemes
in contrast to the Riemann-solver-based upwind ones. These central schemes are free
of the carbuncle problem and produce entropy-satisfying solutions. In addition, since
no Riemann solvers are involved in these central schemes, computation of numerical
fluxes do not need the eigen-structure information of the system, which is attractive in
governing equations where the eigen structure is not explicitly or easily known.

Numerical methods are required to be of high-resolution in both space and time such
that the complex and possibly transient physical features in the simulated flow field are
not overly smeared out during the long-time simulation. High-resolution means that
the numerical dissipative error and dispersive error inherent to the scheme are small
compared to the corresponding physical ones. Traditionally, the second-order accurate
schemes were considered as high-resolution schemes. This was true when compared to
the dissipative first order methods. Second order schemes have been extensively adopted
in many commercial packages due to their simpleness and acceptable accuracy for many
engineering applications. However, there are also many applications where second order
methods are not adequate. For example, in the field of aeroacoustics, small disturbances
(acoustics) often co-exist with strong discontinuities (e.g., shock waves), second order
schemes tend to smear out the small disturbances while capturing strong shocks. Other
examples include the wake of rotor blades and the flow field around flapping wings of
Micro Aerial Vehicles (MAVs) where the flow is highly unsteady and vortex abundant.
In this situation, numerical schemes of higher resolution are required to capture the tran-
sient vortices.

High resolution methods usually employ high-order (higher than second order)
spatial and temporal discretization. Various high-order methods such as the WENO
(weighted essentially nonoscillatory) [14] scheme, the discontinuous Galerkin (DG) fi-
nite element method [7], the spectral element method (SEM) [22] and the spectral vol-
ume method (SVM) [31] have been proposed in the literature and studied by many re-
searchers. High resolution methods may not be of high order in terms of truncation error.
An example is the aforementioned CE/SE method [3, 5] that yields high-resolution solu-
tions though it is designed to be second order accurate in both space and time. Solvers
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based on the CE/SE method [28] preserves the solution profile after long-time advection
which otherwise would be overly smeared using the second-order TVD schemes.

In semi-discrete schemes, the high-resolution in the spatial domain and the time do-
main is achieved separately. Most semi-discrete high-resolution methods focus on the
construction of high-order accuracy in space only. Finite difference discretization, e.g.,
the Backward Difference Formula (BDF), or the multi-step Runge-Kutta method is com-
monly adopted for the time integration in a semi-discrete scheme. By contrast, in space-
time methods, the temporal accuracy is obtained in the same manner as the spatial accu-
racy. In other words, the time dimension is treated as the (n+1)th dimension in addition
to the n spatial dimensions. This unified approach offers an alternative way to achieve
high-order temporal accuracy.

Besides, space-time methods are very suitable for problems involving moving or de-
forming domains. Space-time formulation automatically satisfies the so-called Geometric
Conservation Law (GCL) [13] as contrasted by the widely used Arbitrary Lagrangian-
Eulerian (ALE) methods which do not automatically satisfy the GCL.

Based on the discussions above, space-time methods are attractive since they allow
numerical schemes to be Riemann-solver-free, convenient to attain high-order temporal
accuracy, and suitable for moving boundary problems.

In addition to the accuracy requirement, high resolution methods must also be able to
handle complex geometries where unstructured meshes are usually used in the domain
discretization and have high parallelizability for large-scale simulations. The former re-
quires that high-resolution schemes be designed for unstructured meshes from the start.
The latter requires that high-resolution schemes be highly compact. The compactness
means that only information at the immediate neighboring nodes is required to update
the solution at the node under consideration.

The above considerations motivate the authors to design a new scheme that possesses
the following desired features:

• space-time formulation;

• high-order accurate in both space and time;

• Riemann-solver-free;

• highly compact;

• suitable for arbitrarily unstructured meshes;

• simple handling of moving and nonreflective boundary conditions.

Indeed, the new scheme presented in this paper were inspired by two of the aforemen-
tioned high-resolution methods, the space-time CE/SE method and the space-time DG
method.

The DG finite element methods [1, 6, 7, 9] use local discontinuous finite element basis
functions to achieve high-order accuracy while keeping the local conservation property
similar to that of the finite volume method. The DG method can be semi-discrete or



444 S. Tu, G. W. Skelton and Q. Pang / Commun. Comput. Phys., 9 (2011), pp. 441-480

based on space-time formulation. The time integration in the semi-discrete DG method
typically adopts an explicit multi-step Runge-Kutta algorithm. The reader can refer to [7]
and references therein for a comprehensive review of the DG method, especially the so-
called RKDG method. In space-time DG methods [17, 20, 30], the basis functions contain
both spatial and temporal components. The biggest advantage of the DG method is that
the stencil is the same regardless of the degree of the basis polynomials. This extreme
compactness of the DG method makes it trivial to attain high parallelizability. In the DG
method, the inter-element upwind fluxes provide the necessary stabilization in the ad-
vection dominant problems. In addition, the hp refinement can be easily implemented in
this method because hanging nodes and varying degrees of basis functions from element
to element are allowed in the DG method.

The CE/SE method introduced in the early 90’s [3] has many nontraditional features.
It introduces the concepts of space-time conservation elements (CEs) and solution ele-
ments (SEs). The space-time domain is filled by nonoverlapping CEs. The boundary
of each CE is divided into several sections, with each belonging to a unique SE. Linear
variations of the solution are assumed within each SE. Therefore, the CE/SE method
is, by design, a second order scheme in both space and time. The final formulation is
a result of enforcing the space-time flux conservation on a staggered space-time mesh.
The CE/SE method is a Riemann solver-free approach. Even though it is designed to
be a second-order scheme, its numerical dissipation is extraordinarily small, making it
capable of accurately handling both strong shocks and small disturbances (acoustics) si-
multaneously [16]. The CE/SE method is able to simulate flows with very low Mach
number without using any type of preconditioning. Due to its space-time formulation,
the treatment of non-reflective boundary conditions becomes very simple. The original
CE/SE method behaves similarly to the fully discrete NT scheme [19], i.e., overly dis-
sipative when small Courant number is used. However, remedies are available to make
the CE/SE method Courant number insensitive [4]. For a comprehensive overview of the
CE/SE method, the reader is referred to a more recent paper [2] of Chang, the inventor
of the method, and the abundant references therein.

In [28], the authors extended the CE/SE method by introducing a universal definition
of solution elements (SEs) and conservation elements (CEs) which is independent of the
underlying mesh. The staggered space-time mesh, which is the core idea in the CE/SE
method, can be constructed for arbitrarily unstructured spatial meshes using the same
definitions of SEs and CEs. The scheme in [28] was termed as the Cell Vertex Scheme
(CVS) since it updates the solution at vertices and cell centers alternately within each
physical time step. Similar to the CE/SE method, the CVS is Riemann-solver-free and
second order accurate in both space and time.

The new scheme described in this paper is aimed to make the CVS in [28] high-order
accurate by incorporating high-degree discontinuous basis functions within each solu-
tion element. Indeed, the new method is a hybrid of the CVS and the DG method and
thus is termed as DG-CVS. The combination results in a high-order method for solving
hyperbolic conservation laws. The new method offers benefits for both the space-time



S. Tu, G. W. Skelton and Q. Pang / Commun. Comput. Phys., 9 (2011), pp. 441-480 445

DG method and the space-time CE/SE method. The benefits for the space-time CE/SE
method is two fold. First, the new method increases the CE/SE method’s temporal and
spatial accuracies by employing high-degree polynomial basis functions inside the SE.
Second, the new method mitigates the phenomenon that excess dissipation occurs when
very small timesteps are used. Actually, as will be demonstrated in the numerical tests,
when high-degree (e.g., p4) basis functions are employed, the absolute error becomes
smaller when smaller time steps are used. The benefit for the space-time DG method is
the elimination of the need of explicitly upwinded flux functions (i.e., Riemann solvers).
As pointed out in [28], the upwind direction is automatically detected if the discretization
is based on the space-time flux conservation on staggered space-time CEs.

This paper aims to present the detailed formulation and some implementation issues
and demonstrate the performance of the new method for the hyperbolic conservation
laws. Parts of this paper have been presented in the author’s three other recent AIAA
conference papers [26, 27, 29].

The rest of the paper is organized as follows. Section 2 provides a detailed description
of the basic formulation of the new method for the 1-D linear scalar advection equation.
Section 3 discusses the choices of basis functions. Section 4 provides a quadrature-free
method to integrate within general polygons and polygonal cylinders. Section 5 explains
how to handle some common boundary conditions in the present DG-CVS framework.
Several test cases are provided in Section 6 to demonstrate the performance of the present
scheme for hyperbolic conservation laws including scalar advection equations and com-
pressible Euler equations. Finally, concluding remarks are given in Section 7.

2 The high-order cell vertex scheme

In this section, a detailed description of the new high-order cell-vertex scheme for 1-D
scalar advection problem is presented. Subsections 2.1 and 2.2 review the alternate cell-
vertex solution updating strategy and the universal definitions of conservation elements
and solution elements which have been presented in [28]. Section 2.3 provides the basic
formulation of the present new DG-CVS for one dimension cases.

2.1 Alternate cell-vertex solution updating strategy

The so-called cell-vertex scheme (CVS) introduced in [28] is an extension of the CE/SE
method. The CVS inherits the core idea of the CE/SE method using a staggered space-
time mesh to enforce the space-time flux conservation. However, the staggered space-
time mesh is realized through the alternate solution updating at cell centroids and ver-
tices within a physical time step, which conceptually departs from the original CE/SE
method. In CVS, unknowns are stored at both vertices and cell centroids of the spatial
mesh. However, the solutions at vertices and cell centroids are updated at different time
levels within each time step in an alternate fashion. At the beginning of each physical
time step, the solution is assumed known at the vertices of the mesh, either given as the
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initial condition or obtained from the previous time step. Inside each new time step, the
solution is updated in two successive steps. The first step updates the solution at cell
centroids at the half-time level (tn+1/2) based on the known vertex solutions at the pre-
vious time level (tn). The second step updates the solution at vertices at the new time
level (tn+1) based on the known cell solutions at the previous half-time level (tn+1/2). The
same process is repeated for new time steps.

Since the CVS is a derivative of the CE/SE method, it inherits the advantageous fea-
tures of the latter. The most important feature is that CVS, like the CE/SE method, is
a Riemann-solver-free approach. In addition, the CVS has its own merit, namely, it al-
lows universal definitions of the conservation element (CE) and the solution element
(SE) which is applicable to arbitrarily unstructured spatial meshes. The next subsection
will review such definitions.

2.2 Universal definitions of solution element and conservation element

Here, the 1-D spatial mesh is taken as the example to illustrate the universal definitions
of CEs and SEs. Fig. 1(a) shows the neighboring SEs on x−t space-time domain that is
based on 1-D spatial meshes. Here the indices in (m,n) are used to denote space-time
coordinates of the space-time node, respectively. The space-time node can be at the cell
level or the vertex level. The SE associated with the space-time node (m,n) is defined as
the rectangular region plus the vertical volumeless segment above the rectangle. Note
that the height of each rectangle is δt/2, namely, half the time step. Within each SE, the
solution satisfies a polynomial function of certain degree.

Fig. 1(b) shows the corresponding space-time conservation elements (CEs) at the cell
level and the vertex level, respectively. The boundary of each CE is composed of several
sections with each section belonging to a unique SE defined in Fig. 1(a). For example,
when enforcing the space-time flux conservation in the CE associated with the cell cen-
troid (m+1/2,n+1/2), the space-time fluxes on the left side boundary and left bottom
boundary of the CE are evaluated using the polynomial function inside the SE associated
with vertex (m,n), the space-time fluxes on the right side boundary and the right bottom
boundary of the CE are evaluated using the polynomial function inside the SE associated
with vertex (m+1,n), and the space-time fluxes on the top boundary of the CE are eval-
uated using the polynomial function inside the SE associated with the cell itself (which
is to be determined). The CE boundaries in Fig. 1(b) are indicated by distinctive thatch
patterns for sections belonging to different SEs. The same space-time flux conservation
can be enforced similarly in the vertex-level CE, as shown in Fig. 1(b) (bottom).

Remark 2.1. As can be seen in Fig. 1, the present staggered space-time mesh is layered
(structured in time) which is in contrast to the space-time DG method in [20] where the
space-time mesh can be layered or fully unstructured. The geometric shape of the CE and
the SE is essentially the same except that the SE has an extra volumeless vertical segment
which is also the side boundary of the CE at the next level.
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(a) Solution elements (b) Conservation elements

Figure 1: Solution elements (SEs) and conservation elements (CEs) in the x−t domain.

The resultant SEs and CEs based on the definitions described above are the same as
those in the original CE/SE method on 1-D spatial meshes. However, deviation occurs
in higher spatial dimensions. The same definitions can be easily extended to higher-
dimensional arbitrary meshes (cf. Fig. 2) without any ambiguity. The advantage of the
present CE and SE definitions is that the staggered space-time mesh can be constructed
using the existing mesh cell-vertex topology information. It can be concluded that this
novel definitions of CEs and SEs are independent of the underlying mesh. Of course, the
geometric shape of the resulting CE does depends on the underlying spatial meshes. Due
to this reason, the definition of SEs and CEs introduced in [28] is considered as universal.

2.3 Basic CVS formulation

To illustrate the derivation of the basic CVS formulation, we consider the following one-
dimensional scalar advection problem with appropriate initial and boundary conditions

∂u(x,t)

∂t
+

∂ f (u)

∂x
=0, (2.1)

where u is the advected quantity and f is the flux.

Following the idea of DG, an approximate solution uh is sought within each space-
time solution element (SE), denoted as K. When restricted to the SE, uh belongs to the
finite dimensional space U(K) such that

uh(x,t)=
N

∑
j=1

φjsj, (2.2)

where {φj}N
j=1 are some type of polynomial basis functions, {sj}N

j=1 are the unknowns to

be determined and N is the number of basis functions depending on the degree of the
polynomial function.



448 S. Tu, G. W. Skelton and Q. Pang / Commun. Comput. Phys., 9 (2011), pp. 441-480

(a) CEs for rectangular meshes

(b) CEs for triangular meshes

(c) SEs for rectangular meshes

(d) SEs for triangular meshes

Figure 2: Conservation elements (CEs) and solution elements (SEs) in the x-y-t domain.
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Galerkin orthogonality states that for all test functions vh ∈U(K),

∫

Ω
vh

(∂uh

∂t
+

∂ f h

∂x

)

dΩ=0, (2.3)

where Ω is the conservation element (CE) corresponding to the solution element K. Note
that the difference between CEs and SEs is the volumeless vertical segment as shown in
Fig. 1(a).

It is sufficient to replace vh in Eq. (2.3) by each of the basis functions {φj}N
j=1. Integrat-

ing the resulting weak form by parts yields

∫

Ω

[∂φi

∂t
uh+

∂φi

∂x
f h

]

dΩ=
∫

Γ
φiF

h
ndΓ, (2.4)

where

Fh
n = Fh ·n=

(

f h,uh
)

·(nx,nt) (2.5)

is the space-time flux normal to the boundary of the space-time CE, n = (nx,nt) is the
outward unit normal of the CE boundary, Γ = ∂Ω is the boundary of the CE under con-
sideration.

The cell level CE shown in Fig. 1(b) is taken as a specific example here. As shown
in Fig. 3, divide Γ into five sections Γ1, Γ2, Γ3, Γ4 and Γ5 where Γ1 belongs to the SE
associated with (m+1/2,n+1/2) where the solution is being sought, Γ2 and Γ3 the SE
associated with (m,n) and Γ4 and Γ5 the SE associated with (m+1,n). Note that the
solutions at nodes (m,n) and (m+1,n) are known since they are at the previous time
level. As a result, (2.4) becomes

∫

Ω

[∂φi

∂t
uh

m+ 1
2 ,n+ 1

2
+

∂φi

∂x
f h
m+ 1

2 ,n+ 1
2

]

dΩ−
∫

Γ1

φiF
h
n(m+ 1

2 ,n+ 1
2 )

dΓ

=
∫

Γ2+Γ3

φiF
h
n(m,n)dΓ+

∫

Γ4+Γ5

φiF
h
n(m+1,n)dΓ, (2.6)

where the left hand side contains the unknowns at the time level tn+1/2 and the right hand
side contains the known solution at the time level tn. In (2.6), the subscripts represent the
space-time indices in the space-time domain. On boundary Γ1, the outward unit normal
n=(0,1). Therefore,

Fh
n(m+ 1

2 ,n+ 1
2 )

=uh
m+ 1

2 ,n+ 1
2

on Γ1.

Similarly, on boundaries Γ3 and Γ4, the outward unit normal n=(0,−1), leading to

Fh
n(m,n)=−uh

m,n on Γ3,

Fh
n(m+1,n)=−uh

m+1,n on Γ4.
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Figure 3: Illustration of space-time flux conservation in a conservation element at the cell level.

Substituting these into (2.6) to obtain
∫

Ω

[∂φi

∂t
uh

m+ 1
2 ,n+ 1

2
+

∂φi

∂x
f h
m+ 1

2 ,n+ 1
2

]

dΩ−
∫

Γ1

φiu
h
m+ 1

2 ,n+ 1
2
dΓ

=
∫

Γ2

φiF
h
n(m,n)dΓ−

∫

Γ3

φiu
h
m,ndΓ−

∫

Γ4

φiu
h
m+1,ndΓ+

∫

Γ5

φiF
h
n(m+1,n)dΓ. (2.7)

Note that even though the side boundaries of the stationary CE shown in Fig. 3 have
outward unit normals n=(±1,0) which can be used to simplify the fluxes across Γ2 and
Γ5, for general moving meshes the side boundaries are not vertical. For this reason, the
flux terms for Γ2 and Γ5 are kept in their general forms without loss of generality. In (2.7),

Fh
n(m,n)=

(

f (uh
m,n),uh

m,n

)

·nΓ2

and uh
m,n is computed according to the known solution sm,n at the space-time node (m,n)

using (2.2). f (uh
m,n) is obtained from uh

m,n. Fh
n(m+1,n) can be evaluated similarly. Therefore,

the computation of the flux terms in (2.7) does not involve any Riemann solver.
Eq. (2.7) is for updating the solution at the space-time node (m+1/2,n+1/2), which

is at the cell level. For vertex level nodes, similar formulation can be derived. Note that
(2.7) is the most general formulation for 1-D scalar advection problems. The formulation
is based on the universal definitions of CEs and SEs described in Subsection 2.2. Thus it
is readily extensible for higher spatial dimensions.

2.4 Linear flux case

The flux f in (2.7) can be a linear or nonlinear function of the advected quantity depend-
ing on the specific problem. When the flux f is a linear function of u, e.g., f = au where
a is the constant advection speed, a linear equation system can be obtained from (2.7).
Substituting (2.2) into (2.7), one gets

∫

Ω

[∂φi

∂t

( N

∑
j=1

φjsj(m+ 1
2 ,n+ 1

2 )

)

+a
∂φi

∂x

( N

∑
j=1

φjsj(m+ 1
2 ,n+ 1

2 )

)]

dΩ−
∫

Γ1

φi

( N

∑
j=1

φjsj(m+ 1
2 ,n+ 1

2 )

)

dΓ

=
∫

Γ2

φiF
h
n(m,n)dΓ−

∫

Γ3

φiu
h
m,ndΓ−

∫

Γ4

φiu
h
m+1,ndΓ+

∫

Γ5

φiF
h
n(m+1,n)dΓ, (2.8)
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which can be expressed in matrix-vector form as

Ms=b, (2.9)

where M is a non-symmetric N×N matrix, s is an N×1 vector containing the unknowns,
sj, and b is another N×1 vector containing known components. The elements of M and
b, Mij and bi are explicitly given as

Mij =
∫

Ω

[∂φi

∂t
φj+

(∂φi

∂x
φj

)

a
]

dΩ−
∫

Γ1

φiφjdΓ, (2.10a)

bi =
∫

Γ2

φiF
h
n(m,n)dΓ−

∫

Γ3

φiu
h
m,ndΓ−

∫

Γ4

φiu
h
m+1,ndΓ+

∫

Γ5

φiF
h
n(m+1,n)dΓ. (2.10b)

As can be seen, a small linear equation system (whose size depends on the number of
basis functions employed) must be solved for each space-time node. For this reason, the
current CVS can be considered as a point implicit scheme.

2.5 Nonlinear flux case

When the flux f is a nonlinear function of u, Eq. (2.7) results in a set of nonlinear equa-
tions. The standard Newton-Raphson method can be used to solve the nonlinear equa-
tion set for s. First denote for i=1,2,··· ,N,

Gi(s)=
∫

Ω

[∂φi

∂t
uh

m+ 1
2 ,n+ 1

2
+

∂φi

∂x
f h
m+ 1

2 ,n+ 1
2

]

dΩ−
∫

Γ1

φiu
h
m+ 1

2 ,n+ 1
2
dΓ

−
∫

Γ2

φiF
h
n(m,n)dΓ+

∫

Γ3

φiu
h
(m,n)dΓ+

∫

Γ4

φiu
h
(m+1,n)dΓ

−
∫

Γ5

φiF
h
n(m+1,n)dΓ=0, (2.11)

which is obtained by moving all terms of (2.7) to the left hand side.
Newton-Raphson method states that the solution can be updated iteratively by means

of
s(τ+1) = s(τ)−J−1G(s(τ)), (2.12)

where the superscript τ represents the iteration step. The Jacobian matrix J = ∂G/∂s

depending on the specific functional form of the flux f . For instance, for the inviscid
Burgers equation,

f =
1

2
u2,

namely,

f h =
1

2
(uh)2 =

1

2

[ N

∑
j=1

(φjsj)
]2

,
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whose derivatives with respect to sj are

∂ f h

∂sj
=φj

N

∑
j=1

(

φjsj

)

=φju
h. (2.13)

The derivatives of uh with respect to sj are

∂uh

∂sj
=φj. (2.14)

Eqs. (2.13) and (2.14) together with (2.11) can be used to obtain the Jacobian matrix. One
observes that the Jacobian matrix has the same form of the matrix whose entries are given
in (2.10a) except that a in (2.10a) is replaced by u(τ) which is uh at the previous iteration
step, namely, the entries of J are given by

Jij =
∫

Ω

[∂φi

∂t
φj+

(∂φi

∂x
φj

)

u(τ)
]

dΩ−
∫

Γ1

φiφjdΓ. (2.15)

To update s using (2.12), one can first compute the solution increment δs by solving

Jδs=−G(s(τ)),

which is a linear equation system and can be solved by a direct or iterative method. The
solution is then updated via

s(τ+1) = s(τ)+δs.

The initial guess of the solution, s(0), is currently taken as the average of the solutions at
the surrounding nodes at the previous time level. Numerical tests in Sections 6.3.2 and
6.3.4 indicate that 2-5 iterations are sufficient in the case of the inviscid Burgers equation
to reach convergence.

Remark 2.2. A distinction from the DG or space-time DG methods is that no Riemann-
solver-typed flux functions are employed in the present method when evaluating the
space-time fluxes across the CE side boundaries. The apparent lack of upwinded fluxes
does not cause numerical instability. Actually, as pointed out in [28], the upwind direc-
tion is automatically detected when using the staggered space-time formulation.

Remark 2.3. Compared to the original CVS in [28] which is only second order accurate,
the present DG-CVS can be arbitrarily high order accurate, at least in theory, thus achiev-
ing improvements over the original CVS or the CE/SE method. Note that in the original
CVS [28] as well as the CE/SE method [3], the time derivative of the solution is obtained
from the spatial derivative of the solution using the original governing equation (2.1). By
contrast, in the new DG-CVS, the time derivative of the solution is treated as an inde-
pendent unknown and handled in the same way as that for the spatial derivative of the
solution. Therefore, even for the same second-order version, the new DG-CVS deviates
from the original CVS or the CE/SE method.
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Remark 2.4. The derivation of the new scheme is based on the same highly compact
stencil regardless of the order as in the DG method. In other words, the new solution at a
space-time node relies only on solutions at the immediate neighboring nodes at the previ-
ous time level regardless of the degree of basis polynomials. This feature is desirable for
two reasons: (i) the solution at the new time level relies on a finite region of dependence
according to the theory of characteristics, and (ii) compact schemes are highly paralleliz-
able on distributed memory computer platforms.

3 Choice of basis functions

The solution inside each solution element is assumed to satisfy a polynomial function of
certain degree (cf. Eq. (2.2)). Different forms of polynomials can be used. For example,
Lagrange polynomials, Taylor polynomials, Chebyshev polynomials and Legendre poly-
nomials are all possible choices. Choice of polynomial functions will affect the accuracy
and efficiency of the solution procedure.

In the present implementation, the Taylor polynomials is chosen. The bivariate Taylor
polynomial of degree p in 1D can be expressed as

uh(x,t)=
p

∑
r=0

1

r!

(

∆x
∂

∂x
+∆t

∂

∂t

)r
u(x0,t0)

=
p

∑
r=0

[ 1

r!

r

∑
i=0

(

r
i

)

∆xr−i∆ti
( ∂ru

∂xr−i∂ti

)

(x0,t0)

]

, (3.1)

where (x0,t0) is the space-time vertex-level or cell-level node whose solutions are to be
determined. p is the degree of the polynomial. ∆x = x−x0 and ∆t = t−t0 are the spatial
and temporal distances to (x0,t0), respectively. The Taylor polynomial (3.1) is an approx-
imation of the solution in the vicinity of the space-time node (x0,t0) using the derivative
information of the solution at that node.

Comparing (3.1) and (2.2), one can extract the basis functions φj’s and the unknowns
sj’s. The number of the basis functions and unknowns is

N =
1

2
(p+1)(p+2).

Take the quadratic case (p=2 and N =6) as an example. One has the basis functions

φ1 =1, φ2 =∆x, φ3 =
1

2
∆x2, φ4 =∆t, φ5 =∆x∆t, φ6 =

1

2
∆t2,

which are the functions of ∆x and ∆t, and the solution vector components

s1 =uh
0, s2 =

(∂uh

∂x

)

0
, s3 =

(∂2uh

∂x2

)

0
,

s4 =
(∂uh

∂t

)

0
, s5 =

(∂2uh

∂x∂t

)

0
, s6 =

(∂2uh

∂t2

)

0
,
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which are the unknown itself and its spatial and temporal derivatives of various order.
For 2D problems, the following trivariate Taylor polynomials are used:

uh(x,y,t)=
p

∑
r=0

1

r!

(

∆x
∂

∂x
+∆y

∂

∂y
+∆t

∂

∂t

)r
u(x0,y0,t0)

=
p

∑
r=0

[ 1

r!

r

∑
i=0

i

∑
j=0

(

r
i

)(

i
j

)

∆xr−i∆yi−j∆tj
( ∂ru

∂xr−i∂yi−j∂tj

)

(x0,y0,t0)

]

, (3.2)

where
(

r
i

)(

i
j

)

=
r!

(r−i)!(i− j)!j!

is the trinomial coefficient. Obviously, the number of basis functions equals

1

3!
(p+1)(p+2)(p+3).

Since typical integrals involves double or triple products between polynomials, it is es-
sential to normalize ∆x, ∆y, and ∆t in the basis functions using the local cell size for better
accuracy, which is especially true when polynomials of high degrees are used.

The Taylor polynomial is chosen for three reasons. First, the Taylor polynomial has
no restrictions on the geometric shape of the solution element (SE). The SE can be of ar-
bitrary shape which is typically polygonal cylinder on spatially unstructured meshes (cf.
Fig. 2(b)). By contrast, Lagrange polynomials are only well defined on simplicial ele-
ments or elements allowing tensor products, and Chebyshev polynomials and Legendre
polynomials are only well defined on elements allowing tensor products.

Second, with Taylor polynomials, the basis functions are polynomials with respect to
the physical coordinates ∆x and ∆t. Other polynomials usually define the basis function
using reference coordinates (e.g., ξ and η). The numerical integration in Eq. (2.8) involves
the derivatives of the basis function with respect to the physical coordinates. With Taylor
polynomials, the derivatives can be directly obtained by taking the derivative of the basis
functions with respect to ∆x and ∆t without resorting to the chain rule as is required
when other polynomials are employed.

Third, the derivatives of Taylor polynomials are a lower order subset of the origi-
nal Taylor polynomials. This allows efficient implementation when evaluating integrals
involving products of polynomials. For example, the quadratic 2-D basis functions are
tabulated in Table 1.

Remark 3.1. The above discussions of the advantages of Taylor polynomials over other
polynomials are completely based on the implementation point of view. One should
keep in mind that high degree Taylor polynomials are notorious in generating severely
ill-conditioned systems. It is well known that the number of reliable digits of the solution
of linear systems is related to the conditioning of the system. As a result, high degree
Taylor polynomials are expected to yield inaccurate solutions due to the ill conditioning
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Table 1: Derivatives of quadratic 2-D basis functions.

i unknowns (si) φi
∂φi
∂x

∂φi
∂y

∂φi
∂t

1 uh
0 1 0 0 0

2
(

uh
x

)

0
∆x 1 0 0

3
(

uh
y

)

0
∆y 0 1 0

4
(

uh
xx

)

0

1
2 ∆x2 ∆x 0 0

5
(

uh
xy

)

0
∆x∆y ∆y ∆x 0

6
(

uh
yy

)

0

1
2 ∆y2 0 ∆y 0

7
(

uh
t

)

0
∆t 0 0 1

8
(

uh
xt

)

0
∆x∆t ∆t 0 ∆x

9
(

uh
yt

)

0
∆y∆t 0 ∆t ∆y

10
(

uh
tt

)

0

1
2 ∆t2 0 0 ∆t

of the system, which will be verified in the section of numerical tests. Therefore, choosing
Taylor polynomials is not wise from the accuracy point of view. However, the purpose of
this paper is to demonstrate the efficacy of the DG-CVS idea, so Taylor polynomials are
employed for quick implementation. Implementing other basis polynomials remains our
future work.

4 Integration within general polygons and polygonal cylinders

As can be seen from Eqs. (2.10a) and (2.10b) together with Fig. 3, the space-time CVS in-
volves both the volume integral and surface integrals. These integrals must be integrated
either numerically or analytically. Obviously, for 1D meshes (Fig. 1(b) and 2D rectangu-
lar meshes (Fig. 2(a)), we can directly apply the Gaussian quadrature rule to compute
all integrals. However, if the underlying spatial mesh is unstructured (Fig. 2(b)), the
vertex-level CEs are general polygonal cylinders containing general polygonal bases and
quadrilateral side faces where the Gaussian quadrature rule cannot be directly applied.

We need to evaluate the following integrals to compute the right hand side vector
(Eq. (2.10b)) of the linear system (2.9):

• surface integrals involving the side faces of the CE. The side faces of CEs are always quadrilaterals
(for 2D meshes). Actually, for non-moving meshes, they are rectangles. Therefore, Gaussian quadrature
rule can be applied to numerically integrate the surface integrals on these faces.

• surface integrals involving the bottom face of the CE. The bottom face of the CE is a general

polygon. For example, at the cell level, the bottom face of the CE is a triangle and the Gaussian

quadrature rule can be used. By contrast, at the vertex level, the bottom face of the CE is a general
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n-sided polygon. The polygonal shape of faces does not incur difficulties in the integration since the

bottom face is divided into several quadrilaterals with each belonging to a solution element at the

previous time level. Therefore, Gaussian quadrature rule can be applied here too.

Therefore, the Gaussian quadrature rule can be used to evaluate all integrals in the
computation of the right hand side vector.

To compute the left hand side matrix (Eq. (2.10a)) of the linear system, we need to
evaluate the following integrals:

• surface integrals involving the top face of the CE. The top face of the CE is identical to the
bottom face of the CE for stationary spatial meshes. However, since the entire top face belongs to
the solution element whose solutions are being sought, the n-sided polygon is treated as a whole. The
Gaussian quadrature rule cannot be directly applied here.

• volume integral involving the volume of the CE. The volume is a general n-sided polygonal cylinder

where the Gaussian quadrature rule cannot be directly applied.

Therefore, for those integrals in the computation of the left hand side matrix, the
Gaussian quadrature rule cannot be directly applied. This section addresses the proce-
dure to circumvent this difficulty.

4.1 Converting volume integrals to surface integrals

The integrand in the volume integral (cf. Eq. (2.10a)) has the following general form

q(x,y,t)=∆xl∆ym∆tn, (4.1)

which results from the products between Taylor polynomials. In (4.1), l,m, and n are
integer exponents. For notational simplicity, denote

x̃=∆x= x−x0, ỹ=∆y=y−y0 and t̃=∆t= t−t0.

Then (4.1) becomes

q(x,y,t)= x̃l ỹm t̃n. (4.2)

Computing volume integrals with integrands of the form as in (4.2) is equivalent to com-
puting the moments of arbitrary order of polyhedra. In the current case, the polyhedra
are polygonal cylinders. The method of using the divergence theorem explained in [8] is
adopted to reduce the volume integral to surface integrals and further to line integrals.

To evaluate a scalar integral inside a space-time volume Ω, i.e.,
∫

Ω
qdΩ, we first con-

struct a vector function

Q(x,y,t)=Q1i1+Q2i2+Q3i3,

where i1, i2 and i3 denote the unit vectors along the x, y, and t-directions, respectively,
such that

q=∇·Q. (4.3)
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With the aid of the auxiliary function Q, one can convert the volume integral into a sur-
face integral via the divergence theorem as follows:

∫

Ω
q(x,y,t)dΩ=

∫

Ω
∇·QdΩ=

∫

∂Ω
Q·ndΓ. (4.4)

Without loss of generality, we can define the following for Q

Q1 =0, Q2 =0 and Q3(x,y,t)=
∫

q(x,y,t)dt+c(x,y) (4.5)

to satisfy (4.3). In (4.5),
∫

qdt is an indefinite integral with respect to t and c(x,y) is an
arbitrary function independent of t.

Substituting (4.5) into (4.4) to obtain
∫

Ω
q(x,y,t)dΩ=

∫

∂Ω
Q3ntdA=

∫

∂Ω

(

∫

q(x,y,t)dt
)

ntdA+
∫

∂Ω
c(x,y)ntdA, (4.6)

where nt is the outward unit normal in the t-direction of the surface.
∫

∂Ω
c(x,y)ntdΓ

equals zero for enclosed surfaces since c(x,y) is independent of t and results in zero net
contributions. Therefore, it suffices to evaluate

∫

Ω
qdΩ via

∫

Ω
q(x,y,t)dΩ=

∫

∂Ω

(

∫

q(x,y,t)dt
)

ntdA. (4.7)

For stationary meshes, the side surfaces of the polygonal cylinders are vertical to the x-
y plane (i.e., nt = 0), so only the top and bottom faces of the CE have nonzero nt (i.e.,
nt =±1). Hence, (4.7) can be computed as

∫

Ω
q(x,y,t)dΩ=

∫

Γtop

(

∫

q(x,y,t)dt
)

dA−
∫

Γbot

(

∫

q(x,y,t)dt
)

dA. (4.8)

Furthermore, on the top surface, t̃=∆t=0, therefore, the first integral in Eq. (4.8) is zero.
(4.8) reduces to

∫

Ω
q(x,y,t)dΩ=−

∫

Γbot

(

∫

q(x,y,t)dt
)

dA. (4.9)

For simple polynomials, the indefinite integral can be evaluated analytically, i.e.,

∫

q(x,y,t)dt=
∫

x̃l ỹm t̃ndt=
1

n+1
x̃l ỹm t̃n+1. (4.10)

Since the bottom face of the CE is a horizontal one, t̃ is a constant on the surface. Consid-
ering this fact and substituting (4.10) into (4.9) leads to

∫

Ω
q(x,y,t)dΩ=− 1

n+1
t̃n+1

∫

Γbot

x̃l ỹmdA. (4.11)

As can be seen the volume integral
∫

Ω
q(x,y,t)dΩ has been reduced to a surface integral

(4.11).
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4.2 Converting surface integral to line integrals

The surface integral (4.11) is an integral over a general polygon which is the bottom face
of the CE. In addition, the surface integral in (2.10a) involves the top face of the CE. For
stationary meshes, the top surface and the bottom surface of the same CE are identical.

One can repeat the procedure in the previous subsection to convert the surface inte-
gral into line integrals. Alternatively, one can apply Green’s theorem to reach the same
goal.

According to Green’s Theorem

∫

A
x̃l ỹmdA=

∮

∂A

(

∫

x̃l ỹmdx
)

dy=
L

∑
i=1

1

l+1

∫

∂Ai

x̃l+1ỹmdy, (4.12)

where L is the number of edges in the polygon.
For each line segment, the two ending points are denoted as (x̂1,ŷ1) and (x̂2,ŷ2). We

can parametrize x̃ and ỹ according to

x̂(λ)= x̂1+λ(x̂2− x̂1), (4.13a)

ŷ(λ)= ŷ1+λ(ŷ2− ŷ1), (4.13b)

where 0≤λ≤1. Since
dy=dŷ =(ŷ2− ŷ1)dλ,

the line integral in (4.12) becomes

∫

∂Ai

x̃l+1ỹmdy=(ŷ2− ŷ1)
∫ 1

0
(x̂1+λ(x̂2− x̂1))

l+1(ŷ1+λ(ŷ2− ŷ1))
mdλ. (4.14)

4.3 Quadrature-free integration of line integrals

The line integral in (4.14) has the following general form

∫ 1

0
x̂r(λ)ŷs(λ)dλ,

where x̃ and ỹ are expressed as (4.13a) and (4.13b), respectively. Such 1-D line integrals
can be computed either numerically by the Gaussian quadrature rule or even analytically.
In [23], the following formulae has been derived to analytically compute the integral in
this form:

∫ 1

0
x̂r(λ)ŷs(λ)dλ=

r+s

∑
k=0

1

k+1

( k

∑
j=0

ar,jbs,k−j

)

, (4.15)

with

ar,j =

(

r
j

)

x̂
r−j
1 ∆x̂j, bs,k−j =

(

s
k− j

)

ŷ
s−(k−j)
1 ∆ŷk−j,
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where

∆x̃= x̂2− x̂1, ∆ỹ= ŷ2− ŷ1,

and the binomial coefficients are

(

r
j

)

=

{

r!
j!(r−j)!

, 0≤ j≤ r,

0, otherwise,
and

(

s
k− j

)

=

{

s!
(k−j)!(s−(k−j))!

, 0≤ k− j≤ s,

0, otherwise.

Considering the ranges for the values of j in the binomial coefficients, one can rewrite
Eq. (4.15) as

∫ 1

0
x̂r(λ)ŷs(λ)dλ=

r+s

∑
k=0

1

k+1

(
min(k,r)

∑
j=max(k−s,0)

ar,jbs,k−j

)

. (4.16)

Eq. (4.16) provides a compact formulae to analytically compute the line integral (4.14)
and resolve the difficulties in integrating over general polygons and polygonal cylinders
when computing the matrix entries in (2.10a). Furthermore, the analytical formulae elim-
inates the need of quadrature rules and thus improving the efficiency of the DG-CVS.

5 Boundary condition treatment

When updating solutions at the vertex level, appropriate boundary conditions (b.c.) must
be taken into account. Due to the space-time nature of the present DG-CVS, the boundary
condition (b.c.) treatment is very simple. For example, the 1-D conservation elements at
boundary vertices are shown in Fig. 4. The same convention as in Fig. 3 for denoting the
CE boundary sections are used here. Notice that the flux across the outer side boundary
(Γ2 at the left boundary node and Γ5 at the right boundary node) of the boundary CE is
evaluated based on the solution at the new time level. Therefore, the outer side face of
the CE has contributions to the matrix Mij (2.10a) instead of the vector bi (2.10b). In this
section, two types of boundary conditions, specified b.c. and outflow b.c., are discussed.

Figure 4: 1-D conservation elements at the boundary node.
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5.1 Specified B.C.

Either the solution (Dirichlet type) or its derivative (Neumann type) on the boundary
can be specified. In such cases, the matrix shown in (2.10a) can be modified to take
into account the specified b.c.. For example, when updating the solution at a space-time
boundary node (x0,t0), if the solution itself is specified (e.g., inflow b.c.) as ub, then the
linear system can be modified as











1 0 ··· 0
0 M22 ··· M2N
...

...
. . .

...
0 MN2 ··· MNN





















s1

s2
...

sN











=











ub

b2−M21ub
...

bN−MN1ub











, (5.1)

since s1 in the unknown solution vector represents uh
0, the solution itself. If the solution’s

spatial derivative is specified as (ux)b, then the second row and column of the matrix
should be modified, since s2 represents (uh

x)0,















M11 0 M13 ··· M1N

0 1 0 ··· 0
M31 0 M33 ··· M3N

...
...

...
. . .

...
MN1 0 MN3 ··· MNN





























s1

s2

s3
...

sN















=















b1−M12(ux)b

(ux)b

b3−M32(ux)b
...

bN−MN2(ux)b















. (5.2)

5.2 Outflow B.C.

For outflow b.c., nothing needs to be done to modify the matrix as long as the matrix is
formed by taking into account the contribution from the outer side face of the boundary
CE shown in Fig. 4. The ease of outflow b.c. treatment makes the present space-time
DG-CVS very attractive.

6 Numerical tests and discussions

In this section, several numerical tests are presented and the performance of the current
DG-CVS will be discussed.

To start the DG-CVS simulation at t = 0, the solutions at each quadrature point at
the bottom face and side faces of the cell-level conservation elements must be known
since they are required to evaluate the right hand side vector of the linear system (2.9).
Since the initial conditions are often provided as u(x,0) which is a function of spatial
coordinates, so there is no difficulty in evaluating u at the quadrature point at the bottom
face of the CE. However, at the quadrature points at the side faces of the CE where t>0,
the solutions are generally unknown, so we simply take the solution at the same spatial
location at t = 0 plane. In the case of Taylor expansions, this is equivalent to assume all
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temporal derivatives of the solution are zero at t=0. This is how we start the simulation
in the general case.

However, when we conduct stability study and grid convergence study, we use test
cases whose analytical solutions are available. To eliminate the error caused by inaccurate
initial conditions, we use the analytical solution to evaluate the solution at the quadrature
points at the side faces of the CE.

6.1 Stability study

Here the stability criteria of the present DG-CVS for various degrees of polynomials are
determined numerically. The following test case about a linear advection of a sinusoidal
wave is used for this purpose

∂u

∂t
+

∂u

∂x
=0, −1≤ x≤1, (6.1a)

u(x,0)=u0(x)=sin(πx), periodic b.c. (6.1b)

The computational domain is spatially discretized by evenly spaced 10 cells. The max-
imum time step which yields stable solutions (i.e., ||error||∞ < 1.0, which is the peak of
u(x,0)) after 100 periods is recorded for each run. To eliminate the inaccuracy caused by
the ill-conditioning of matrix when p is high, all cases are run using quadruple precision
via MPACK [18]. The corresponding maximum Courant number

σmax =
|a|δtmax

δx
,

where δtmax is the maximum time step and δx is the mesh size is indicated in Fig. 5.

Generally, the stable Courant number decreases with increased p. However, Fig. 5
shows that p3 and p4 have almost the same maximum Courant number. So is true for
p5 and p6. The reason behind this phenomenon remains unclear to us. It might be due
to the choice of Taylor polynomials. It is worthy of mention that the original CVS [28]
and the CE/SE method [3], which are second order accurate, allows a larger Courant
number (i.e., σ≤1) than the p1 version of the present DG-CVS (i.e., σ≤0.617). Though the
maximum Courant numbers shown in Fig. 5 are obtained from the 1-D linear advection
equation, our numerical experiments verify that the same Courant numbers can be used
in nonlinear advection equations without causing instability. Therefore, the maximum
Courant numbers in Fig. 5 provide a practical guide for choosing a stable time step.

6.2 Sensitivity to the Courant number

It is interesting to test the sensitivity of the present DG-CVS to small Courant numbers.
It is well known that the original second-order CE/SE method [4] and the fully discrete
N-T scheme [19] exhibit excessive numerical dissipation when small time steps are used.
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Figure 5: Long time evolution of l∞ error of the 1-D sinusoidal wave advection under maximum Courant number,
σmax = |a|δtmax/δx.

Therefore, special techniques are needed in the CE/SE method and the N-T scheme to
mitigate this phenomenon.

In the first test, Eq. (6.1) is solved using DG-CVS with various p and Courant num-
bers. Table 2 lists the ∞-errors of p1, p2, p3 and p4 cases when various Courant numbers
are used. It can be seen that the p1 case exhibits similar phenomenon to the original
CE/SE method, namely, when the time step is vanishingly small, the accuracy is de-
graded. However, for higher degrees, the DG-CVS is less and less sensitive to small
Courant numbers. Actually, in the case of p4, a slightly higher accuracy is obtained when
a smaller time step is used. This test shows that it is advantageous to employ high-order
basis polynomials to avoid the Courant-number-sensitivity problem.

Table 2: Sensitivity to the Courant number on the smooth solution.

‖error‖∞ under different Courant number
Courant number σ= |a|δt/δx p1 p2 p3 p4

0.2 3.31E-02 1.42E-04 2.62E-05 4.12E-07
0.02 1.82E-01 3.18E-04 2.63E-05 2.42E-07

0.002 8.20E-01 3.14E-03 2.83E-05 2.08E-07

Fig. 6 shows another test on the non-smooth solution. Here, mixed waves with initial
solution given by Eq. (6.7) are advected with periodic boundary conditions. Fig. 6 com-
pares the solutions at t=8.0 with σ=0.25 and σ=0.0025. The comparison clearly verifies
the same conclusion from the smooth case: DG-CVS is less and less sensitive to small
Courant numbers with increasing p.
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Figure 6: Sensitivity to the Courant number on the non-smooth solution. Solution of the linear advection of
mixed waves at t = 8.0. Left column: σ = 0.25 and right column: σ = 0.0025. Thick solid line: exact solution;
circles and thin colorful solid lines: current numerical solutions.
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6.3 Grid convergence study

Here the order of accuracy of the present CVS is numerically verified by conducting
mesh-refinement study. A sequence of meshes are created by isotropically subdividing
the previous coarser spatial mesh. The l∞ error norm and the l1 error norm are measured
on two successive meshes to derive the convergence rate. The l∞ error norm and the l1
error norm are measured as the vertex-based error according to

l∞(ǫ)=
nv

max
i=1

|uh
i −uexact

i |, (6.2a)

l1(ǫ)=
1

nv

nv

∑
i=1

|uh
i −uexact

i |, (6.2b)

where nv is the number of vertices used to discretize the computational domain. uh
i is the

computed solution and uexact
i is the exact solution at the ith vertex. The order of accuracy

is computed according to

order of accuracy=
ln

(

lk(ǫ)h/2

lk(ǫ)h

)

ln(0.5)
, (6.3)

where h denotes the refinement level, namely, h/2 is twice as refined as h.

6.3.1 1-D linear advection equation

The first test case is the one described by (6.1). The exact solution for this case is u(x,t)=
sin(π(x−t)). Tables 3 and 5 summarizes the results by varying the degree (i.e., p) of
basis polynomials and the mesh refinement. Here the same Courant number σ = 0.2 is
used in all p1-p6 cases. All runs reach the final time at t=1.0. The p1-p4 results in Table 3
are obtained using double precision arithmetic. As can be seen, the expected asymptotic
orders of accuracy are obtained for all p1-p4 basis polynomials except the last row (p=4,
nc = 160) where the solution error is so small that the condition number of the linear
system comes into effect. Table 4 lists the condition number of the linear system for
various p. When p = 4, the condition number is 1.475e5. For this condition number, the
double precision arithmetic is not able to reliably solve the system with error smaller than
10−12. Table 5 shows the p4-p6 results using quadruple precision arithmetic. As can been
seen, correct convergence rate can be obtained even for p6 cases. Therefore, the optimal
order of accuracy of p1, p2, p3, p4, p5 and p6 cases are 2, 3, 4, 5, 6 and 7, respectively.

6.3.2 1-D non-linear Burgers equation

Here, the nonlinear inviscid Burgers equation is tested,

∂u

∂t
+

∂

∂x

(1

2
u2

)

=0, −1≤ x≤1, (6.4a)

u(x,0)=−sin(πx), periodic b.c. (6.4b)
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Table 3: Order of accuracy for the 1-D linear sinusoidal wave advection at t=1.0. Double precision.

p nc l1 error order l∞ error order
1 10 1.96E-02 - 3.31E-02 -

20 3.93E-03 2.318 6.50E-03 2.347
40 8.27E-04 2.247 1.33E-03 2.286
80 1.86E-04 2.155 2.95E-04 2.174

160 4.37E-05 2.087 6.91E-05 2.097
2 10 9.53E-05 - 1.42E-04 -

20 1.15E-05 3.050 1.73E-05 3.035
40 1.42E-06 3.017 2.20E-06 2.980
80 1.77E-07 3.008 2.75E-07 2.995

160 2.20E-08 3.005 3.44E-08 2.999
3 10 1.55E-05 - 2.62E-05 -

20 1.03E-06 3.902 1.71E-06 3.934
40 6.62E-08 3.965 1.07E-07 4.006
80 4.19E-09 3.983 6.66E-09 4.002

160 2.63E-10 3.991 4.16E-10 4.000
4 10 2.80E-07 - 4.12E-07 -

20 8.18E-09 5.096 1.25E-08 5.037
40 2.46E-10 5.057 3.81E-10 5.041
80 7.37E-12 5.060 1.16E-11 5.036
160 6.40E-13 3.526 1.96E-12 2.564

Table 4: Condition number of the LHS matrix in the 1-D linear advection of the sinusoidal function.

Degree of polynomials (p) 1 2 3 4 5 6
Condition number 6.600E+00 5.450E+01 4.939E+03 1.475E+05 4.410E+06 1.530E+08

Table 5: Order of accuracy for the 1-D linear sinusoidal wave advection at t=1.0. Quadruple precision.

p nc l1 error order l∞ error order
4 10 2.80E-07 - 4.12E-07 -

20 8.18E-09 5.096 1.25E-08 5.037
40 2.46E-10 5.057 3.81E-10 5.041
80 7.48E-12 5.039 1.17E-11 5.029
160 2.32E-13 5.013 3.63E-13 5.008

5 10 1.31E-08 - 2.19E-08 -
20 2.14E-10 5.933 3.53E-10 5.960
40 3.42E-12 5.967 5.51E-12 6.001
80 5.39E-14 5.986 8.58E-14 6.004
160 8.44E-16 5.999 1.33E-15 6.007

6 10 2.00E-11 - 2.95E-11 -
20 1.43E-13 7.129 2.16E-13 7.094
40 1.06E-15 7.072 1.64E-15 7.039
80 8.18E-18 7.022 1.28E-17 7.009
160 6.38E-20 7.003 9.98E-20 6.997
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The solution will remain smooth up to t = 1/π. After that, the solution will evolve into
a discontinuity (wave breaking). The analytical solution exists for this case in an implicit
form

u(x,t)=−sin(π(x−ut)).

At time t=0.12, the solution is still smooth and can be used to verify the order of accuracy.
The Newton-Raphson method explained in Subsection 2.5 is used for this nonlinear

case. Tables 6 and 7 show similar orders of accuracy to those in Tables 3 and 7. That
is, the theoretical asymptotic convergence rates can be obtained for all basis polynomials
of various degrees. In Tables 6 and 7, n̄iter represents the average number of Newton-
Raphson iterations at the vertex level to drive the residual (2.11)

‖G(s)‖≤10−14.

It can be seen that 3-6 iterations are typically sufficient for the solution to converge.
Again, for high p (p>4), quadruple precision arithmetic is needed for accuracy.

6.3.3 2-D linear advection equation

This subsection and next subsection will conduct the grid convergence study on 2-D
problems. Fig. 7 shows the coarsest rectangular mesh and unstructured triangular mesh
used in the study. The meshes will be refined isotropically several times in the study.

Figure 7: Two-dimensional meshes used in the study of the grid convergence. Left: rectangular mesh. Right:
unstructured triangular mesh.

The first 2-D problem is about a sinusoidal surface advected along the diagonal direc-
tion of a square region

∂u

∂t
+

∂u

∂x
+

∂u

∂y
=0, −1≤ x≤1, −1≤y≤1, (6.5a)

u(x,y,0)=sin(π(x+y)), periodic b.c. (6.5b)

Due to the ill-conditioning (cf. Table 8) resulted from the high-order Taylor polynomi-
als, we do not attempt to run cases with p > 4. The results at t = 1.0 for p1-p4 cases are
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Table 6: Order of accuracy for the 1-D inviscid Burgers equation at t=0.12. Double precision.

p nc n̄iter l1 error order l∞ error order
1 10 4.06 1.08E-02 - 3.42E-02 -

20 3.97 3.07E-03 1.814 8.25E-03 2.054
40 3.85 7.78E-04 1.980 2.04E-03 2.013
80 3.65 1.93E-04 2.009 4.87E-04 2.069
160 3.09 4.81E-05 2.009 1.19E-04 2.039

2 10 4.18 6.84E-05 - 1.45E-04 -
20 3.90 1.13E-05 2.597 2.96E-05 2.287
40 3.88 1.36E-06 3.060 3.49E-06 3.086
80 3.57 1.71E-07 2.984 4.05E-07 3.108

160 3.01 2.12E-08 3.011 4.87E-08 3.055
3 10 4.48 5.33E-05 - 2.13E-04 -

20 4.00 5.25E-06 3.344 3.17E-05 2.753
40 3.94 3.35E-07 3.972 1.97E-06 4.003
80 3.79 2.08E-08 4.008 1.23E-07 4.005

160 3.42 1.29E-09 4.012 7.83E-09 3.973
4 10 4.52 5.57E-06 - 2.16E-05 -

20 4.02 1.79E-07 4.958 8.31E-07 4.703
40 3.93 8.09E-09 4.469 4.30E-08 4.270
80 3.78 2.47E-10 5.032 1.60E-09 4.750

160 3.39 7.69E-12 5.006 5.32E-11 4.911

Table 7: Order of accuracy for the 1-D inviscid Burgers equation at t=0.12. Quadruple precision.

p nc n̄iter l1 error order l∞ error order
4 10 5.45 5.57E-06 - 2.16E-05 -

20 5.00 1.79E-07 4.958 8.31E-07 4.703
40 4.93 8.09E-09 4.469 4.30E-08 4.270
80 4.82 2.47E-10 5.032 1.60E-09 4.750

160 4.56 7.60E-12 5.023 5.31E-11 4.912
5 10 5.64 1.44E-06 - 6.93E-06 -

20 5.21 1.84E-08 6.296 1.16E-07 5.905
40 4.98 5.33E-10 5.108 6.81E-09 4.086
80 4.89 9.86E-12 5.756 1.18E-10 5.848

160 4.74 1.67E-13 5.882 1.89E-12 5.968
6 10 5.61 4.98E-07 - 1.80E-06 -

20 5.30 6.82E-09 6.188 3.23E-08 5.799
40 4.96 5.87E-11 6.862 3.55E-10 6.510
80 4.90 5.15E-13 6.832 4.46E-12 6.312

160 4.77 4.61E-15 6.803 4.63E-14 6.592

Table 8: Condition number of the LHS matrix in the 2-D linear advection of the sinusoidal function.

Degree of polynomials (p) 1 2 3 4
Condition number 6.000E+00 1.360E+02 3.856E+03 1.355E+05
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Table 9: Order of accuracy for the 2-D linear sinusoidal wave advection at t=1.0 on rectangular meshes.

p mesh size l1 error order l∞ error order
1 10×10 5.77E-02 - 8.98E-02 -

20×20 1.04E-02 2.47 1.65E-02 2.44
40×40 1.98E-03 2.39 3.11E-03 2.41
80×80 4.12E-04 2.26 6.47E-04 2.27

160×160 9.24E-05 2.16 1.45E-04 2.16
2 10×10 3.59E-04 - 5.58E-04 -

20×20 2.41E-05 3.9 3.79E-05 3.88
40×40 3.24E-06 2.89 5.08E-06 2.90
80×80 4.16E-07 2.96 6.53E-07 2.96

160×160 5.23E-08 2.99 8.21E-08 2.99
3 10×10 1.92E-04 - 2.99E-04 -

20×20 1.17E-05 4.04 1.85E-05 4.01
40×40 7.09E-07 4.04 1.11E-06 4.06
80×80 4.38E-08 4.02 6.88E-08 4.01

4 10×10 1.54E-05 - 2.38E-05 -
20×20 5.29E-07 4.86 8.33E-07 4.84
40×40 1.70E-08 4.96 2.67E-08 4.96
80×80 5.35E-10 4.99 8.40E-10 4.99

Table 10: Order of accuracy for the 2-D linear sinusoidal wave advection at t=1.0 on unstructured triangular
meshes.

p mesh size (h) l1 error order l∞ error order
1 0.2 5.21E-02 - 1.07E-01 -

0.1 9.14E-03 2.51 2.01E-02 2.41
0.05 1.70E-03 2.43 3.97E-03 2.34

0.025 3.48E-04 2.29 8.37E-04 2.25
0.0125 7.71E-05 2.17 1.91E-04 2.13

2 0.2 4.68E-04 - 1.90E-03 -
0.1 4.06E-05 3.53 2.94E-04 2.69
0.05 3.88E-06 3.39 3.60E-05 3.03

0.025 4.09E-07 3.25 4.46E-06 3.01
0.0125 4.60E-08 3.15 5.60E-07 2.99

3 0.2 7.05E-05 - 2.77E-04 -
0.1 4.48E-06 3.98 1.76E-05 3.98
0.05 2.84E-07 3.98 1.11E-06 3.99

0.025 1.80E-08 3.98 6.96E-08 4.00
4 0.2 1.91E-06 - 8.61E-06 -

0.1 5.79E-08 5.04 2.80E-07 4.94
0.05 1.75E-09 5.05 9.41E-09 4.90

0.025 5.39E-11 5.02 3.18E-10 4.89

tabulated in Tables 9 and 10 for rectangular meshes and triangular meshes, respectively.
The time steps are δt=0.05 and δt=0.025 for the coarsest rectangular mesh and triangu-
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lar mesh, respectively. In the case of rectangular meshes, this time step corresponds to
Courant number σ=0.25 for all runs. Again, the theoretical convergence rates have been
obtained for all runs. The quadrature-free approach explained in Section 4 was used to
compute the matrix entries in (2.10a). This example demonstrates that the current method
is also suitable for unstructured meshes with high accuracies.

6.3.4 2-D non-linear inviscid Burgers equation

The second 2-D case is the two dimensional inviscid Burgers equation defined as

∂u

∂t
+

∂

∂x

(1

2
u2

)

+
∂

∂y

(1

2
u2

)

=0, −1≤ x≤1, −1≤y≤1, (6.6a)

u(x,y,0)=−sin(π(x+y)), periodic b.c. (6.6b)

The same accuracy study as in the 1-D Burgers equation is conducted for this case. The
time steps are δt = 0.04 and δt = 0.025 for the coarsest rectangular mesh and triangular
mesh, respectively. Tables 11 and 12 shows similar orders of accuracy to the 1D cases.
Due to the non-linear nature of the problem, the convergence rates are not as neat as the
linear case, but nevertheless show the correct trend toward optimal rates. As can also be
seen that 2-5 iterations are sufficient to drive the residual below 10−14 in each time step.

Table 11: Order of accuracy for the 2-D inviscid Burgers equation at t=0.08 on rectangular meshes.

p mesh size n̄iter l1 error order l∞ error order
1 10×10 3.55 2.49E-02 - 8.97E-02 -

20×20 3.58 7.45E-03 1.74 3.14E-02 1.51
40×40 3.56 1.89E-03 1.98 7.17E-03 2.13
80×80 3.10 4.60E-04 2.04 1.62E-03 2.15

160×160 2.96 1.12E-04 2.04 3.84E-04 2.08
2 10×10 3.51 8.27E-04 - 2.67E-03 -

20×20 3.58 8.88E-05 3.22 4.98E-04 2.42
40×40 3.50 5.12E-06 4.12 1.67E-05 4.9
80×80 3.01 8.60E-07 2.57 4.88E-06 1.77

160×160 2.96 9.59E-08 3.16 5.23E-07 3.22
320×320 2.96 1.07E-08 3.16 4.91E-08 3.41

3 10×10 3.80 3.26E-04 - 8.02E-04 -
20×20 3.65 1.07E-04 1.61 7.89E-04 0.02
40×40 3.64 9.04E-06 3.57 7.76E-05 3.35
80×80 3.57 5.99E-07 3.92 5.17E-06 3.91

160×160 2.96 3.73E-08 4.01 3.37E-07 3.94
4 10×10 3.84 2.54E-04 - 9.31E-04 -

20×20 3.70 5.90E-06 5.43 2.64E-05 5.14
40×40 3.64 3.87E-07 3.93 4.37E-06 2.59
80×80 3.17 1.31E-08 4.88 1.23E-07 5.15

160×160 2.96 4.59E-10 4.83 3.96E-09 4.96
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Table 12: Order of accuracy for the 2-D inviscid Burgers equation at t=0.075 on unstructured triangular meshes.

p mesh size (h) n̄iter l1 error order l∞ error order
1 0.2 3.39 2.12E-02 - 9.92E-02 -

0.1 3.53 5.58E-03 1.93 2.79E-02 1.83
0.05 3.18 1.40E-03 1.99 7.26E-03 1.94

0.025 2.95 3.46E-04 2.02 1.75E-03 2.05
0.0125 2.96 8.59E-05 2.01 4.26E-04 2.04

2 0.2 3.38 7.50E-04 - 1.14E-02 -
0.1 3.55 1.03E-04 2.86 1.73E-03 2.72

0.05 3.17 1.19E-05 3.11 2.60E-04 2.73
0.025 2.94 1.21E-06 3.30 4.21E-05 2.63

0.0125 2.97 1.28E-07 3.24 7.14E-06 2.56
3 0.2 3.52 4.35E-04 - 6.34E-03 -

0.1 3.64 3.47E-05 3.65 3.85E-04 4.04
0.05 3.29 2.42E-06 3.84 4.00E-05 3.27

0.025 2.95 1.52E-07 3.99 2.73E-06 3.87
0.0125 2.97 9.55E-09 3.99 1.67E-07 4.03

4 0.2 3.58 6.10E-05 - 7.15E-04 -
0.1 3.62 2.71E-06 4.49 3.82E-05 4.23

0.05 3.26 8.18E-08 5.05 1.77E-06 4.43
0.025 2.94 2.36E-09 5.12 8.07E-08 4.46

6.4 Discontinuity capturing

To demonstrate the discontinuity capturing capability of the DG-CVS, the problem about
the advection of mixed Gaussian, square, triangle and elliptical waves [11] is tested. The
initial condition of the problem is defined as follows:

u(x,0)=































1
6

(

G(x,β,b−δ)+G(x,β,b+δ)+4G(x,β,b)
)

, −0.8≤ x≤−0.6,

1, −0.4≤ x≤−0.2,

1−|10(x−0.1)|, 0≤ x≤0.2,
1
6

(

E(x,α,a−δ)+E(x,α,a+δ)+4E(x,α,a)
)

, 0.4≤ x≤0.6,

0, otherwise,

(6.7)

where a=0.5, b =−0.7, δ =0.005, α=10 and β = log2/(36δ2). G and E are Gaussian and
elliptical function, respectively, where

G(x,β,b)= e−β(x−b)2
,

E(x,α,a)=
√

max
{

1−α2(x−a)2,0
}

.

The spatial computational domain is [−1,1]. Again, periodic boundary conditions are
assumed at the ends of the domain.
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Figure 8: Linear advection of mixed waves. Limited solution at t=8.0. The computational domain consists of
200 uniform elements. Thick solid line: exact solution; circles and thin colorful solid lines: current numerical
solutions; and stars: oscillation indicators.

The computational domain is discretized by 200 evenly spaced cells which is a pretty
coarse mesh for this case. The time step used in all simulations is δt = 0.0025 corre-
sponding to the Courant number σ = 0.25. Fig. 8 shows the limited solutions at t = 8.0
using basis polynomials of various degrees. As can be seen, both the discontinuities and
smooth regions are better captured with increasing p. With increasing p, the transition of
discontinuities is steeper. The second order run (p1) is not able to resolve the Gaussian
wave which is steep and smooth.

The limiter adopted here is described in the author’s another article [27]. In the lim-
iting procedure, the oscillation regions are first detected using an indicator. Then the
limiter is applied only in the indicated region and suppress the oscillations. As can be
seen, compared to the corresponding unlimited solutions, the oscillations around the
discontinuities have been successfully suppressed for all cases. Comparing with the non-
limited solution (cf. Fig. 6 left column), one can see that the peaks of smooth waves are
not modified indicating the limiter is not activated at those regions.

6.5 Boundary conditions

Here a doubly raised cosine function is advected according to

∂u

∂t
+

∂u

∂x
+

∂u

∂y
=0, −1≤ x≤1, −1≤y≤1, (6.8a)
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u(x,y,0)=
1

4

[

1+cos
(4π

3
x
)][

1+cos
(4π

3
y
)]

, u(−1,y,t)=u(x,−1,t)=0, (6.8b)

and

outflow at x=1 and y=1. (6.8c)

This problem contains both the specified inflow b.c. and outflow b.c.. The problem is sim-
ulated up to the time t=1.0 using p2 basis polynomials on a 40×40 rectangular mesh. The
Courant number used is σ =0.25. Fig. 9 shows the advected solution at several instants.
As can be seen from the contour lines, the cosine surface exits the outflow boundaries
smoothly. This example verifies the efficacy of the approach, explained in Section 5, to
handle various boundary conditions.

(a) t=0.0 (b) t=0.2 (c) t=0.4

(d) t=0.6 (e) t=0.8 (f) t=1.0

Figure 9: Advection of a doubly raised cosine surface. p2 solution on 40×40 rectangular mesh.

6.6 Computational cost comparison

For rectangular meshes, one can choose the Gaussian quadrature rule or the quadrature-
free method (see Section 4) to compute the matrix elements (see Eq. (2.10a)) at both the
cell level and the vertex level. Both the top face and the volume itself of the CE contribute
to the matrix.
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To demonstrate the cost saving by using the quadrature-free approach, we run the
2-D advection problem given by (6.5) on a 40×40 rectangular mesh for 80 time steps us-
ing basis polynomials of various degrees (p) and record the time cost. In Table 13, we
compare the relative costs of the two methods. The number of quadrature points is equal
to (p+1)2 and (p+1)3 for the surface integral and the volume integral, respectively. The
costs are normalized such that the cost using the quadrature-free approach is unity. As
can be seen, the cost saving by using the quadrature-free method is more and more sig-
nificant with increasing p. For example, when computing the volume integrals, the Gaus-
sian quadrature rule is about 60 times more costly than the quadrature-free approach in
the p4 case. This simple test clearly shows that the quadrature-free method explained in
Section 4 not only makes the integration over general polygons and polygonal cylinders
possible, but also save the computational cost significantly.

Table 13: Comparison of the time cost in integration using the Gaussian quadrature rule and quadrature-free
approach.

Scaled time cost
p1 p2 p3 p4

Compute Mij contributions Gaussian quadrature 0.99 1.26 2.08 4.34
from the top face of CEs Quadrature-free 1 1 1 1

Compute Mij contributions Gaussian quadrature 1.78 5.64 24.48 60.38
from the volume of CEs Quadrature-free 1 1 1 1

It is also interesting to compare the relative time costs when basis polynomials of
various degrees are used. Table 14 shows the comparison results. In the table, the costs
have been normalized such that the cost of the p1 case is unity. As can be seen, for both
the rectangular mesh and the triangular mesh, p2, p3 and p4 are about 1.5, 3 and 6 times
as expensive as p1, respectively. Note that the number of unknowns at each space-time
node is 4, 10, 20 and 35 for p1, p2, p3 and p4 cases, respectively.

Table 14: Comparison of the time cost per timestep per vertex.

Scaled time cost
p1 p2 p3 p4

cost per timestep per vertex (triangular mesh) 1 1.54 2.93 6.39
cost per timestep per vertex (rectangular mesh) 1 1.41 2.80 6.40

Finally, we investigate the time cost of individual components in the solution process.
Table 15 shows the result in percentages. From the table, it can be seen that the time cost
spent in the computation of the right hand side vector bi (see Eq. (2.10b)) is about 50% of
the total cost for all p’s. Note that we are using the Gaussian quadrature rule to compute
the integrals contributing to bi. This shows that it is necessary to adopt the quadrature-
free method to greatly reduce the cost. The percentage of the cost to compute Mij (see
Eq. (2.10a)) decreases with increasing p thanks to the use of the quadrature-free method.
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Table 15: Comparison of time cost in forming the matrix and the right-hand-side vector.

Scaled time cost (%)
p1 p2 p3 p4

Triangular mesh
Computation of bi 50.77 58.06 58.55 51.28

Computation of Mij 20.63 15.44 11.57 9.68

Linear equation solver 7.35 11.86 21.34 33.94
other cost 21.25 14.63 8.55 5.10

Total 100 100 100 100
Rectangular mesh

Computation of bi 40.83 46.37 49.08 43.49
Computation of Mij 24.25 19.60 14.00 11.23

Linear equation solver 8.61 14.76 26.06 39.36
other cost 26.32 19.27 10.85 5.92

Total 100 100 100 100

The percentage of the cost of linear equation solver increases with p. The ”other cost”
represents all other costs except those listed in the table, which decreases with p.

6.7 Solving compressible Euler equations

Though the DG-CVS formulation described in this paper is for scalar linear or nonlin-
ear advection problems. However, the same idea equally applies to more complex hy-
perbolic nonlinear equation systems, for instance, compressible Euler equations. In our
implementation, following Lowrie et al. [17], we choose the working variables to be

Q=
[√

ρ,
√

ρu,
√

ρv,
√

ρH
]T

, (6.9)

where ρ,u,v, H are density, x- and y-velocity components, and specific total enthalpy,
respectively. By choosing such working variables, all components of the conservative
state vector and flux vectors can be expressed as the double product between working
variables, which is analogous to the inviscid Burger’s equation. Here we include some
results for the compressible Euler equations which have been presented in our recent
AIAA conference paper [26].

6.7.1 1-D Sod’s shock-tube problem

This well-known Sod shock tube problem has been extensively used to verify a numerical
scheme for unsteady inviscid flows. The initial conditions are a high-pressure region
on the left and a low-pressure region on the right separated by a diaphragm located at
x=0.5. At time t=0, the diaphragm is broken, a shock wave will propagate to the right
and an expansion wave propagate to the left. There is a contact surface in between across
which the density and entropy are discontinuous while the pressure and velocity are
continuous. The spatial domain [0,1] is discretized into 81 equally spaced elements.
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Figure 10: Density distribution of the 1-D shock tube problem at t=0.2 when various degrees of basis polynomials
employed. Without limiter.

Fig. 10 shows the density and pressure distribution at t=0.2 when basis polynomials
of various degrees (p1-p4) are employed. Note that for all simulations, no any form of
limiters are employed to suppress the unphysical overshoots/undershoots. As can be
seen, the present space-time Riemann-solver-free method does not produce the expan-
sion shock phenomenon. This indicates that the present scheme automatically satisfies
the entropy condition. With increasing degrees of the basis polynomials, the captured
shock discontinuity and contact discontinuity are sharper. At higher p, the contact dis-
continuity can be captured as sharply as the shock wave.

6.7.2 Advection of 2-D isentropic vortex

This example is an isentropic vortex advection problem [25] on a 2D computation domain
[0,10]×[0,10]. The initial conditions are given as an isentropic vortex with the center at
(5,5), i.e.,

u(x,y,0)=1− ǫ

2π
e0.5(1−r2)(y−5), (6.10a)

v(x,y,0)=1+
ǫ

2π
e0.5(1−r2)(x−5), (6.10b)

T(x,y,0)=1− (γ−1)ǫ2

8γπ2
e1−r2

, S(x,y,0)=1, (6.10c)
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where u,v, T, and S are x-velocity, y-velocity, temperature and entropy, respectively. ǫ=5
represents the vortex strength and r2 =(x−5)2+(y−5)2. The periodic boundary condi-
tions on both directions are assumed. The density ρ and the pressure p can be obtained
via

ρ(x,y,0)=
( T(x,y,0)

S(x,y,0)

)
1

γ−1
, p(x,y,0)=ρ(x,y,0)T(x,y,0),

where γ is the ratio of specific heats.
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Figure 11: Advection of isentropic vortex on a 20×20 rectangular mesh. Comparison of density accuracy
between p1-p4 cases. The close-up view is on the right.

It can be verified that the Euler equations with the above initial and boundary condi-
tions allows an exact solution which is the initial solution advected with the speed (1,1)
in the diagonal direction. Fig. 11 shows the comparison between p1, p2, p3, and p4 den-
sity distributions at the horizontal cut y=5 at the end of one period. The underlying mesh
is a 20×20 rectangular mesh. The exact solution is also shown in the same figure for com-
parison. As can be seen, on this coarse mesh, p1 simulation does not yield satisfactory
results compared with the exact solution. Higher accuracy is obtained with increasing
p. The maximum errors shown in Table 16 further confirm the superior accuracy when
higher degree of basis polynomials are used.

Table 16: Maximum density error in the case of advection of isentropic vortex on a 20×20 rectangular mesh.

p1 p2 p3 p4

|uexact−uh| at location (5,5) 1.31E-01 7.50E-03 5.26E-04 9.30E-06

6.7.3 Supersonic forward-facing problem

This is another benchmark problem to verify a time accurate inviscid compressible flow
solver. The problem is a supersonic flow with M = 3 flows through a channel of length
3 and height 1. A step of height 0.2 stands at location 0.6 downstream of the inlet. The
step acts as an obstacle to the supersonic inflow. A transient detached shock wave will
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Figure 12: Solution of a supersonic (M=3) flow through a channel with forward-facing step at t=4.0. Without
limiter. Left: p1 density field. Right: residual of the continuity equation.

be formed and hit the top wall. The shock wave will reflect from the top wall and further
hit the bottom wall and reflect again. The flow expands rapidly at the singularity corner.

In the present simulation, a rectangular mesh of δx = δy = 1/40 is used. The linear
basis polynomials (p1) is employed (higher p requires solution limiting for robustness,
which has not been implemented yet). Fig. 12 (left) shows the density field at t=4.0. As
can be seen, the main features including the detached bow shock, the Mach stem below
the top wall, slip line, reflected shock waves are well captured. Here, no any type of
boundary conditions is applied at the singularity corner and no numerical difficulty was
encountered, at least for this p1 case. No expansion shocks are seen around the corner.
In addition, the present method does not exhibit the so-called car-buncle problem in the
subsonic region behind the bow shock. It is also interesting to show the residual of the
continuity equation in Fig. 12 (right). Since in DG-CVS, the space-time conservation is
enforced in the weak form of the governing equations, the resulting solution may not
exactly satisfy the original differential governing equations, especially in non-smooth
regions as shown here. The residual can be used as an effective smoothness indicator.
One may utilize this indicator to implement hp-adaptation to improve the accuracy and
efficiency of the solver.

7 Conclusions

In this paper, a high-order space-time method for hyperbolic conservation laws is de-
scribed in detail. The method is high order accurate in both space and time. It is com-
posed of two important ingredients. The first is the idea of enforcing the space-time flux
conservation on the staggered space-time mesh in the Conservation Element/Solution
Element (CE/SE) method. The second is the local discontinuous basis functions of the
space-time discontinuous Galerkin (DG) finite element method. The former results in
a Riemann-solver-free approach for hyperbolic problems. The latter provides a way to
achieve high-order accuracy on a compact stencil. The new scheme offers an approach
for the CE/SE method to increase its order of accuracy. In addition, the new scheme pro-
vides a Riemann-solver-free alternative for the space-time DG method. The new method
updates the solutions at the cell level and the vertex level alternately within each time
step. For this cell-vertex solution updating strategy and the method’s DG ingredient, the
new method is termed as discontinuous Galerkin cell vertex scheme (DG-CVS).



478 S. Tu, G. W. Skelton and Q. Pang / Commun. Comput. Phys., 9 (2011), pp. 441-480

In addition to the detailed formulation, some implementation issues including the
choice of basis polynomials, quadrature-free integration and boundary condition treat-
ment are also discussed in this paper.

The most distinct features of the DG-CVS can be summarized as:

• locally and globally space-time flux conservative;

• alternate solution updating at the cell level and the vertex level within each physical
time step;

• Riemann-solver-free for advection problem;

• high-order accurate in both space and time;

• highly compact regardless of the order;

• suitable for arbitrarily unstructured meshes;

• simple boundary condition treatment.

Based on the numerical tests provided in this paper, the DG-CVS can be used to effec-
tively solve scalar advection equations and the compressible Euler equations with high
accuracy. It is expected that the same method can be used to solve other conservation
laws such as the shallow water equations and Maxwell’s equations. Due to its space-
time and Riemann-solver-free nature, the DG-CVS is especially attractive for the follow-
ing problems: (i) moving boundary problems and (ii) conservation laws where the eigen
structure is not explicitly known.

To make the DG-CVS a competitive method for conservation laws, the following is-
sues should be addressed in future work:

• accuracy. The present implementation of DG-CVS uses Taylor polynomials as the
basis functions. It has been shown that high-order Taylor polynomials generate severely
ill-conditioned system which cannot be solved reliably using double precision arithmetic.
Future work should attempt other basis polynomials that will yield well-conditioned
system for better accuracy.

• efficiency. The present space-time method introduces a lot more unknowns than
semi-discrete methods and solves a local system whose size is the number of local un-
knowns for each mesh node. Therefore, the present method is costly especially when
solving the nonlinear problems since iterations are needed. When extended to 3-D prob-
lems, the method becomes even more expensive. Thus improving the efficiency is critical
in making the DG-CVS a practical method. The quadrature-free integration described in
this paper is especially suitable for integrals involving Taylor polynomials. What if other
types of polynomials are used as the basis function? This remains to be answered in the
future study. Though the DG-CVS is designed for arbitrarily unstructured meshes, using
quadrilateral or rectangular meshes yields superior efficiency and accuracy. Our prelimi-
nary implementation on overset Cartesian/quadrilateral meshes [29] needs a more accu-
rate solution transfer strategy between meshes to ensure the global flux conservation on
overset meshes.
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• robustness. It is well known that high order methods lack robustness across high
gradient regions. Some type of slope or flux limiter is typically used to suppress the
unphysical overshoots/undershoots to ensure the robustness. However, high-order so-
lution limiting is far from mature and many researchers are working on this topic.
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