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Abstract. We construct a well-conditioned hierarchical basis for triangular H(curl)-
conforming elements with selected orthogonality. The basis functions are grouped into
edge and interior functions, and the later is further grouped into normal and bubble
functions. In our construction, the trace of the edge shape functions are orthonormal
on the associated edge. The interior normal functions, which are perpendicular to
an edge, and the bubble functions are both orthonormal among themselves over the
reference element. The construction is made possible with classic orthogonal poly-
nomials, viz., Legendre and Jacobi polynomials. For both the mass matrix and the
quasi-stiffness matrix, better conditioning of the new basis is shown by a compari-
son with the basis previously proposed by Ainsworth and Coyle [Comput. Methods.
Appl. Mech. Engrg., 190 (2001), 6709-6733].
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1 Introduction

The Nédélec elements [17] are the natural choices when problems in electromagnetism
are solved by finite element methods. Hierarchical bases are more convenient to use
when a p-refinement technique is applied with the finite element methods [6,7]. Webb [27]
constructed hierarchical vector bases of arbitrary order for triangular and tetrahedral fi-
nite elements. It was shown [11] that the basis functions in [27] indeed span the true
Nédélec space [17]. A basis in terms of affine coordinates was also given [11]. Inspired by
the foundational work [17] and following Webb [27], many researchers had constructed
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various hierarchical bases for several common elements in 2D and 3D [1,3–5,14,15,18,22,
25]. Meanwhile, using the perspective of differential forms, Hiptmair [12] laid a general
framework for canonical construction of H(curl)- and H(div)-conforming finite elements.
For further details, the reader is referred to the works [13, 19–21] and the monograph [8].

One problem with hierarchical bases is the ill-conditioning of the finite element dis-
cretization matrices for the Maxwell’s equations when higher-order bases are applied [2,
27,29]. For a hierarchical basis to be useful, the issue of ill-conditioning has to be resolved.
Using Gram-Schmidt orthogonalization procedure, Webb [27] gave the explicit formulas
of the basis functions up to third order for triangular and tetrahedral elements. Following
the same line of development [27], i.e., decomposing the basis functions into rotational
and irrotational groups, Sun and collaborators [25] investigated the conditioning issue
more carefully and also gave the basis functions up to the third order. Ainsworth and
Coyle [3] studied both the dispersive and conditioning issues for the hierarchical basis
on hybrid quadrilateral/triangular meshes. With the aid of Jacobi polynomials, the inte-
rior bubble functions are orthogonal over the equilateral reference triangle [3]. With this
partial orthogonality it was shown that the condition numbers of both the mass matrix
and the stiffness matrix could be reduced significantly [3]. Using Legendre polynomials,
Jørgensen et al. constructed a near-orthogonal basis for the quadrilaterals and indicated
that the same procedure could be applied for the triangles with the help of collapsed co-
ordinate system [16]. More recently, Schöberl and Zaglmayr [22] created bases for high-
order Nédélec elements with the property of local complete sequence to partially address
the ill-conditioning issue. The key component in their construction [22] is to use (i) the
gradients of scalar basis functions and, (ii) scaled and integrated Legendre polynomials.
However, the ill-conditioning issue was pronounced with higher-order approximation
and moderate growth of the condition number was reported [22]. A new hierarchical
basis with uncommon orthogonality properties was constructed by Ingelström [14] for
tetrahedral meshes where higher-order basis functions vanished if they were projected
onto the relatively lower-order H(curl)-conforming spaces [14]. It was shown [14] that
such a basis was well suited for use with multi-level solvers. Recently, using the orthogo-
nalization procedure by Shreshevskii [24] and conforming to the Nédélec [17] condition,
Abdul-Rahman and Kasper proposed a new hierarchical basis for the tetrahedral ele-
ment [1].

The Gram-Schmidt scheme used by Webb [27] or the orthogonalization method ap-
plied by Abdul-Rahman and Kasper [1] involves a linear system of equations to be solved,
and the coefficients associated with the basis functions in general cannot be expressed in
closed forms. The focus of the current work is to construct a well-conditioned hierarchical
basis for the triangular H(curl)-conforming elements without using the Gram-Schmidt
orthogonalization. This is accomplished by using integrated Legendre polynomials for
higher-order edge functions and Jacobi polynomials for interior functions. The basis
functions of any approximation order are given explicitly in closed form. Our work is
based upon the studies by Ainsworth and Coyle [3], and by Schöberl and Zaglmayr [22],
and motivated by the study of orthogonal polynomials of several variables [9].
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The rest of this paper is organized as follows. In Section 2 the reference element is
defined along with some preliminary results. The construction of basis functions is given
in Section 3. Numerical results of matrix conditioning are shown in Section 4. Concluding
remarks are presented in Section 5. For the convenience of practitioners, explicit formulas
of the basis functions up to tenth order are given in the Appendix. The graphs of the
shape functions up to order five are also shown in the Appendix.

2 Reference element and preliminary

We construct basis functions for the triangular H(curl)-conforming elements on a canon-
ical reference element since any triangle can be transformed into the reference element
by a linear bijective mapping. Instead of using the equilateral triangle as the reference
element [3], we consider the standard 2-simplex K which is defined by

K :=
{
(ξ,η)∈R

2 : 0≤ ξ,η; ξ+η≤1
}

. (2.1)

The notation for the reference element is shown in Fig. 1. The coordinates for the vertexes
are V1(1,0), V2(0,1) and V3(0,0). Each edge is the directed line segment which is named
in terms of the opposite vertex, i.e., Γ1 :=V2→V3, Γ2 :=V3→V1, and Γ3 :=V1→V2 and their
corresponding unit direction vector is denoted as Γ̂i,i=1,2,3. The barycentric coordinates
of the reference element are simply

λ1 = ξ, λ2 =η, λ3 =1−ξ−η. (2.2)

In terms of the barycentric coordinates, each edge can be parametrized as

τ1|Γ1
=λ3−λ2, τ2|Γ2

=λ1−λ3, τ3|Γ3
=λ2−λ1. (2.3)

The parameter varies in the range τi =[−1,1], i=1,2,3. The normal vector on each edge is

~n1 =∇λ1 =

[
1
0

]
, ~n2 =∇λ2 =

[
0
1

]
, ~n3 =∇λ3 =

[ −1
−1

]
. (2.4)

For the construction of the basis functions, we will employ a classic result in the book [26]
by Szabó and Babuška. Consider the integral of the normalized Legendre polynomials
defined by

pi
0(τ) :=

√
2i−1

2

∫ τ

−1
Pi−1(σ)dσ, i≥2, (2.5)

where Pi−1(σ) is the classic Legendre polynomials of degree i−1. Using the symmetry
and differentiation properties of the Legendre polynomials, the above integral can be
readily shown to take the form

pi
0(τ)=

Pi(τ)−Pi−2(τ)√
2(2i−1)

, i≥2. (2.6)
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Figure 1: Canonical reference element (2-simplex).

The expression on the right-hand side, except for the scaling factor in the denominator,
had been used by Jørgensen et al. [15] to construct hierarchical Legendre basis functions,
and by Shen [23] to design direct solvers of second-order equations. It is clear that the
newly defined polynomials have the following properties [26]:

pi
0(−1)= pi

0(1)=0, i≥2, (2.7a)

∫ 1

−1

dpi+1
0 (τ)

dτ

dp
j+1
0 (τ)

dτ
dτ =δij, i, j≥1, (2.7b)

where δij is the Kronecker delta function.

3 Construction of basis functions

We now construct basis functions for the H(curl)-conforming elements on the reference
element.

3.1 Lowest-order basis

The lowest order elements are also historically called Whitney elements [28]. The basis
consists of three shape functions with one on each edge, viz.,

Φ
e,0
Γj

= |Γj|(λj1~nj2 −λj2~nj1), j=1,2,3, (3.1)

where

j1 =

{
mod(j+1,3), if j+1 6=3,
3, otherwise,

j2 =

{
mod(j+2,3), if j+2 6=3,
3, otherwise.

(3.2)

Written in an explicit form, these functions are

Φ
e,0
Γ1

=λ2~n3−λ3~n2, Φ
e,0
Γ2

=λ3~n1−λ1~n3, Φ
e,0
Γ3

=
√

2(λ1~n2−λ2~n1). (3.3)
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It is easy to verify that the basis functions in (3.1) has the following two important prop-
erties:

∇·Φe,0
Γj

=0, j=1,2,3, (3.4a)

Γ̂k ·Φe,0
Γj

=δjk, j,k=1,2,3. (3.4b)

So each basis function is divergence-free, and has a constant unit tangential component
on its associated edge and has no contribution on the other two edges.

3.2 Higher-order basis

The functions for a higher-order basis can be grouped into two classes according to their
associated geometric identities on the reference element.

3.2.1 Edge-based functions

As pointed out in [22], the key idea of constructing higher-order basis functions is to in-
corporate the gradients of scalar functions. Schöberl and Zaglmayr [22] exploited the
scaled integrated Legendre polynomials to construct edge-based functions. It can be
shown that the shape functions on each edge are not pairwise orthogonal [22]. We con-
struct edge-based orthonormal shape functions using the normalized but not scaled Leg-
endre polynomials defined in (2.5). The higher-order edge-based functions are given by

Φ
e,i−1
Γj

=∇
( 1

|∇τj|
pi

0(τj)
)

, i=2,3,··· ,p+1, j=1,2,3, (3.5)

where for each edge, the scaling constant is

|∇τ1|=
√

5, |∇τ2|=
√

5, |∇τ3|=
√

2. (3.6)

The higher-order basis functions in (3.5) are curl-free, whose trace on the edge are or-
thonormal on each associated edge, viz.,

∇×Φ
e,i−1
Γj

=0, i=2,3,··· ,p+1, j=1,2,3, (3.7a)

<Φ
e,i−1
Γj

,Φe,k−1
Γj

> |Γj
=δik, i,k=2,3,··· ,p+1, j=1,2,3, (3.7b)

where the notation < •,•> represents the standard inner product. The curl-free prop-
erty in (3.7a) is true since each shape function is expressed in terms of a gradient. The
orthonormal property in (3.7b) can be proved by noticing that the shape function can be
written in the following form:

Φ
e,i−1
Γj

=

√
2i−1

2

∇τj

|∇τj|
Pi−1(τj), i=2,3,··· ,p+1, j=1,2,3, (3.8)

and the orthogonality relation of the Legendre polynomials, viz.,
∫ 1

−1
Pi(σ)Pj(σ)dσ =

2

2i+1
δij, i, j=0,1,2,··· . (3.9)
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3.2.2 Interior functions

For complete polynomial approximation of the Nédélec space with degree p≥2, interior
functions are needed. Following the construction of shape functions by Webb [27] and
by Ainsworth and Coyle [3], we classify the interior functions into two groups-normal
functions and bubble functions. All interior functions have no tangential contribution
along any edge. However, the normal functions will have normal components on their
associated edges while the bubble functions are free of normal components on all edges.

Normal functions

Ainsworth and Coyle [3] constructed the interior normal functions by applying Legen-
dre polynomials. It can be shown that the normal functions which are perpendicular to
an edge are not pairwise orthogonal on the reference element [3]. By using Jacobi poly-
nomials, we construct interior normal functions which are orthonormal on the reference
element (2-simplex). The interior normal functions are given by

Φ
n,k+2
Γj

=8
√

k+3(1−λj)
k p

(2,2)
k

( τj

1−λj

)
λj1 λj2

~nj

|~nj|
, k=0,1,2,··· ,p−2, (3.10)

where p
(2,2)
k (•) is the orthonormal Jacobi polynomial of degree k. The subscripts j1 and j2

are defined in (3.2), and the scaling constant |~nj| for each edge is

|~n1|=1, |~n2|=1, |~n3|=
√

2. (3.11)

The interior normal functions (3.10) have two important properties, viz.,

Γ̂j ·Φn,k+2
Γi

=0, i, j=1,2,3, k=0,1,2,··· ,p−2, (3.12a)

<Φ
n,i+2
Γj

,Φn,k+2
Γj

> |K =δik, j=1,2,3, i,k=0,1,2,··· ,p−2. (3.12b)

The property (3.12a), i.e., free of tangential component, can be readily seen as the nor-
mal functions (3.11) vanish on two edges and are perpendicular to the third one. The
orthonormal property (3.12b) can be proved directly by using Proposition 2.3.8 in the
monograph by Dunkl and Xu [9].

Bubble functions

A set of orthogonal but not normalized bubble functions were constructed by Ainsworth
and Coyle [3]. The significant issue of scaling or normalization in constructing shape
functions has already been brought to attention by Jørgensen and collaborators [15]. We
construct orthonormal bubble functions on the reference element. Our work is motivated
by the study of orthogonal polynomials of several variables [9]. First, we introduce a
lemma on orthogonal polynomials over an n-simplex K [9].
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Lemma 3.1. Define polynomials on an n-simplex K

P~α

(
W

(K)
~κ ;x

)
=

[
h

(K)
~α

]−1 n

∏
i=1

( 1−|xi|
1−|xi−1|

)|~αi+1|
p

(ρ1
i ,ρ2

i )
αi

( 2xi

1−|xi−1|
−1

)
, (3.13)

where p
(ρ1

i ,ρ2
i )

αi
is the classic orthonormal Jacobi polynomials of one variable, ρ1

i =2|~αi+1|+|~κi+1|+
(n−i−1)/2 and ρ2

i =κi−1/2, then, P~α

(
W

(K)
~κ ;x

)
are orthonormal under the weight function

W
(K)
~κ (x)=(1−|x|)κn+1− 1

2

n

∏
i=1

x
κi− 1

2
i , x∈K, κi ≥−1

2
, i=1,2,··· ,n+1, (3.14)

with a normalization constant h
(K)
~α

[
h

(K)
~α

]−2
=

n

∏
i=1

2ρ1
i +ρ2

i +1. (3.15)

The proof of the lemma can be found in [9]. However, the normalization constant

h
(K)
~α given in [9] is incorrect. The original normalization constant [9] has been corrected

here (3.15). Using the result in Lemma 3.1, the orthonormal bubble functions can be
constructed directly

Φ
b,p
i,j ={~eξ ,~eη}⊗hK

i,j λ1λ2λ3(1−λ1)
i p

(2,2)
i

(λ2−λ3

1−λ1

)
p

(2i+5,2)
j (2λ1−1), (3.16a)

where

hK
i,j =2i+ 13

2 , 0≤ i, j, i+ j≤ p−3. (3.16b)

In our construction, we have used κi =5/2, i=1,2,3 so that the weight function is

W
(K)
~κ =(λ1λ2λ3)

2. (3.17)

The exponent in (3.16b) is obtained by the fact

ρ1
1 =2i+5, ρ2

1 =2, ρ1
2 =2, ρ2

2 =2, 0≤ i≤ p−3. (3.18)

The interior bubble functions have the following two properties, viz.,

Φ
b,p
i,j |∂K =0, 0≤ i, j,i+ j≤ p−3, (3.19a)

<Φ
b,p
i,j ,Φ

b,q
k,ℓ > |K =δik δjℓ, 0≤ i, j,k,ℓ,i+ j≤ p−3, k+ℓ≤q−3. (3.19b)

The first property (3.19a), which states that the bubble functions have vanishing tangen-
tial and normal components on the boundary (three edges) of the reference element, can
be seen by noticing that the factor λ1λ2λ3 is included with each shape function in (3.16a).
The orthonormal property (3.19b) can be proved by using the result in Lemma 3.1, and
by identifying λ1 = x1, λ2 = x2 and λ3 =1−x1−x2.

Following the same argument by Ainsworth and Coyle [3], it can be shown that
the newly-constructed basis is a hierarchical basis for triangular H(curl)-conforming ele-
ments.
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4 Conditioning of matrices

As in [3], we check the conditioning of the mass M and quasi-stiffness S matrices on the
reference element. The components of each matrix are defined as

Mi,j :=<Φi,Φj > |K, Si,j :=<∇×Φi,∇×Φj > |K. (4.1)

The mass matrix M is real, symmetric and positive definite, and thus its eigenvalues are
all positive. The quasi-stiffness matrix S is real, symmetric and semi-positive definite,
and therefore has non-negative eigenvalues.

4.1 Structure of matrices

The sparsity of the mass and quasi-stiffness matrices are shown in Table 1 and Table
2, respectively, where the shape functions for a complete polynomial approximation of
order p are grouped according to their associated geometric identities.

Table 1: Sparsity of the mass matrix.

<•,•> |K Φe
[3(p+1)]

Φn
[3(p−1)]

Φb
[(p−1)(p−2)]

Φe
[3(p+1)]

dense dense sparse

Φn
[3(p−1)]

dense sparse sparse

Φb
[(p−1)(p−2)]

sparse sparse identity

Table 2: Sparsity of the quasi-stiffness matrix.

<∇×,∇×> |K Φe
[3(p+1)]

Φn
[3(p−1)]

Φb
[(p−1)(p−2)]

Φe
[3(p+1)]

sparse O O

Φn
[3(p−1)]

O dense dense

Φb
[(p−1)(p−2)]

O dense dense

To further appreciate the structure of the mass and quasi-stiffness matrices, we plot
the sparsity profiles of both matrices for the approximation order p=4 and p=8 in Fig. 2
and Fig. 3, respectively.

The structure of both the mass and quasi-stiffness matrices are organized in a hier-
archical way in the sense that a particular submatrix from a relatively higher-order of
approximation is the matrix for a relatively lower-order of approximation. For instance,
for the approximation order p=8, the mass matrix M[p=8] is a 90×90 matrix. The upper

left submatrix M
[p=8]
30×30 is the mass matrix M[p=4] for order p = 4. For the mass matrices

shown in Fig. 2 and with the order of approximation p=4, the number of nonzero entries
is 618 out of 900, which is 68.67% of the entire matrix M[p=4]. Similarly, for order p = 8,
the number of nonzero entries is 4,128 out of 8,100, which is 50.96% of the entire matrix
M[p=8]. As the order of approximation p increases, the sparsity of the mass matrix will
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Figure 2: Structure of the mass matrices for the approximation order p=4 (left) and p=8 (right).
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Figure 3: Structure of the quasi-stiffness matrices for the approximation order p=4 (left) and p=8 (right).

increase accordingly. The sparsity pattern of the quasi-stiffness matrix with respect to the
approximation order is just opposite to that for the mass matrix. In particular, for the
quasi-stiffness matrices shown in Fig. 3 and with the order of approximation p = 4, the
number of nonzero entries is 174 out of 900, which is 19.33% of the entire matrix S[p=4].
And for order p=8, the number of nonzero entries is 3,146 out of 8,100, which is 38.84%
of the entire matrix S[p=8]. It should be pointed out the distinction between the sparsity
and conditioning of a matrix. In general a sparse matrix does not necessarily mean that
the matrix is well conditioned. Conversely, a well conditioned matrix may not be sparse.
Nevertheless, a sparse matrix does have the advantage of relatively lower requirement
of computer storage.

4.2 Condition numbers of mass and quasi-stiffness matrices

The condition number of a matrix A is calculated by the formula

κ(A)=
λmax

λmin
, (4.2)
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where λmax and λmin are the maximum and minimum eigenvalues of the matrix A, re-
spectively. For the quasi-stiffness matrix S, only positive eigenvalues are considered.
Ainsworth and Coyle [3] also considered the diagonally normalized mass and quasi-
stiffness matrices, viz.,

M̃=Λ
− 1

2
M MΛ

− 1
2

M , S̃=Λ
− 1

2
S SΛ

− 1
2

S , (4.3)

where ΛM and ΛS are the diagonal matrices of the mass M and quasi-stiffness matrices
S, respectively. The condition numbers of the original and normalized mass and quasi-
stiffness matrices are shown in Table 3 and Table 4, respectively. As a comparison, the
condition numbers generated with the basis by Ainsworth and Coyle [3] are recorded.
The ratios of the condition numbers between the A-C basis [3] and the new basis are
shown in each table as well.

Table 3: Condition numbers of the mass matrix M and quasi-stiffness matrix S from the new basis and the
basis in [3], denoted ”A-C”.

Order p Mass Quasi-stiffness Ratio of two bases
New A-C New A-C Mass Q.-S.

0 3.000e0 2.000e0 1.000e0 1.000e0 0.667e0 1.000e0
1 1.004e1 8.606e0 1.000e0 1.000e0 0.857e0 1.000e0
2 1.505e2 2.712e3 2.813e0 9.600e1 1.802e1 3.413e1
3 5.378e2 4.921e4 9.546e0 1.080e3 9.150e1 1.131e2
4 1.086e3 1.604e5 2.452e1 1.503e3 1.477e2 6.130e1
5 1.642e3 3.898e5 4.984e1 1.608e3 2.374e2 3.226e1
6 2.868e3 7.069e5 8.900e1 1.853e3 2.465e2 2.082e1
7 3.852e3 1.505e6 1.472e2 2.226e3 3.907e2 1.512e1
8 5.627e3 3.497e6 2.224e2 2.953e3 6.215e2 1.328e1
9 7.580e3 6.830e6 3.452e2 3.534e3 9.011e2 1.024e1

10 9.928e3 1.213e7 4.948e2 4.467e3 1.222e3 9.028e0
11 1.127e4 2.181e7 7.033e2 5.291e3 1.935e3 7.523e0
12 1.478e4 4.099e7 9.650e2 6.507e3 2.773e3 6.743e0

From Table 3 several observations on the conditioning for the original un-normalized
matrices can be made.

• For the mass matrix M, starting from order 4, the conditioning with the basis in this
study is at least two orders better than the basis by Ainsworth and Coyle [3]. The higher
the order of approximation, the better the conditioning of the new basis. Indeed, starting
from order 10, the conditioning with the new basis is at least three orders better relative
to the one in [3]. For the relatively low orders, p=2 and p=3, the conditioning with the
new basis is still at least one order better.

• For the quasi-stiffness matrix S, starting from order 2, the conditioning with the
basis in this study is about one order better than the basis by Ainsworth and Coyle [3]
though the advantage decreases as the order p increases.
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Table 4: Condition numbers of the normalized mass matrix M̃ and quasi-stiffness matrix S̃ from the new basis
and the basis in [3], denoted ”A-C”.

Order p Mass Quasi-stiffness Ratio of two bases
New A-C New A-C Mass Q.-S.

0 3.000e0 2.000e0 1.000e0 1.000e0 0.667e0 1.000e0
1 5.161e0 6.491e0 1.000e0 1.000e0 1.258e0 1.000e0
2 7.409e1 9.267e1 2.000e0 3.824e0 1.251e0 1.912e0
3 2.053e2 3.840e2 3.119e0 4.821e0 1.870e0 1.546e0
4 5.202e2 1.721e3 7.777e0 8.865e0 3.308e0 1.140e0
5 8.890e2 3.364e3 8.409e0 9.773e0 3.784e0 1.162e0
6 1.259e3 1.090e4 1.137e1 1.242e1 8.658e0 1.091e0
7 2.113e3 2.011e4 1.335e1 1.563e1 9.517e0 1.171e0
8 3.109e3 5.893e4 1.599e1 1.681e1 1.895e1 1.051e0
9 3.756e3 1.042e5 1.864e1 1.952e1 2.774e1 1.047e0
10 5.408e3 2.883e5 2.146e1 1.999e1 5.331e1 0.932e0
11 6.730e3 4.920e5 2.437e1 2.150e1 7.310e1 0.880e0
12 8.189e3 1.409e6 2.743e1 2.200e1 1.721e2 0.802e0

• For both bases, the conditioning of the mass matrix is severe and more pronounced
than the quasi-stiffness matrix.

Similarly, by examining the values in Table 4 and by comparing the values in both
tables, one can make a couple of remarks.

• For the normalized mass matrix M̃, starting from order 1, the conditioning with
the new basis is better than the one in [3]. Starting from order 8, the new basis is at
least one order better relative to the one in [3], and starting from order 12, the basis in
this study has begun to show two orders better conditioning than the Ainsworth-Coyle
basis [3]. The higher the order of approximation, the greater the advantage with the new
basis. Nevertheless, compared with the case with the original un-normalized matrix, the
advantage with the normalized matrix has been reduced somewhat.

• For the normalized quasi-stiffness matrix S̃ and for both bases, the conditioning is
not a problem. For all orders of approximation, the condition number is on the same level
and roughly the same with the two bases.

In order to see the trend of the growth with the condition numbers for both matrices,
we plot the condition numbers vs. the order of approximation on a logarithmic scale.
The results are shown in Fig. 4 and Fig. 5 for the mass and quasi-stiffness matrices, re-
spectively.

From Fig. 4 one can see that for the new basis, starting from order 3, the condition
number grows linearly vs. order of approximation for both the original and normalized
mass matrices. For the basis in [3], starting from order 6, the condition number of the
original mass matrix grows linearly vs. order of approximation; while for the normalized
mass matrix, starting from order 4, the condition number increases at least super-linearly
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Figure 4: Condition numbers of the mass matrices: original (left) and normalized (right).
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Figure 5: Condition numbers of the quasi-stiffness matrices: original (left) and normalized (right).

vs. order of approximation. Further, for both the original and normalized mass matri-
ces, the slope of the line, i.e., the growth rate of the condition number is much higher
for the basis by Ainsworth and Coyle [3]. The theoretical results [4] on the condition
numbers cannot be applied to this study since they are intended for the quadrilateral and
hexahedral elements.

From Fig. 5 one can identify that for the original un-normalized quasi-stiffness matrix,
starting from order 2 the condition number increases linearly vs. the order of approxima-
tion for the basis in this study; and starting from order 7, the same observation holds for
the Ainsworth-Coyle basis [3]. However, for the normalized quasi-stiffness matrix and
for both bases, the condition numbers grow much more slowly than their corresponding
un-normalized ones, and the two curves are quite close to each other. Also one can see
that for the normalized quasi-stiffness matrix, there is a sudden mild jump of the condi-
tion number for the forth-order approximation with both bases. Again, the growth rates
of the condition numbers for the quasi-stiffness matrices shown in Fig. 5 do not conform
to the theoretical study [4], which is understandable.



792 J. Xin and W. Cai / Commun. Comput. Phys., 9 (2011), pp. 780-806

4.3 Condition numbers of Schur complements

Because the Schur complement [10] plays a distinctive role in many areas, e.g., matrix
and numerical analysis, we now consider for a certain approximation order p the condi-
tioning of the Schur complements of the lower right block of the mass matrices.

We first consider the case for the approximation order p=4. The mass matrix can be
partitioned into four (4) blocks

M[p=4] :=

[
M11 M12

M21 M22

]
. (4.4)

The submatrix M11 corresponds to the mass matrix M[p=3] for the approximation order
p = 3, i.e., M[p=3] = M11. The reason why such a partition is made is clear-due to the
hierarchical structure of the mass matrix. The Schur complement of the block M22 is

MS
11 = M11−M12M−1

22 M21. (4.5)

The submatrix M22 is invertible since the components of this matrix are assembled from
the interactions of the linearly independent shape functions. The condition number of the
Schur complement MS

11 is computed and recorded as

κ(MS
11)=8.772×102. (4.6)

Repeat the same procedure for the diagonally normalized mass matrix M̃[p=4], and it is
found that

κ(M̃S
11)=3.880×102. (4.7)

It is interesting to compare these two numbers with the corresponding ones in Tables 3
and 4 for the approximation order p=3 and p=4, viz.,

κ(M[p=3])(5.378×102)<κ(MS
11)(8.772×102)<κ(M[p=4])(1.086×103), (4.8a)

κ(M̃[p=3])(2.053×102)<κ(M̃S
11)(3.880×102)<κ(M̃[p=4])(5.202×102). (4.8b)

The strict inequalities in (4.8) are understandable. From the data in (4.8) and if the tech-
nique of Schur complement [10] can be used to solve the linear system for the mass ma-
trices, one can see that the linear system for the case with p = 4 is relatively a little bit
”harder” to solve than the case for p=3.

Next, for the case with the approximation order p = 8, one can compute the Schur
complements of the lower right blocks for the mass matrix M[p=8] and the diagonally
normalized one M̃[p=8]. In a same manner as the case for the approximation order p=4,
the comparison of the condition numbers of the Schur complements with the correspond-
ing ones for the approximation order p=7 and p=8 can be made and recorded as

κ(M[p=7])(3.852×103)<κ(MS
11)(5.518×103)<κ(M[p=8])(5.627×103), (4.9a)

κ(M̃[p=7])(2.113×103)<κ(M̃S
11)(3.040×103)<κ(M̃[p=8])(3.109×103). (4.9b)
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Similarly as the case for p=4, the same observation can be made for the case p=8. The
linear system for the case with p=8 is somehow a little bit ”harder” to solve than the case
for p=7 if the Schur complement can be used for the linear system of the mass matrices.

5 Discussion and conclusions

A new set of hierarchical basis for triangular H(curl)-conforming elements has been pro-
posed with the goal of improving the conditioning of the mass and quasi-stiffness ma-
trices. The basis functions are given explicitly by four formulas, viz., (3.1), (3.5), (3.10),
and (3.16). The construction of the new basis is motivated by the study of orthogonal
polynomials of several variables [9], and based on the work by Ainsworth and Coyle [3],
and by Schöberl and Zaglmayr [22], thus combines the advantage of both works. The
idea is to make each set of shape functions, grouped and associated with a geometric
identity, orthonormal with respect to that particular identity on the reference 2-simplex
element. This is achieved by appropriately exploiting classic orthogonal polynomials,
viz., Legendre and Jacobi polynomials over simplicial elements.

The sparsity structure of the mass and quasi-stiffness matrices has been identified for
two typical approximation orders. The conditioning of the Schur complements for the
mass matrices has been numerically studied, and it is found that for two consecutive or-
ders of approximation, the linear system from the relatively higher-order approximation
is slightly hard to solve.

Numerical studies have shown that the conditioning of the mass matrix is relatively
more salient than that with the quasi-stiffness matrix. In particular, the diagonally nor-
malized quasi-stiffness matrix is well conditioned. For the original un-normalized mass
matrix, in terms of matrix conditioning and starting from order four (4) of approxima-
tion, the basis in this study is at least two orders better in conditioning number than the
basis proposed by Ainsworth and Coyle [3]; and starting from order ten (10), the new
basis shows even greater advantage of at least three orders better. Similarly, for the diag-
onally normalized mass matrix, starting from order eight (8) of approximation, the basis
in this study is at least one order better than the one by Ainsworth and Coyle [3]; and
starting from order twelve (12), the proposed basis shows at least two orders better. The
higher the order of approximation, the greater the advantage of the new basis, fulfilling
the goal of a hierarchical basis.
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Appendix

Explicit formulas of the basis functions

Up to order ten (10) of approximation and in terms of the coordinates (ξ,η) for the refer-
ence element, the formulas for the shape functions in the basis are given as follows. Some
formulas are quite long, and for such cases we use short-hand notations, i.e.,

⋆ :=1−ξ−2η, ∗ :=2ξ+η−1, ⋄ :=2ξ−1, † :=η−ξ, ≀ :=1−ξ−η,

♮ :=1−ξ, ♯ :=1−η, ♭ := ξ+η, ⊲⊳:=

{[
1
0

]
,

[
0
1

]}
.

The shape functions up to the fifth-order of approximation are shown in the following
figures.
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=
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n,5
Γ3

(1), with Φ
n,5
Γ3

(2)=Φ
n,5
Γ3

(1).

Fifth-order

Φ
e,5
Γ1

=−
√

110

80
[63(1−ξ−2η)5−70(1−ξ−2η)3+15(1−ξ−2η)]

[
1
2

]
,

Φ
e,5
Γ2

=

√
110

80
[63(2ξ+η−1)5−70(2ξ+η−1)3+15(2ξ+η−1)]

[
2
1

]
,

Φ
e,5
Γ3

=

√
11

16
[63(η−ξ)5−70(η−ξ)3+15(η−ξ)]

[
−1
1

]
,
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Figure 14: Shape functions of the fifth or-
der. Top left: the graph for the func-

tion Cb,5
2,0(ξ,η) = 15

√
66ξη(1−ξ−η)[7(2η+

ξ−1)2−(1−ξ)2], with the bubble func-

tion Φ
b,5
2,0(ξ,η) = Cb,5

2,0(ξ,η)⊗ ⊲⊳; top right:

the graph for the function Cb,5
0,2(ξ,η) =

3
√

15ξη(1−ξ−η)[55(3ξ−1)2+30(2ξ−1)−
1], with the bubble function Φ

b,5
0,2(ξ,η) =

Cb,5
0,2(ξ,η)⊗ ⊲⊳; bottom left: the graph for

the function Cb,5
1,1(ξ,η) = 30

√
42ξη(1−ξ−

η)(2η+ξ−1)(11ξ−3), with the bubble func-

tion Φ
b,5
1,1(ξ,η)=Cb,5

1,1(ξ,η)⊗⊲⊳.

Φ
n,5
Γ1

=3
√

770η(1−ξ−η)(1−ξ−2η)[3(1−ξ−2η)2−(1−ξ)2]

[
1
0

]
,

Φ
n,5
Γ2

=3
√

770ξ(1−ξ−η)(2ξ+η−1)[3(2ξ+η−1)2−(1−η)2]

[
0
1

]
,

Φ
n,5
Γ3

=−3
√

385ξη(η−ξ)[3(η−ξ)2−(ξ+η)2]

[
1
1

]
,

Φ
b,5
2,0 =15

√
66ξη(1−ξ−η)[7(2η+ξ−1)2−(1−ξ)2]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,5
0,2 =3

√
15ξη(1−ξ−η)[55(2ξ−1)2+30(2ξ−1)−1]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,5
1,1 =30

√
42ξη(1−ξ−η)(2η+ξ−1)(11ξ−3)⊗

{[
1
0

]
,

[
0
1

]}
.

Sixth-order

Φ
e,6
Γ1

=−
√

130

160
[231(1−ξ−2η)6−315(1−ξ−2η)4+105(1−ξ−2η)2−5]

[
1
2

]
,

Φ
e,6
Γ2

=

√
130

160
[231(2ξ+η−1)6−315(2ξ+η−1)4+105(2ξ+η−1)2−5]

[
2
1

]
,
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Φ
e,6
Γ3

=

√
13

32
[231(η−ξ)6−315(η−ξ)4+105(η−ξ)2−5]

[
−1
1

]
,

Φ
n,6
Γ1

=
7

8

√
390η(1−ξ−η)[33(1−ξ−2η)4−18(1−ξ−2η)2(1−ξ)2+(1−ξ)4]

[
1
0

]
,

Φ
n,6
Γ2

=
7

8

√
390ξ(1−ξ−η)[33(2ξ+η−1)4−18(2ξ+η−1)2(1−η)2+(1−η)4]

[
0
1

]
,

Φ
n,6
Γ3

=−7

8

√
195ξη[33(η−ξ)4−18(η−ξ)2(ξ+η)2+(ξ+η)4]

[
1
1

]
,

Φ
b,6
3,0 =21

√
1430ξη(1−ξ−η)[3(2η+ξ−1)3−(2η+ξ−1)(1−ξ)2]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,6
0,3 =

3

4

√
210ξη(1−ξ−η)[143(2ξ−1)3+99(2ξ−1)2−11(2ξ−1)−7]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,6
2,1 =

3

2

√
770ξη(1−ξ−η)[7(2η+ξ−1)2−(1−ξ)2][7+13(2ξ−1)]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,6
1,2 =

105

2

√
22ξη(1−ξ−η)(2η+ξ−1)[1+10(2ξ−1)+13(2ξ−1)2]⊗

{[
1
0

]
,

[
0
1

]}
.

Seventh-order

Φ
e,7
Γ1

=−
√

6

32
[429(⋆)7−693(⋆)5+315(⋆)3−35(⋆)]

[
1
2

]
,

Φ
e,7
Γ2

=

√
6

32
[429(∗)7−693(∗)5+315(∗)3−35(∗)]

[
2
1

]
,

Φ
e,7
Γ3

=

√
15

32
[429(η−ξ)7−693(η−ξ)5+315(η−ξ)3−35(η−ξ)]

[
−1
1

]
,

Φ
n,7
Γ1

=
3

14

√
35η(1−ξ−η)[1001(⋆)5−770(⋆)3(1−ξ)2+105(⋆)(1−ξ)4]

[
1
0

]
,

Φ
n,7
Γ2

=
3

14

√
35ξ(1−ξ−η)[1001(∗)5−770(∗)3(1−η)2+105(∗)(1−η)4]

[
0
1

]
,

Φ
n,7
Γ3

=− 3

28

√
70ξη[1001(η−ξ)5−770(η−ξ)3(ξ+η)2+105(η−ξ)(ξ+η)4]

[
1
1

]
,

Φ
b,7
4,0 =

105

2

√
13ξη(1−ξ−η)[33(⋆)4−18(⋆)2(1−ξ)2+(1−ξ)4]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,7
0,4 =

1

4

√
110ξη(1−ξ−η)[1365(⋄)4+1092(⋄)3−234(⋄)2−204(⋄)−3]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,7
3,1 =21

√
1430ξη(1−ξ−η)[−3(⋆)3+(⋆)(1−ξ)2][3+5(⋄)]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,7
1,3 =−3

2

√
154ξη(1−ξ−η)(⋆)[−15+65(⋄)+455(⋄)2+455(⋄)3]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,7
2,2 =

3

2

√
130ξη(1−ξ−η)[7(⋆)2−(1−ξ)2][17+98(⋄)+105(⋄)2]⊗

{[
1
0

]
,

[
0
1

]}
.



J. Xin and W. Cai / Commun. Comput. Phys., 9 (2011), pp. 780-806 803

Eighth-order

Φ
e,8
Γ1

=−
√

170

1280
[6435(⋆)8−12012(⋆)6+6930(⋆)4−1260(⋆)2+35]

[
1
2

]
,

Φ
e,8
Γ2

=

√
170

1280
[6435(∗)8−12012(∗)6+6930(∗)4−1260(∗)2+35]

[
2
1

]
,

Φ
e,8
Γ3

=

√
17

256
[6435(η−ξ)8−12012(η−ξ)6+6930(η−ξ)4−1260(η−ξ)2+35]

[
−1
1

]
,

Φ
n,8
Γ1

=
9

112

√
1190η(≀)[1001(⋆)6−1001(⋆)4(1−ξ)2+231(⋆)2(1−ξ)4−7(1−ξ)6]

[
1
0

]
,

Φ
n,8
Γ2

=
9

112

√
1190ξ(≀)[1001(∗)6−1001(∗)4(1−η)2+231(∗)2(1−η)4−7(1−η)6]

[
0
1

]
,

Φ
n,8
Γ3

=− 9

112

√
595ξη[1001(†)6−1001(†)4(ξ+η)2+231(†)2(ξ+η)4−7(ξ+η)6]

[
1
1

]
,

Φ
b,8
5,0 =

9

14

√
595ξη(≀)[−1001(⋆)5+770(⋆)3(1−ξ)2−105(⋆)(1−ξ)4]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,8
0,5 =

3

4

√
2310ξη(1−ξ−η)[221(⋄)5+195(⋄)4−65(⋄)3−65(⋄)2+2]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,8
4,1 =

15

4

√
273ξη(≀)[33(⋆)4−18(⋆)2(1−ξ)2+(1−ξ)4][11+17(⋄)]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,8
1,4 =−15

2

√
546ξη(≀)(⋆)[−2−14(⋄)+21(⋄)2+140(⋄)3+119(⋄)4]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,8
3,2 =105

√
66ξη(1−ξ−η)[−3(⋆)3+(⋆)(1−ξ)2][4+18(⋄)+17(⋄)2]⊗

{[
1
0

]
,

[
0
1

]}
,

Φ
b,8
2,3 =

45

2

√
182ξη(1−ξ−η)[7(⋆)2−(1−ξ)2][6(⋄)+21(⋄)2+17(⋄)3]⊗

{[
1
0

]
,

[
0
1

]}
.

Ninth-order

Φ
e,9
Γ1

=−
√

190

1280
[12155(⋆)9−25740(⋆)7+18018(⋆)5−4620(⋆)3+315(⋆)]

[
1
2

]
,

Φ
e,9
Γ2

=

√
190

1280
[12155(∗)9−25740(∗)7+18018(∗)5−4620(∗)3+315(∗)]

[
2
1

]
,

Φ
e,9
Γ3

=

√
19

256
[12155(†)9−25740(†)7+18018(†)5−4620(†)3+315(†)]

[
−1
1

]
,

Φ
n,9
Γ1

=
15

8

√
209η(≀)[221(⋆)7−273(⋆)5(1−ξ)2+91(⋆)3(1−ξ)4−7(⋆)(1−ξ)6]

[
1
0

]
,

Φ
n,9
Γ2

=
15

8

√
209ξ(≀)[221(∗)7−273(∗)5(1−η)2+91(∗)3(1−η)4−7(∗)(1−η)6]

[
0
1

]
,

Φ
n,9
Γ3

=−15

16

√
418ξη[221(†)7−273(†)5(ξ+η)2+91(†)3(ξ+η)4−7(†)(ξ+η)6]

[
1
1

]
,
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Φ
b,9
6,0 =

45

56

√
2261ξη(≀)[1001(⋆)6−1001(⋆)4(1−ξ)2+231(⋆)2(1−ξ)4−7(1−ξ)6]⊗⊲⊳,

Φ
b,9
0,6 =

15

56

√
91ξη(≀)[6783(⋄)6+6426(⋄)5−2975(⋄)4−3320(⋄)3+105(⋄)2+266(⋄)+7]⊗⊲⊳,

Φ
b,9
5,1 =

15

56

√
357ξη(≀)[−1001(⋆)5+770(⋆)3(1−ξ)2−105(⋆)(1−ξ)4][13+19(⋄)]⊗⊲⊳,

Φ
b,9
1,5 =−5

4

√
182ξη(≀)(⋆)[9−165(⋄)−750(⋄)2+510(⋄)3+3825(⋄)4+2907(⋄)5]⊗⊲⊳,

Φ
b,9
4,2 =

5

8

√
1547ξη(≀)[33(⋆)4−18(⋆)2(1−ξ)2+(1−ξ)4][51+198(⋄)+171(⋄)2]⊗⊲⊳,

Φ
b,9
2,4 =

15

4

√
14ξη(≀)[7(⋆)2−(1−ξ)2][−19−28(⋄)+510(⋄)2+1428(⋄)3+969(⋄)4]⊗⊲⊳,

Φ
b,9
3,3 =

15

4

√
154ξη(≀)[−3(⋆)3+(⋆)(1−ξ)2][39+527(⋄)+1377(⋄)2+969(⋄)3]⊗⊲⊳ .

Tenth-order

Φ
e,10
Γ1

=−
√

210

2560
[46189(⋆)10−109395(⋆)8+90090(⋆)6−30030(⋆)4+3465(⋆)2−63]

[
1
2

]
,

Φ
e,10
Γ2

=

√
210

2560
[46189(∗)10−109395(∗)8+90090(∗)6−30030(∗)4+3465(∗)2−63]

[
2
1

]
,

Φ
e,10
Γ3

=

√
21

512
[46189(†)10−109395(†)8+90090(†)6−30030(†)4+3465(†)2−63]

[
−1
1

]
,

Φ
n,10
Γ1

=
11

320

√
35η(≀)[62985⋆8−92820⋆6♮2+40950⋆4♮4−5460⋆2♮6+105♮8]

[
1
0

]
,

Φ
n,10
Γ2

=
11

320

√
35ξ(≀)[62985∗8−92820∗6♯2+40950∗4♯4−5460∗2♯6+105♯8]

[
0
1

]
,

Φ
n,10
Γ3

=− 11

640

√
70ξη[62985†8−92820†6♭2+40950†4♭4−5460†2♭6+105♭8]

[
1
1

]
,

Φ
b,10
7,0 =

165

8

√
399ξη(≀)[−221(⋆)7+273(⋆)5(1−ξ)2−91(⋆)3(1−ξ)4+7(⋆)(1−ξ)6]⊗⊲⊳,

Φ
b,10
0,7 =

1

48

√
15015ξη(≀)[14535(⋄7+⋄6)−8721⋄5−9945⋄4+765⋄3+1485⋄2+45⋄−27]⊗⊲⊳,

Φ
b,10
6,1 =

15

112

√
74613ξη(≀)[1001⋆6−1001⋆4♮2+231⋆2♮4−7♮6][5+7(⋄)]⊗⊲⊳,

Φ
b,10
1,6 =−15

8

√
77ξη(≀)(⋆)[23+122⋄−799⋄2−3060⋄3+969⋄4+9690⋄5+6783⋄6]⊗⊲⊳,

Φ
b,10
5,2 =

3

112

√
21945ξη(≀)[−1001⋆5+770⋆3♮2−105⋆♮4][37+130⋄+105⋄2]⊗⊲⊳,

Φ
b,10
2,5 =

15

112

√
154ξη(≀)[7⋆2−♮2][−77−1547⋄−2142⋄2+13566⋄3+33915⋄4+20349⋄5]⊗⊲⊳,

Φ
b,10
4,3 =

3

32

√
51051ξη(≀)[33⋆4−18⋆2♮2+♮4][55+475⋄+1045⋄2+665⋄3]⊗⊲⊳,

Φ
b,10
3,4 =

11

8

√
238ξη(≀)[−3⋆3+⋆♮2][−75+540⋄+5130⋄2+10260⋄3+5985⋄4]⊗⊲⊳ .
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Symbols in formulas above are defined at the beginning of the Appendix.
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properties, Compel., 24 (2005), 374–384.



806 J. Xin and W. Cai / Commun. Comput. Phys., 9 (2011), pp. 780-806

[23] J. Shen, Efficient spectral-Galerkin method, I, direct solvers of second- and fourth-order
equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489–1505.

[24] I. A. Shreshevskii, Orthogonalization of graded sets of vectors, J. Nonlinear. Math. Phys., 8
(2001), 54–58.

[25] D.-K. Sun, J.-F. Lee and Z. Cendes, Construction of nearly orthogonal Nedelec bases for
rapid convergence with multilevel preconditioned solvers, SIAM J. Sci. Comput., 23 (2001),
1053–1076.
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