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Abstract. In this article, we discuss a least-squares/fictitious domain method for the
solution of linear elliptic boundary value problems with Robin boundary conditions.
Let Ω and ω be two bounded domains of Rd such that ω⊂Ω. For a linear elliptic prob-
lem in Ω\ω with Robin boundary condition on the boundary γ of ω, our goal here is to
develop a fictitious domain method where one solves a variant of the original problem
on the full Ω, followed by a well-chosen correction over ω. This method is of the virtual
control type and relies on a least-squares formulation making the problem solvable by
a conjugate gradient algorithm operating in a well chosen control space. Numerical re-
sults obtained when applying our method to the solution of two-dimensional elliptic
and parabolic problems are given; they suggest optimal order of convergence.
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1 Introduction

Fictitious domain methods for the solution of partial differential equations are very useful
methods for the solution of complicated problems. To the best of our knowledge, these
methods have been introduced by Hyman [1] and further investigated by many authors;
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let us mention, among others, Saul’ev [2, 3] and Buzbee, Dorr, George and Golub [4]. In
Glowinski, Pan and Periaux [5–7] and Glowinski, Pan, Kearsley and Periaux [8], ficti-
tious domain methods were discussed for the solution of Dirichlet problems, the Dirich-
let boundary condition being enforced as a side constraint, using a boundary supported
Lagrange multiplier. A volume-supported Lagrange multiplier based fictitious domain
method was introduced in Glowinski, Pan, Hesla, Joseph and Periaux in [9], the main mo-
tivation of these authors being the direct numerical simulation of particulate flow when
the number of particles exceeds 103. Initially tested on particulate flow with spherical
particles, the method discussed in [9] was generalized to situations involving particles
with more complicated shapes, as shown for example in Pan, Glowinski and Galdi [10].

The main idea behind fictitious domain methods is to extend a problem initially posed
on a geometrically complex shaped domain to a larger simpler domain; this provides two
main advantages when constructing numerical schemes: (i) the extended domain is geo-
metrically simpler and allows the use of fast solvers. (ii) The same fixed mesh can be used
for the entire computation, eliminating thus the need for repeated re-meshing and pro-
jection. All the studies that we know of, concerning the application of fictitious domain
methods to the simulation of particulate flow, consider no-slip boundary conditions at
the interface between fluid and particles. There are situations however, in micro-fluidics
for example, where a slip condition on the particle surface is more realistic than the no-
slip one. If the no-slip boundary condition on the particle surface is replaced by the
Navier slip boundary condition, the volume-supported Lagrange multiplier based ficti-
tious domain methods discussed in [5–10], which rely on H1-extensions, are not easy to
generalize to the slip situation.

The main goal of the present article is to discuss the solution of linear elliptic bound-
ary value problems with Robin boundary conditions; we see this as a first step to the con-
struction of fictitious domain methods suited to slip boundary conditions. The method is
of the virtual control type (in the sense of J. L. Lions; see [11]) and relies on a least-squares
formulation making the problem solvable by a conjugate gradient algorithm operating in
a well-chosen control space.

The formulation of the boundary value problems is given in Section 2. In Section 3,
we describe a least-squares/fictitious domain method for the solution of linear elliptic
problems with Robin boundary conditions. In Section 4, we discuss the conjugate gra-
dient solution of the least-squares problems introduced in Section 3. The finite element
implementation of the above methodology is discussed in Section 5. Finally, we present
in Section 6 the results of numerical experiments; in particular, these results suggest op-
timal order of convergence for various norms of the approximation error.

A (brief) history of fictitious domain methods can be found in, e.g., [12, Chapter 8].

2 Formulation of the boundary value problems

Let Ω and ω be two bounded domains of Rd, such that d≥1 and ω⊂Ω (see Fig. 1). We
denote by Γ and γ the boundaries of Ω and ω, respectively.
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Figure 1: Problem geometry.

The Robin-Dirichlet problem under consideration reads as follows:

αψ−µ∇2ψ= f , in Ω\ω, (2.1a)

ψ= g0, on Γ, (2.1b)

µ
(∂ψ

∂n
+

ψ

ls

)
= g1, on γ, (2.1c)

where α (resp. µ) is a non-negative (resp. a positive) constant, f ∈L2(Ω\ω), g0∈H3/2(Γ),
g1 ∈H1/2(γ), n is the unit normal vector at γ pointing outward of Ω\ω and ls is a char-
acteristic distance. We assume that Ω is convex (or has a smooth boundary) and that γ
is smooth. Problem (2.1) has a unique solution in H2(Ω\ω) which is also the solution of
the following linear variational problem:

ψ∈H1(Ω\ω), ψ= g0, on Γ, (2.2a)

α
∫

Ω\ω
ψϕdx+µ

∫

Ω\ω
∇ψ·∇ϕdx+

µ

ls

∫

γ
ψϕdγ

=
∫

Ω\ω
f ϕdx+

∫

γ
g1 ϕdγ, ∀ϕ∈V0, (2.2b)

where dx=dx1 ···dxd and V0 ={ϕ|ϕ∈H1(Ω\ω), ϕ=0, on Γ}.

3 A least-squares/ fictitious domain method for (2.1) and (2.2)

3.1 A fictitious domain formulation of problems (2.1) and (2.2)

We proceed as follows to define a fictitious domain variant of problems (2.1) and (2.2):

(i) To v∈L2(ω) we associate f̃ (v) defined by

f̃ (v)∈L2(Ω), f̃ (v)|Ω\ω = f , f̃ (v)|ω =v, (3.1)
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and then the solution {ψ1,ψ2} of the following elliptic system

αψ1−µ∇2ψ1 = f̃ (v), in Ω, ψ1 = g0, on Γ, (3.2a)

αψ2−µ∇2ψ2 =v, in ω, µ
∂ψ2

∂n
=

µ

ls
ψ1−g1, on γ. (3.2b)

Both problems (3.2a) and (3.2b) have a unique solution in H1(Ω) and H1(ω), respectively
(actually, ψ1 and ψ2 have both the H2-regularity).

(ii) We define A : L2(ω)→H1(ω) by

A(v)=(ψ2−ψ1)|ω, (3.3)

operator A is clearly affine and continuous.

(iii) We observe that if v verifies A(v) = 0, then ψ2 = ψ1 on ω and it is easy to see
that the H2-regularity of ψ1 and ψ2 implies that ψ1|Ω\ω = ψ, where ψ is the solution of
problems (2.1) and (2.2). We still have to show that indeed the functional equation

A(u)=0 (3.4)

has a solution and to discuss is numerical solution. In that direction, we are going to
prove the following.

Theorem 3.1. The functional equation (3.4) has a solution.

Proof. We prove the existence by constructing such a solution. Due to the H2-regularity
of the solution ψ to problem (2.1), we have

ψ|γ ∈H
3
2 (γ). (3.5)

Since g1 ∈H1/2(γ), there exists an infinity of functions θ∈H2(ω) such that

θ|γ =ψ|γ,
∂θ

∂n
=

ψ

ls
−

g1

µ
, on γ. (3.6)

One of these functions θ is the unique solution in H2(ω) of the following linear bi-
harmonic boundary value problem:

∇4θ =0, in ω, θ|γ =ψ|γ,
∂θ

∂n
=

ψ

ls
−

g1

µ
, on γ. (3.7)

Consider θ∈H2(ω) verifying (3.6); from θ define uθ by

uθ =αθ−µ∇2θ. (3.8)
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The H2(ω)-regularity of θ implies that uθ ∈L2(ω). Next, we define f̃ (uθ),ψ1 and ψ2 by

f̃ (uθ)= f , in Ω\ω and f̃ (uθ)=uθ, in ω, (3.9a)

ψ1 =ψ, in Ω\ω and ψ1 = θ, in ω, (3.9b)

ψ2 = θ, in ω. (3.9c)

Since ψ and ∂ψ/∂n match, respectively, θ and ∂θ/∂n on γ, the function ψ1 defined by
(3.9b) belongs to H2(Ω). Thus ψ1 and ψ2 in (3.9b) and (3.9c) satisfy (3.2a) and (3.2b) for
v=uθ and

A(uθ)=0.

This concludes the proof of the theorem.

Remark 3.1. Problem (3.4) can be viewed as an exact controllability problem in the sense
of [13]. From a practical point of view, problem (3.4) has an infinity of solutions. If a
conjugate gradient algorithm is applied to a least-squares variant of (3.4) with 0 as initial
guess, we can expect convergence to the unique solution of problem (3.4) of minimal
norm in L2(ω).

Remark 3.2. If there exists a ”natural” extension f̃ of f over Ω (that is, f̃ ∈ L2(Ω) and

f = f̃ |Ω\ω) we can replace f̃ (v) in (3.1) by f̃ +vχω . This will modify slightly the least-
squares formulation and conjugate gradient algorithm to be discussed in the following
parts of this article.

3.2 A least-squares formulation of problem (3.4)

A ”reasonable” least-squares formulation of problem (3.4) reads as follows: find u ∈
L2(ω), such that

J(u)≤ J(v), ∀v∈L2(ω), (3.10)

with

J(v)=
1

2

∫

ω

[
α|ψ2−ψ1|

2+µ|∇(ψ2−ψ1)|
2
]
dx, (3.11)

where ψ1 and ψ2 are the respective solutions in H2(Ω) and H2(ω) of

αψ1−µ∇2ψ1 = f̃ (v), in Ω, ψ1 = g0, on Γ, (3.12a)

αψ2−µ∇2ψ2 =v, in ω, µ
∂ψ2

∂n
=

µ

ls
ψ1−g1, on γ. (3.12b)
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The functional J is clearly convex and C∞ over L2(ω). Any solution of problem (3.4) is a
solution of the minimization problem (of the virtual control type) (3.10). Such a solution
is characterized by

DJ(u)=0, (3.13)

where DJ(·) is the differential of the functional J. Since the conjugate gradient solution
of the least-squares problem (3.10) will require DJ(.), we will dedicate the next section to
the computation of DJ(v), for v arbitrary in L2(ω).

3.3 On the computation of DJ(v)

Let us consider v∈L2(ω); since L2(ω) is a Hilbert space, it makes sense to look for DJ(v)
also in L2(ω). To compute DJ(v) we will use a perturbation method. Let δv be a perturba-
tion of v; we have then

δJ(v)=
∫

ω
DJ(v)δvdx

=
∫

ω

[
α(ψ2−ψ1)δ(ψ2−ψ1)+µ∇(ψ2−ψ1)·∇δ(ψ2−ψ1)

]
dx, (3.14)

with δψ2 and δψ1 satisfying

αδψ1−µ∇2δψ1 =δvχω , in Ω, δψ1 =0, on Γ, (3.15a)

αδψ2−µ∇2δψ2 =δv, in ω, µ
∂

∂n
δψ2 =

µ

ls
δψ1, on γ, (3.15b)

χω being the characteristic function of ω (that is χω(x) = 1 if x∈ω,χω(x) = 0 elsewhere).
We introduce now p1∈H1

0(Ω); multiplying both sides of (3.15a) by p1 and integrating by
parts, we obtain

∫

Ω

[
αp1δψ1+µ∇p1 ·∇δψ1

]
dx=

∫

ω
p1δvdx. (3.16)

Similarly, if we multiply both sides of (3.15b) by ψ2−ψ1, we obtain
∫

ω

[
α(ψ2−ψ1)δψ2+µ∇(ψ2−ψ1)·∇δψ2

]
dx

=
µ

ls

∫

γ
(ψ2−ψ1)δψ1dγ+

∫

ω
(ψ2−ψ1)δvdx. (3.17)

Suppose that p1 is solution (necessarily unique) to the following Dirichlet problem (writ-
ten in variational form): find p1∈H1

0(Ω), verifying
∫

Ω

[
αp1 ϕ+µ∇p1 ·∇ϕ

]
dx=

∫

ω

[
α(ψ1−ψ2)ϕ+µ∇(ψ1−ψ2)·∇ϕ

]
dx

+
µ

ls

∫

γ
(ψ2−ψ1)ϕdγ, ∀ϕ∈H1

0(Ω). (3.18)
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Since δψ1∈H1
0(Ω), it follows from (3.14) and (3.16)-(3.18) that

δJ(v)=
∫

ω
DJ(v)δvdx=

∫

ω
(p1+ψ2−ψ1)δvdx,

which implies

DJ(v)=(p1−ψ1)|ω +ψ2. (3.19)

Thus, in order to compute DJ(v), we first compute ψ1 from (3.1) and (3.2a), then ψ2 from
(3.2b) and p1 from (3.18). Finally, we obtain DJ(v) from (3.19).

4 On the conjugate gradient solution of the least-squares

problem (3.10)

4.1 Generalities

In order to solve the (linear) least-squares problem (3.10), we advocate a conjugate gradient
algorithm operating in the Hilbert space L2(ω). Such algorithms and many applications
are discussed in Glowinski [12]. Let us consider the following generic optimization prob-
lem

u∈H and j(u)≤ j(v), ∀v∈H, (4.1)

where: (i) H is a real Hilbert space with the scalar product (·,·) and the associated norm
‖ · ‖, and (ii) j is differentiable. Assuming that the minimization problem (4.1) has a
solution, then this solution satisfies

Dj(u)=0. (4.2)

In order to solve (4.1) via (4.2), we advocate the following conjugate gradient algorithm,
operating in the space H (we denote by < .,. > the pairing between H′ and H, H′ being
the dual space of H):

u0 is given in H; (4.3)

solve

g0∈H,

(g0,v)=
〈

Dj(u0),v
〉
, ∀v∈H, (4.4)

and set

w0 = g0. (4.5)
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For n≥0, assuming that un,gn and wn are known, compute un+1,gn+1 and wn+1 as follows: solve

ρn ∈R,

j(un−ρnwn)≤ j(un−ρwn), ∀ρ∈R, (4.6)

compute

un+1 =un−ρnwn, (4.7)

and solve

gn+1∈H,

(gn+1,v)=
〈

Dj(un+1),v
〉
, ∀v∈H. (4.8)

If ‖ gn+1 ‖
/
‖ g0 ‖≤ tol, take u=un+1; else compute

γn =
‖ gn+1 ‖2

‖ gn ‖2
, (4.9)

and set

wn+1 = gn+1+γnwn. (4.10)

Do n+1→n and return to (4.6).

4.2 Application of the conjugate gradient algorithms (4.3)-(4.10) to the
solution of the least-squares problem (3.10)

Applying algorithms (4.3)-(4.10), with H = L2(ω), to the solution of problem (3.10), we
obtain (from the linearity of problem (3.13) and the fact that we identify L2(ω) to its dual
space):

u0 is given in L2(ω), (4.11)

solve the following elliptic boundary value problems

ψ0
1 ∈H1(Ω),

αψ0
1−µ∇2ψ0

1 = f̃ (u0), in Ω and ψ0
1 = g0, on Γ, (4.12a)

ψ0
2 ∈H1(ω),

αψ0
2−µ∇2ψ0

2 =u0, in ω and µ
∂ψ0

2

∂n
=

µ

ls
ψ0

1−g1, on γ, (4.12b)

p0
1∈H1

0(Ω),
∫

Ω

[
αp0

1 ϕ+µ∇p0
1 ·∇ϕ

]
dx=

∫

ω

[
α(ψ0

1−ψ0
2)ϕ+µ∇(ψ0

1−ψ0
2)·∇ϕ

]
dx

+
µ

ls

∫

γ
(ψ0

2−ψ0
1)ϕdγ, ∀ϕ∈H1

0(Ω), (4.12c)
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and set

g0 =(p0
1−ψ0

1)|ω +ψ0
2, w0 = g0. (4.13)

For n≥0, assuming that un,gn and wn are known, the last two different from 0, we compute un+1,gn+1

and wn+1 as follows: solve

ψ
n
1 ∈H1

0(Ω),

αψ
n
1 −µ∇2ψ

n
1 =wnχω, in Ω and ψ

n
1 =0, on Γ, (4.14a)

ψ
n
2 ∈H1(ω),

αψ
n
2 −µ∇2ψ

n
2 =wn, in ω and µ

∂ψ
n
2

∂n
=

µ

ls
ψ

n
1 , on γ, (4.14b)

pn
1 ∈H1

0(Ω),
∫

Ω

[
αpn

1 ϕ+µ∇pn
1 ·∇ϕ

]
dx =

∫

ω

[
α(ψ

n
1−ψ

n
2 )ϕ+µ∇(ψ

n
1 −ψ

n
2 ) ·∇ϕ

]
dx

+
µ

ls

∫

γ
(ψ

n
2−ψ

n
1 )ϕdγ, ∀ϕ∈H1

0(Ω), (4.14c)

and set

gn =(pn
1−ψ

n
1 )|ω+ψ

n
2 . (4.15)

Next, compute

ρn =

∫
ω |gn|2dx∫
ω gnwndx

, (4.16a)

un+1 =un−ρnwn, gn+1 = gn−ρngn. (4.16b)

If ∫
ω |gn+1|2dx∫

ω |g
0|2dx

≤ tol,

take u=un+1 and ψ=ψn+1
1 |Ω\ω; else compute

γn =

∫
ω |g

n+1|2dx∫
ω |g

n|2dx
, (4.17)

and set

wn+1 = gn+1+γnwn. (4.18)

Do n+1→n and return to (4.14a).

Remark 4.1. If u0 is close to u (this will be the case in the context of time dependent
problems, for example) the stopping criterion we used for algorithms (4.11)-(4.18) may
lead to more iterations than necessary. A more realistic stopping test is given by

∫
ω |g

n+1|2dx

max
{∫

ω |g
0|2dx,

∫
ω |u

n+1|2dx
} ≤ tol.

Other stopping criteria can be used.
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5 On the finite element implementation of the

least-squares/fictitious domain methodology

5.1 Generalities

We describe in this section the finite element implementation of the least-squares/fictitious
domain methodology discussed in Sections 4 and 5. We will assume that ω⊂Ω⊂R2 and
that Ω is convex and/or has a smooth boundary; similarly, we assume that γ is smooth.
For simplicity we still denote by Ω and ω the polygonal approximations of the above
domains. From the triangulations Th1

of Ω and Th2
of ω we define the following finite

dimensional spaces:

Vh1
=

{
ϕ|ϕ∈C0(Ω), ϕ|T ∈P1, ∀T∈Th1

}
, (5.1a)

V0h1
=

{
ϕ|ϕ∈Vh1

, ϕ=0, on Γ
}

, (5.1b)

Vh2
=

{
ϕ|ϕ∈C0(ω), ϕ|T ∈P1, ∀T∈Th2

}
, (5.1c)

P1 being the space of the polynomials of two variables of degree ≤1 and h1 (resp. h2) the
length of the largest edge(s) of the finite element triangulation Th1

(resp. Th2
). We will use

h to denote the two-dimensional vector {h1,h2}. The finite dimensional spaces Vh1
,V0h1

and Vh2
are finite dimensional approximations to H1(Ω),H1

0(Ω) and H1(ω), respectively.
Similarly, we will use Vh2

to approximate the control space L2(ω).

5.2 Finite element approximation of the least-squares problem (3.10)

To approximate the least-squares problem (3.10), we suggest

uh∈Vh2
,

Jh(uh)≤ Jh(v), ∀v∈Vh2
, (5.2)

where

Jh(v)=
1

2

∫

ω

[
α|ψ2−π2ψ1|

2+µ|∇(ψ2−π2ψ1)|
2
]
dx. (5.3)

In (5.3), ψ1 is the solution of the following fully discrete approximate Dirichlet problem:

ψ1∈Vh1
, ψ1 = g0h1

, on Γ,
∫

Ω

[
αψ1 ϕ+µ∇ψ1 ·∇ϕ

]
dx=

∫

Ω
fh1

ϕdx+
∫

ω
vπ2 ϕdx, ∀ϕ∈V0h1

, (5.4)

where

(i) g0h1
is an approximation of g0.
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(ii) fh1
∈Vh1

approximates f over Ω\ω and vanishes at those vertices of Th1
belonging

to ω.

(iii) π2 : C0(Ω)→Vh2
is the interpolation operator defined as follows:

π2 ϕ=

Nh2

∑
i=1

ϕ(Yi)w2i, ∀ϕ∈C0(Ω), (5.5)

{Yi}
Nh2
i=1 being the set of the vertices of Th2

and w2i the P1-shape function in Vh2

associated with the vertex Yi (we clearly have Nh2
= dimension of Vh2

).

Returning to (5.3), the function ψ2 is the solution of the following approximate Neumann
problem

ψ2∈Vh2
,

∫

ω

[
αψ2ϕ+µ∇ψ2 ·∇ϕ

]
dx=

∫

ω
vϕdx+

µ

ls

∫

γ
(π2ψ1−g1h2

)ϕdγ, ∀ϕ∈Vh2
, (5.6)

where g1h2
is an approximation of g1.

As its continuous analogue, the finite dimensional least-squares problem is of the
virtual control type and is well-suited to solution by a conjugate gradient algorithm; a first
step in this direction is the computation of the differential DJh of the cost functional Jh,
an issue to be addressed in the following section.

5.3 On the computation of DJh

Proceeding as in Section 3.3, a perturbation analysis would show that

∀v∈Vh2
, DJh(v)=π2(p1−ψ1)+ψ2, (5.7)

where {ψ1,ψ2} is obtained from v via the solution of (5.4) and (5.6), and where p1 is the
solution of the following discrete Dirichlet problem

p1∈V0h1
,

∫

Ω

[
αp1 ϕ+µ∇p1 ·∇ϕ

]
dx=

∫

ω

[
α(π2ψ1−ψ2)π2ϕ+µ∇(π2ψ1−ψ2)·∇π2 ϕ

]
dx

+
µ

ls

∫

γ
(ψ2−π2ψ1)π2ϕdγ, ∀ϕ∈V0h1

. (5.8)

5.4 On the conjugate gradient solution of the discrete least-squares
problem (5.2)

A finite element realization of the conjugate gradient algorithms (4.11)-(4.18) reads as fol-
lows:

u0 is given in Vh2
. (5.9)
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Solve

ψ0
1 ∈Vh1

, ψ0
1 = g0h1

, on Γ,
∫

Ω

[
αψ0

1 ϕ+µ∇ψ0
1 ·∇ϕ

]
dx=

∫

Ω
fh1

ϕdx+
∫

ω
u0π2ϕdx, ∀ϕ∈V0h1

, (5.10a)

ψ0
2 ∈Vh2

,
∫

ω

[
αψ0

2 ϕ+µ∇ψ0
2 ·∇ϕ

]
dx=

∫

ω
u0 ϕdx+

∫

γ

( µ

ls
π2ψ0

1−g1h2

)
ϕdγ, ∀ϕ∈Vh2

, (5.10b)

p0
1∈V0h1

,
∫

Ω

[
αp0

1 ϕ+µ∇p0
1 ·∇ϕ

]
dx=

∫

ω

[
α(π2ψ0

1−ψ0
2)π2ϕ+µ∇(π2ψ0

1−ψ0
2)·∇π2 ϕ

]
dx

+
µ

ls

∫

γ
(ψ0

2−π2ψ0
1)π2 ϕdγ, ∀ϕ∈V0h1

. (5.10c)

Set

g0 =π2(p0
1−ψ0

1)+ψ0
2, w0 = g0. (5.11)

Assuming that un,gn and wn are known, the last two different from 0, we compute
un+1,gn+1 and wn+1 as follows: find ψ

n
1 ∈V0h1

, verifying

∫

Ω

[
αψ1

n
ϕ+µ∇ψ1

n
·∇ϕ

]
dx=

∫

ω
wnπ2 ϕdx, ∀ϕ∈V0h1

; (5.12)

find ψ
n
2 ∈Vh2

, verifying

∫

ω

[
αψ

n
2 ϕ+µ∇ψ

n
2 ·∇ϕ

]
dx=

∫

ω
wn ϕdx+

µ

ls

∫

γ
π2ψ

n
1 ϕdγ, ∀ϕ∈Vh2

; (5.13)

find pn
1 ∈V0h1

, verifying

∫

Ω

[
αpn

1 ϕ+µ∇pn
1 ·∇ϕ

]
dx=

∫

ω

[
α(π2ψ

n
1−ψ

n
2)π2ϕ+µ∇(π2ψ

n
1−ψ

n
2)·∇π2 ϕ

]
dx

+
µ

ls

∫

γ

(
ψ

n
2−π2ψ

n
1

)
π2ϕdγ, ∀ϕ∈V0h1

. (5.14)

Set

gn =π2(pn
1−ψ

n
1)+ψ

n
2 , (5.15)

and compute

ρn =

∫
ω |g

n|2dx∫
ω gnwndx

, (5.16a)

un+1 =un−ρnwn, gn+1 = gn−ρngn. (5.16b)
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If ∫
ω |g

n+1|2dx∫
ω
|g0|2dx

≤ tol,

take u=un+1 and ψ=ψn+1
1 |Ω\ω; else compute

γn =

∫
ω
|gn+1|2dx∫

ω |g
n|2dx

(5.17)

and

wn+1 = gn+1+γnwn. (5.18)

Do n+1→n and return to (5.12).

Remark 5.1. Remark 4.1 applies also to algorithms (5.9)-(5.18).

Remark 5.2. When implementing algorithms (5.9)-(5.18), we advocate using the trape-
zoidal rule in order to compute all the L2-scalar products and norms over Ω,ω and γ (the
integrals of the form

∫
Ω
∇θ ·∇ϕdx or

∫
ω∇θ ·∇ϕdx can (and should) be computed exactly

since θ and ϕ are piecewise affine and continuous implying that ∇θ and ∇ϕ are piecewise
constant).

6 Numerical experiments

In this preliminary article we will focus on two-dimensional problems.

6.1 A two-dimensional elliptic problem

We consider as first test problem the particular case of problem (2.1) associated with

• Ω=(0,4)×(0,4), ω =
{
{x1,x2}

∣∣[(x1−G1)/a
]2

+
[
(x2−G2)/b

]2
<1

}
with G1 = G2 =

2, a=1/4 and b=1/8.

• f (x1,x2)=α(x3
1−x3

2)−6µ(x1−x2), ∀{x1,x2}∈Ω\ω.

• g0 =x3
1−x3

2, g1 =µ
[
3(n1x2

1−n2x2
2)+(x3

1−x3
2)/ls

]
, {n1,n2}=n being the unit normal

vector at γ pointing to ω.

• α=100, µ=0.1, ls =0.1.

The unique solution, associated with the above data, of problem (2.1) in H1(Ω\ω), is
given by

ψ(x1,x2)= x3
1−x3

2.

Concerning the finite element implementation of the least-squares/fictitious domain dis-
cussed in the preceding sections, we employed for Th1

(resp. Th2
) uniform triangulations
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0 4
0

4

Figure 2: First test problem: a uniform triangula-
tion of Ω.
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Figure 3: First test problem: a triangulation of ω.

of Ω (resp. triangulations of ω) as shown in Fig. 2 (resp. Fig. 3). We used u0 =0 to initial-
ize the associated conjugate gradient algorithms (5.9)-(5.18), and took tol =10−10 for the
stopping criterion.

In Table 1, we report for h2 =1/40 and h1 =1/5,1/10,1/20 and 1/40: (i) the number
of iterations of algorithms (5.9)-(5.18) necessary to achieve convergence. (ii) The approx-
imation error evaluated for various norms.

Table 1: First test problem: summary of numerical results (h2 =1/40).

h1 Number of iterations ‖ψ−ψh ‖L∞(Ω\ω) ‖ψ−ψh ‖L2(Ω\ω) ‖ψ−ψh ‖H1(Ω\ω)

1/5 34 0.1046 7.8370E-03 0.2855
1/10 61 2.1845E-02 1.9028E-03 0.1423
1/20 59 4.5840E-03 4.7015E-04 7.1089E-02
1/40 68 1.1385E-03 1.1708E-04 3.5518E-02

The results reported in Table 1 suggest:

• for h1 small enough the number of iterations varies slowly with h1.

• ‖ψh−ψ‖L∞(Ω\ω)≈O(h2
1), ‖ψh−ψ‖L2(Ω\ω)=O(h2

1) and ‖ψh−ψ‖H1(Ω\ω)=O(h1).

Concerning the decay of the cost function Jh defined by (5.3), we have, if h =
{1/10,1/40} (resp. h = {1/20,1/40}), Jh(u0) = 3.67 (resp. Jh(u0) = 3.35) and Jh(u61) =
4.20×10−9 (resp. Jh(u59) = 5.11×10−9), showing clearly that the computed approxima-
tions of ψ1 and ψ2 match quite well over ω.

In order to further investigate the convergence properties of the methodology dis-
cussed in the preceding sections we performed computations with h2 = 1/20 and h1 =
1/10,1/20,1/40 and 1/80. The corresponding results are reported in Table 2. From these
results we observe that:

• If h1 ≥ h2, the number of iterations necessary to achieve convergence does not
vary significantly with h1; on the other hand this number of iterations seems to increase
sharply when h1 decreases below h2.
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Table 2: First test problem: summary of numerical results (h2 =1/20).

h1 Number of iterations ‖ψ−ψh ‖L∞(Ω\ω) ‖ψ−ψh ‖L2(Ω\ω) ‖ψ−ψh ‖H1(Ω\ω)

1/10 33 2.1845E-02 1.9038E-03 0.1424
1/20 36 4.5840E-03 4.6807E-04 7.1063E-02
1/40 114 2.1385E-03 1.0163E-04 3.5434E-02
1/80 85 3.1514E-03 5.2854E-05 1.7532E-02

• The various approximation errors vary as expected (that is as in Table 1) if h1 ≥ h2;
on the other hand, they vary quite differently if h1 ≤ h2, the only one behaving ”nicely”
being ‖ ψh−ψ ‖H1(Ω\ω), which shows a text-book O(h1) behavior as h1 varies over the
interval [1/80,1/10]. From these results we suggest to take h1 =h2 to be on the safe side.

Remark 6.1. If we compare the results obtained with h1 =h2 =1/20 with those associated
with h1 = h2 = 1/40, we observe that twice as many iterations are required to achieve
convergence if one uses the finer meshes (suggesting a condition number of the order of
h−2, if we denote by h the common value of h1 = h2). On the other hand, the results of
Tables 1 and 2 suggest that

‖ψh−ψ‖L∞(Ω\ω)≈O(h2), ‖ψh−ψ‖L2(Ω\ω)=O(h2), ‖ψh−ψ‖H1(Ω\ω)=O(h).

6.2 A two-dimensional parabolic problem with fixed ω

The second test problem is the parabolic one defined as follows:

∂ψ

∂t
−µ∇2ψ= f , in (Ω\ω)×(0,T), (6.1a)

ψ= g0, on Γ×(0,T), µ
(∂ψ

∂n
+

ψ

ls

)
= g1, on γ×(0,T), (6.1b)

ψ(x1,x2,0)=ψ0(x1,x2), (6.1c)

with

• f (x1,x2,t)=(x3
1−x3

2)−6µ(x1−x2)t, ∀{x1,x2,t}∈ (Ω\ω)×(0,T).

• g0(x1,x2,t)=
(

x3
1−x3

2

)
t, ∀{x1,x2,t}∈Γ×(0,T).

• g1(x1,x2,t)=µ
[
3(n1x2

1−n2x2
2)+(x3

1−x3
2)/ls

]
t, ∀{x1,x2,t}∈γ×(0,T).

The other data are as in Section 6.1. Assuming that ψ0 =0, the exact solution of problems
(6.1a)-(6.1c) is given by

ψ(x1,x2,t)=(x3
1−x3

2)t.
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To time-discretize problems (6.1a)-(6.1c), we have used the following backward Euler’s
scheme (with ∆t(>0) the time-discretization step):

ψ0 =ψ0; (6.2)

for n≥1, we obtain ψn from ψn−1 by solving the following elliptic problem

ψn−ψn−1

∆t
−µ∇2ψn = f (n∆t), in Ω\ω, (6.3a)

ψn = g0(n∆t), on Γ, (6.3b)

µ
(∂ψn

∂n
+

ψn

ls

)
= g1(n∆t), on γ, (6.3c)

above, ψ(n∆t) denotes the function {x1,x2}→ψ(x1,x2,n∆t).
The fictitious domain/least-squares/finite element/conjugate gradient methodology

discussed in Section 5 still applies here since problems (6.3a)-(6.3c) is clearly of the same
type as the one discussed in Section 6.1. When applying the conjugate algorithms (5.9)-
(5.18) to the solution of the space-discrete least-squares problem associated with (6.3a)-
(6.3c) we have taken u0 = 0 (resp. u0 equal to the solution at the previous time step) if
n=1 (resp. if n≥2). With this (quite natural) initialization strategy the number of conju-
gate gradient iterations necessary to achieve convergence drops very quickly to a small
number (less than 10, typically) as n increases. The results reported in the Tables 3 and
4 have been obtained with ∆t =10−3. On Table 3, we have reported the results obtained
at t = 1, using h2 = 1/40 and h1 = 1/5,1/10,1/20 and 1/40. From the linearity of the
solution with respect to t, the approximation error is not affected by ∆t. On the other
hand, the approximation errors resulting from the space approximation behaves like
those in Section 6.1, namely (with obvious notation): ‖ψ∆t

h (1)−ψ(1)‖L∞(Ω\ω)≈O(h2
1), ‖

ψ∆t
h (1)−ψ(1)‖L2(Ω\ω)=O(h2

1) and ‖ψ∆t
h (1)−ψ(1)‖H1(Ω\ω)=O(h1). The results reported

Table 3: Second test problem: summary of numerical results (h2 =1/40, ∆t=10−3,t=1).

h1 ‖ψ−ψh ‖L∞(Ω\ω) ‖ψ−ψh ‖L2(Ω\ω) ‖ψ−ψh ‖H1(Ω\ω)

1/5 4.8078E-02 8.4802E-03 0.2841
1/10 1.1891E-02 2.1089E-03 0.1420
1/20 2.9706E-03 5.2664E-04 7.1031E-02
1/40 7.6868E-04 1.3102E-04 3.5513E-02

Table 4: Second test problem: summary of numerical results (h2 =1/20,∆t=10−3,t=1).

h1 ‖ψ−ψh ‖L∞(Ω\ω) ‖ψ−ψh ‖L2(Ω\ω) ‖ψ−ψh ‖H1(Ω\ω)

1/10 1.1891E-02 2.1097E-03 0.1421
1/20 2.9706E-03 5.2678E-04 7.1131E-02
1/40 3.0504E-03 1.3426E-04 3.5766E-02
1/80 5.5356E-03 6.9825E-05 1.8125E-02
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in Table 4 lead to the same conclusions as the one in Table 2. Comparing the results in
both tables we come once again to the conclusion, concerning the choice of h1 and h2, that
the safest strategy is to take equal these two space-discretization steps.

6.3 A two-dimensional parabolic problem with moving ω

As third test problem, we consider a variant of problems (6.1a)-(6.1c) where the ellipse ω
is subject to a rigid body motion obtained by the addition of a uniform translation and
constant angular velocity rotation; we assume that at t = 0, ω coincides with the ellipse
encountered in Sections 6.1 and 6.2. We assume also that µ and ls are as in Sections 6.1
and 6.2. Since ω(t) (the position occupied by the ellipse) is known in advance, we can
easily construct f ,g0 and g1 such that the exact solution will be given again by

ψ(x1,x2,t)=(x3
1−x3

2)t

(implying that, necessarily, ψ0 =0).
When implementing the methodology discussed in Section 5 to the solution of the

moving ω variant of problems (6.1a)-(6.1c), one encounters two complications, namely:

1. When approximating ∂ψ/∂t by (ψn−ψn−1)/∆t, we have to overcome the difficulty
associated with the fact that ψn is defined over Ω\ω(n∆t), while ψn−1 is defined over
Ω\ω((n−1)∆t). Fortunately, our fictitious domain approach provides a simple solution
to this problem, namely: replace ψn−1 by ψn−1

1 |Ω\ω(n∆t).

2. Let us denote by u0,n the function, belonging to L2(ω), used to initialize the con-
jugate gradient algorithm for solving the least-squares problem associated with step n.
When ω is fixed, we advocated in Section 6.2 the following initialization of the conju-
gate gradient algorithm solving the least-squares/ficititious domain problem: if n = 1,
use u0,1=0; if n≥2, take for u0,n the solution un−1 of the least-squares problem associated
with the previous time step. If ω enjoys a rigid body motion the situation looks more
complicated; to overcome the above difficulty, we suggest the following approach:

(i) Denote by Fn
n−1 the rigid body displacement mapping ω((n−1)∆t) onto ω(n∆t), and denote

by Fn−1
n the inverse mapping of Fn

n−1.

(ii) At step n (with n≥2), initialize the conjugate gradient algorithm with u0,n defined by

u0,n =un−1◦Fn−1
n .

Other possibilities exist, but the above one is the simplest, and is particularly easy to implement
if the triangulation Th2

enjoys the same rigid body motion as ω.

If ∆t is small enough, the number of conjugate gradient iterations drops quickly as n
increases. The numerical results obtained for various values of h1 and h2 have been re-
ported in Tables 5 and 6. The results of Table 5 suggest that for h2 given and h1 ≥ h2 we
still have

‖ψh−ψ‖L2(Ω\ω)=O(h2
1) and ‖ψh−ψ‖H1(Ω\ω)=O(h1);
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Table 5: Third test problem: summary of numerical results (h2 =1/40,∆t=10−3,t=1).

h1 ‖ψ−ψh ‖L∞(Ω\ω) ‖ψ−ψh ‖L2(Ω\ω) ‖ψ−ψh ‖H1(Ω\ω)

1/5 4.8078E-02 8.4602E-03 0.2834
1/10 1.1891E-02 2.1054E-03 0.1417
1/20 2.9706E-03 5.3114E-04 7.0958E-02
1/40 1.3715E-03 1.4354E-04 3.5606E-02

Table 6: Third test problem: summary of numerical results (h2 =1/20,∆t=10−3,t=1).

h1 ‖ψ−ψh ‖L∞(Ω\ω) ‖ψ−ψh ‖L2(Ω\ω) ‖ψ−ψh ‖H1(Ω\ω)

1/10 1.1891E-02 2.1082E-03 0.1421
1/20 2.9807E-03 5.3120E-04 7.1158E-02
1/40 3.2653E-03 1.4435E-04 3.5788E-02
1/80 5.8054E-03 7.5073E-05 1.8267E-02

on the other hand, it seems that the error ‖ ψh−ψ ‖L∞(Ω\ω) is still O(h2
1) if h1 ≫ h2 =

1/40, but is close to O(h1) when h1 gets closer to h2. The results of Table 6 confirm the
deterioration, already observed in Sections 6.1 and 6.2, of ‖ψh−ψ‖L∞(Ω\ω) if h1 <h2 and
strongly suggest that, as before, the safe choice is h1 =h2.

Remark 6.2. Using ψn−1
1 |Ω\ω(n∆t) to approximate ψn−1 in (6.3a) is a good strategy as long

as the displacement of ω during the time interval (n−1)∆t, n∆t is small, compared to h1

and h2. If ∆t is fixed and we decrease h1 and h2 we can expect, beyond some threshold,
a deterioration of the approximation errors, the first error to be affected being ‖ ψh−
ψ‖L∞(Ω\ω), as shown by the results of Tables 5 and 6.

7 Further remarks and conclusions

Before we conclude this article, some remarks are in order:

Remark 7.1. We can easily modify the method discussed in Sections 3, 4 and 5 in order
to handle other boundary conditions than Dirichlet on Γ and Robin on γ. In particular, it
is very easy to treat Neumann conditions on γ.

Remark 7.2. The method discussed here is particularly robust since it has been able to
handle accurately situations where ω is a rectangle, implying that Ω\ω has re-intrant
corners which in principle affects the regularity of the solutions.

Remark 7.3. In the above sections we have been assuming that Ω contains only one sub-
domain ω. However, we can easily consider cases where Ω contains a large number (let
us say ≥ 102 ) sub-domains ωj, j = 1,··· , J, possibly moving in time, as it will be the case
for particulate flows, which is our main motivation for these fictitious domain related
investigations.
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In this article, we have discussed a fictitious domain methodology for the solution of
linear elliptic problems with Robin boundary conditions. The method relies on a least-
squares formulation of the virtual control type, making it well-suited for solution by a
conjugate gradient algorithm operating in a well-chosen control space. Numerical ex-
periments show that the method discussed in this article performs well for linear elliptic
problems, and for linear parabolic problems as well, even when ω enjoys a rigid body
motion. In a future work, we will attempt at generalizing our method to the simulation
of particulate flow with a Navier slip condition at the interface fluid/particles.
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