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Abstract. The emission of scission neutrons from fissioning nuclei is of high practical
interest. To study this process we have used the sudden approximation and also a
more realistic approach that takes into account the scission dynamics. Numerically,
this implies the solution of the bi-dimensional Schrödinger equation, both station-
ary and time-dependent. To describe axially symmetric extremely deformed nuclear
shapes, we have used the Cassini parametrization. The Hamiltonian is discretized by
using finite difference approximations of the derivatives. The main computational
challenges are the solution of algebraic eigenvalue problems and of linear systems
with large sparse matrices. We have employed appropriate procedures (Arnoldi and
bi-conjugate gradients). The numerical solutions have been used to evaluate physical
quantities, like the number of emitted neutrons per scission event, the primary frag-
ments’ excitation energy and the distribution of the emission points.
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1 Introduction

During the last years, there has been an increasing interest in the simulation of funda-
mental processes in quantum systems by numerical methods. In this context, the solu-
tion of the Schrödinger equation plays a major role in the investigation of phenomena
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like nuclear fission and fusion, atomic and nuclear collisions, laser-atom interaction. In
the present paper we focus on the scission neutrons, subject of present interest, important
for nuclear applications. Among the neutrons emitted during fission, one can distinguish
chronologically three categories: the scission neutrons (10−21-10−20 s), the prompt neu-
trons (10−18-10−16 s) and the delayed neutrons (> 10−16 s). The last two components
form the large majority of fission neutrons and have been extensively studied. The scis-
sion neutrons were less investigated, but are recently receiving an increasing attention.
Estimated to represent 10-30% of the total number of neutrons, this kind of neutrons are
considered responsible for important effects observed in the fission process (see [1–7])
and are essential ingredients in numerical reactor simulations. One possible approach to
study the emission of scission neutrons is the sudden approximation [8]. This implies
the numerical solution of an eigenvalue problem associated to the bi-dimensional sta-
tionary Schrödinger equation for independent neutrons in axially symmetric extremely
deformed nuclear shapes. We have used a grid-based procedure, in which the equa-
tion is discretized by finite difference approximations of the derivatives. We are led to
an algebraic eigenvalue problem with large (sparse) matrix, which is solved by the Im-
plicitly Restarted Method of Arnoldi. In the sudden approximation the scission is seen
as a sudden transition between two different nuclear configurations. By calculating the
bound state wavefunctions just-before-scission (ǫi) and immediately-after-scission (ǫ f ),
one can evaluate physical quantities like: the number of scission neutrons per fission
event and the excitation energy of primary fission fragments. An alternative approach
is to consider the last stage of the fission process as a time dependent fast (diabatic) pro-
cess. By solving the bi-dimensional time-dependent Schrödinger equation (TDSE) with
a potential variable in time between ǫi and ǫ f , one can study the scission process in a
more realistic model. The numerical solution of TDSE is obtained by a Crank-Nicolson
scheme, which requires the solution of large sparse linear systems that was obtained by
a variant of the bi-conjugate gradient method. Transparent Boundary Conditions have
been implemented, to avoid reflexions on the numerical boundaries.

A similar time-dependent approach was applied in [9] to a different sequence of nu-
clear shapes during fission, namely to the descent of the fissioning nucleus from the sad-
dle point to the scission point. The numerical calculation capabilities being quite limited
at that time, the authors had to neglect the spin-orbit coupling, use a non-diffuse nuclear
potential (square well) and a much smaller spatio-temporal grid.

In the following we present some details on the physical problem, on the mathemati-
cal model and on the numerical procedures. Also, some results in a definite case will be
shown.

2 The bi-dimensional Schrödinger equation

To obtain the bound states, one has to solve the eigenvalue problem:

HΨ=EΨ, (2.1)
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with appropriate boundary conditions. H is the Hamiltonian, which includes the
Laplacean, the nuclear potential, the spin-orbit coupling and, for charged particles, the
Coulomb potential. The nuclear shape is assumed to be axially symmetric and we use
cylindrical coordinates.

The total wavefunction has two components, corresponding to spin-up and spin-
down as follows

Ψ(ρ,z,φ)= f1(ρ,z)eiΛ1φ| ↑〉+ f2(ρ,z)eiΛ2φ| ↓〉, (2.2a)

Λ1 =Ω− 1

2
, Λ2 =Ω+

1

2
. (2.2b)

Ω is the projection of the total angular momentum along the symmetry axis. Due to the
axial symmetry, the angular dependence is removed and the equation HΨ = EΨ can be
written as:

[

O1−KSc −KSa

−KSb O2−KSd

][

f1

f2

]

=E

[

f1

f2

]

. (2.3)

The operators O1, O2 contain the Laplacean:

O1,2 =− h̄2

2µ

(

∆−
Λ2

1,2

ρ2

)

+V(ρ,z), ∆=
1

ρ

∂

∂ρ
+

∂2

∂ρ2
+

∂2

∂z2
.

h̄ is the Planck constant, µ is the reduced mass, V(ρ,z) is the potential, K is a constant and

Sa =
∂V

∂ρ

∂

∂z
− ∂V

∂z

( ∂

∂ρ
+

Λ2

ρ

)

, Sb =−∂V

∂ρ

∂

∂z
+

∂V

∂z

( ∂

∂ρ
−Λ1

ρ

)

,

Sc =
∂V

∂ρ

Λ1

ρ
, Sd =−∂V

∂ρ

Λ2

ρ
.

The operators Sa,··· ,Sd represent the spin-orbit coupling.
Let us note that the Hamiltonian can be simplified by the transformations g1 =

ρ1/2 f1,g2 = ρ1/2 f2, which remove the first derivative from the Laplacean operator. It re-
sults a new Hamiltonian Ĥ which has the same eigenvalues as H and its eigenfunctions
are the pairs g1,g2, related to f1, f2 by the above mentioned transformation. The Hamil-
tonian Ĥ is self-adjoint for null boundary conditions (corresponding to bound states), so
that its spectrum is real (see [10]). With the notations:

L1 =− h̄2

2µ

( ∂2

∂ρ2
+

∂2

∂z2
+

1/4−Λ2
1

ρ2

)

+V(ρ,z), (2.4a)

L2 =− h̄2

2µ

( ∂2

∂ρ2
+

∂2

∂z2
+

1/4−Λ2
2

ρ2

)

+V(ρ,z), (2.4b)

Q1 =K
(∂V

∂ρ

∂

∂z
− ∂V

∂z

∂

∂ρ

)

, Q2 =K
Ω

ρ

∂V

∂z
, (2.4c)

Pa =−Q1+Q2, Pb =Q1+Q2, Pc =−K
Λ1

ρ

∂V

∂ρ
, Pd =K

Λ2

ρ

∂V

∂ρ
, (2.4d)



920 M. Rizea and N. Carjan / Commun. Comput. Phys., 9 (2011), pp. 917-936

the eigenvalue problem for the Hamiltonian Ĥ can be written in the form:

[

L1+Pc Pa

Pb L2+Pd

][

g1

g2

]

=E

[

g1

g2

]

. (2.5)

2.1 Nuclear shape description

To describe the nuclear shape we have used the Cassini parametrization, appropriate for
strong deformations, as appearing during the nuclear fission. The Cassinian ovals are
taken as the first approximation to the nuclear shape and the deviation from it is repre-
sented by a Legendre polynomial expansion. In the Cassini parametrization (see [11,12])
an axially deformed shape is described in cylindrical coordinates by the relations:

ρ̄=
1√
2

(

Q(x)−R2(x)(2x2−1)−s
)

1
2
, (2.6a)

z̄=
sign(x)√

2

(

Q(x)+R2(x)(2x2−1)+s
)

1
2
, (2.6b)

where

Q(x)=
(

R4(x)+2sR2(x)(2x2−1)+s2
)

1
2
,

s = ǫR2
0 is the squared distance from the focus of Cassinian ovals to the origin and −1≤

x≤1. The function R(x) is given in terms of Legendre polynomials by:

R(x)= R0

(

1+∑αmPm(x)
)

, m≥1.

The set of parameters (ǫ,αm) determines the nuclear shape. In practice, the following
transformations are performed:

ρ̄= cρ, z̄= cz+ z̄m.

c is determined by the requirement that the volume enclosed by the surface is constant,
independent of nuclear deformation (expressing the incompressibility of nuclear matter),
while z̄m results by fixing the center of mass at the origin.

2.2 The definition of the potential

To define the potential, we consider the function

Φ(ρ,z)=
(

(z2+ρ2)2−2ǫR2
0(z2−ρ2)+ǫ2R4

0

)
1
4 −R0

(

1+ ∑
m≥1

αmPm(x)
)

.



M. Rizea and N. Carjan / Commun. Comput. Phys., 9 (2011), pp. 917-936 921

The equation Φ(ρ,z) = 0 represents the nuclear surface in cylindrical coordinates. The
nuclear potential is given by

V(ρ,z)=−V0

[

1+exp
(Θ

a0

)]−1
, (2.7)

where V0 is the depth and a0 the diffuseness. The quantity Θ is an approximation to
the distance between the point (ρ,z) and the nuclear surface, given by the expression:
Θ(ρ,z) = Φ/|∇Φ| (see [12]). At ǫ = 0, the potential (2.7) turns into the Woods-Saxon
potential of the spherical nucleus.

The spin-orbit interaction is taken proportional to the gradient of the potential (2.7):

Vso =−K[σ̄σσ× p̄pp]∇V, K =λ
( h̄

2µc

)2
, (2.8)

where σ̄σσ and p̄pp are the nucleon spin and momentum (see [13]). The constant K depends
on the Compton wavelength and on the parameter λ. Transforming to cylindrical coor-
dinates (ρ,z,φ) and using the assumed axial symmetry in the form ∂V/∂φ=0, we find

Vso =−
(K

2

)

S,

S=σ+e−iφ

{

∂V

∂ρ

∂

∂z
− ∂V

∂z

[ ∂

∂ρ
+

1

ρ

(

−i
∂

∂φ

)]

}

+σ−eiφ

{

− ∂V

∂ρ

∂

∂z

+
∂V

∂z

[ ∂

∂ρ
− 1

ρ

(

−i
∂

∂φ

)]

}

+2σz
∂V

∂ρ

1

ρ

(

−i
∂

∂φ

)

.

Here σ±=σx±iσy and σx,σy,σz are the Pauli matrices:

σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0

0 −1

)

.

Applied to functions of the mentioned form (up+down) this Vso gives rise to the addi-
tional terms Sa,··· ,Sd in Eq. (2.3).

Note that all the components of the resulting Hamiltonian are real and the wavefunc-
tion is defined in terms of the real functions f1 and f2. As mentioned, this Hamiltonian
can be simplified, leading to wavefunctions with the components g1 and g2, also real.

For charged particles, the potential contains also a Coulomb term (see [12]).

3 The computational model

For numerical treatment, the infinite physical domain is reduced to a finite one, [0,R]×
[−Z,Z], which is discretized by a grid with the mesh points:

ρj = j∆ρ, j=1,··· ,Nρ, zk = k∆z, k=−Nz,··· ,Nz. (3.1)
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For j = Nρ, ρj = R and for k = Nz, zk = Z. The axis ρ = 0 is excluded since on it the wave
function (with the components g1 and g2) is assumed to be zero. At each point the partial
derivatives appearing in Ĥ are approximated by finite difference formulae. But these for-
mulae should correspond to the behavior of the solution. Instead of standard formulae,
in the vicinity of ρ=0 we shall use adapted formulae, which take into account the oper-
ated function transformation (of the form g = ρ1/2 f ). To introduce them, let us consider
the one-dimensional eigenvalue problem on the interval [0,1]:

−∆ f +
Λ2

ρ2
f =E f , (3.2)

with the boundary conditions: f ′(0)=0 (for Λ 6=1) or f (0)=0 (for Λ=1) and f (1)=0. Λ

is a nonnegative integer and ∆ is the Laplacean in polar coordinates defined by

∆ f =
d2 f

dρ2
+

1

ρ

d f

dρ
, (3.3)

where f is a cylindrically symmetric function of ρ.
By the transformation g(ρ)≡ρ1/2 f (ρ), Eq. (3.2) is modified as follows:

−d2g

dρ2
+

Λ2−1/4

ρ2
g=Eg. (3.4)

The above transformation is in fact the Liouville transformation, applied to that partic-
ular equation. It eliminates the first derivative and modifies the scalar product from
∫ ∞

0 f ∗m fnρdρ to the simpler expression
∫ ∞

0 g∗mgndρ. The boundary conditions can now be
rewritten as: g(0)=g(1)=0. The condition g(0)=0 is fulfilled provided that f (0) is finite
and this is ensured by the conditions for f .

It is known that the equation

w′′+
(

κ2−Λ2−1/4

ρ2

)

w=0 (3.5)

has as regular solution w = ρ1/2 JΛ(κρ), where JΛ is the Bessel function of the first kind
(see [14], Eq. (9.1.49)). Since w(1)= JΛ(κ), if κ is a zero of J, w(1)=0 and the solution of
our eigenvalue problem is g(ρ)=ρ1/2 JΛ(κρ) and the eigenvalue is E=κ2.

Now, we want to solve numerically the problem associated to Eq. (3.4) by approxi-
mating the derivative through finite differences, which converts the differential problem
into an algebraic eigenvalue problem. Let us consider a partition of the [0,1] interval with
the mesh points ρj = jh, j=0,··· , J, ρJ =1. The standard finite difference approximation of
the second derivative is

g′′j ≈
gj+1−2gj +gj−1

h2
, (3.6)

where gj = g(jh). This formula is exact for polynomials up to some degree (the leading

term of the error is proportional to g(4)). It is appropriate for the function f from Eq. (3.2),
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which has a normal Taylor expansion around ρ = 0. But the function g, which is the
product of f by the factor ρ1/2, has a different behavior. In fact, the regular solution of
Eq. (3.4) is of the form:

g(ρ)=ρ
1
2 +Λ

∞

∑
i=0

α2iρ
2i. (3.7)

We look for a difference formula adapted to such a function. We shall take it of the form:

g′′j ≈
ajgj+1+bjgj +ajgj−1

h2
. (3.8)

The coefficients aj,bj are determined so that the formula is exact when g is replaced by

ρ1/2+Λ and ρ5/2+Λ (the leading terms of the expansion). It results:

aj =
4(Λ+1)

j2(pj−qj)
, bj =

1

j2

[

Λ2− 1

4
− 4(Λ+1)qj

pj−qj

]

, (3.9a)

pj =
(

1+
1

j

)Λ+ 5
2
+
(

1− 1

j

)Λ+ 5
2
, qj =

(

1+
1

j

)Λ+ 1
2
+
(

1− 1

j

)Λ+ 1
2
. (3.9b)

Note that aj → 1, bj →−2, as j→∞, i.e., the formula (3.8) approaches the standard one
with increasing j.

Using the formula (3.8) in Eq. (3.5), we obtain the following algebraic eigenvalue
problem (E is the eigenvalue and gj form the eigenvector):

− ajgj+1+bjgj +ajgj−1

h2
+

Λ2−1/4

ρ2
j

gj =Egj, j=1,··· , J−1, g0 = gJ =0. (3.10)

This problem has been solved with the package ARPACK [15], based on the Implicitly
Restarted Method of Arnoldi.

To show the effect of the modification in the finite difference formula, we present in
the Table 1 some results with both formulae: standard and adapted. For Λ=0, the errors
in the first three eigenvalues at different step sizes are given.

One can see a clear gain in accuracy with the adapted formula, especially for the
first eigenvalue. An even better adapted formula can be obtained if we ask it to be also
satisfied by the next terms in the expansion (3.7), but then the formula must contain more
variable coefficients (see [10]).

For Λ>0, the difference between the adapted formula and the standard one is smaller,
since the polynomial component of the solution becomes more important (its leading
term is ρΛ+1/2), but still the adapted formula is superior. We should mention that the
variable coefficient is used only near ρ=0, where the particular behavior of g is dominant.
In the rest of the interval, the standard formula is applied. An appropriate switching
point is ρ=0.25, as found by numerical experiments.

In conclusion, the transformation g =
√

ρ f simplifies the equation, eliminating the
needs of an additional approximation, namely of the first derivative. Also, the treatment
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Table 1: Comparison of the standard (S) and adapted (A) finite difference formulae at Λ=0.

h Eexact Ecalc(S) Ecalc(A) Rel.er(S) Rel.er(A)
1

32 5.78319 7.21109 5.78289 2.47E-01 5.05E-05

30.4713 34.1084 30.3983 1.19E-01 2.40E-03

74.8870 80.6720 74.4383 7.72E-02 5.99E-03
1

64 5.78319 7.04874 5.78316 2.19E-01 4.04E-06

30.4713 33.7193 30.4530 1.07E-01 6.00E-04

74.8870 80.2693 74.7741 7.19E-02 1.51E-03
1

128 5.78319 6.91703 5.78319 1.96E-01 1.56E-07

30.4713 33.3679 30.4667 9.51E-02 1.50E-04

74.8870 79.7173 74.8587 6.45E-02 3.77E-04

of the point ρ=0 is easier. When Λ 6=0, the equation in f contains a singular term (Λ2/ρ2)
and thus the origin should be avoided in the discretization and the value of f (0) cannot
be obtained. Conversely, g(0)=0, so that only the values gj, j≥1 have to be calculated.
The scalar product, of the form

∫

g∗mgndρ, can be conveniently evaluated-no special pro-
cedure near the origin is required. So, in practice it is more advantageous to deal with
the transformed equation, but the finite differences used in the discretization should be
adapted to the induced behavior of the solution.

We implemented this experience in the discretization of the Hamiltonian in two di-
mensions. For the derivatives in ρ we have used adapted formulae, while the derivatives
with respect to z are approximated by standard formulae. Note that, however, the Hamil-
tonian Ĥ still contain first derivatives with respect to ρ (the Liouville transformation re-
moves the derivatives only in the Laplacean part). These derivatives are approximated as
well by adapted difference formulae, deduced likewise as those for second order deriva-
tives. We have used the following formula, exact for the functions ρΛ+1/2 and ρΛ+5/2:

g′j ≈
djgj+1+ejgj−djgj−1

h
, (3.11)

where

dj =
2

j(vj−uj)
, ej =

1

j

(

Λ+
1

2
− 2uj

vj−uj

)

,

with

vj =
(

1+
1

j

)Λ+ 5
2 −
(

1− 1

j

)Λ+ 5
2
, uj =

(

1+
1

j

)Λ+ 1
2 −
(

1− 1

j

)Λ+ 1
2
.

Note that dj → 1/2, ej → 0, as j → ∞, i.e., the formula (3.11) approaches the standard

one. When these adapted formulae are applied in the Hamiltonian Ĥ approximation,
one should use Λ=Λ1 for g1 and Λ=Λ2 for g2.
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By discretization, the original eigenvalue problem is transformed to an algebraic
eigenvalue problem, whose eigenvector is formed by the values of g1 and g2 at nodes.
The matrix is sparse and contains the coefficients of derivative approximations, as well
as the potential values at the mesh points. Its order is two times the number of nodes (at
each point the solution has two components) and is usually large. To solve the resulting
eigenvalue problem (of the form AAAxxx=λxxx) we have used the package ARPACK (see [15])
based on the Implicitly Restarted Arnoldi Method. It is able to efficiently find selected
eigenpairs of a large sparse matrix. Thus only the portion of the spectrum with physical
relevance is calculated. An important feature is that only the matrix-vector product AAAxxx

is needed. Hence, the matrix AAA should not be generated nor stored, which is a great ad-
vantage in computation, saving time and memory. The method is appropriate either for
symmetric or nonsymmetric matrices, both for normal and generalized eigenvalue prob-
lem. Note that the matrix resulting by the discretization of Ĥ is nonsymmetric, because
of the finite difference approximation of the first derivatives. Its eigenvalues, calculated
with the corresponding set from ARPACK, are however real, approximations of the true
eigenvalues of the original Hamiltonian, which is self-adjoint for bound state conditions.

Let us note that the solution of the bi-dimensional stationary Schrödinger equation
is also possible by other approaches, like the diagonalization in a complete basis (see,
e.g., [8]), but the grid-based procedure with finite differences, in spite of requiring longer
computer time, exhibits certain advantages. Among them, we mention the convenient
and uniform treatment of any nuclear shapes, symmetric as well as non-symmetric and
the possibility to use the same numerical approximations in the solution of the time-
dependent Schrödinger equation, which ensures compatible initial wave functions (in
the evolutive model they are eigensolutions of the stationary equation with a potential
V(ρ,z) for which deformation parameters correspond to the pre-scission nuclear shape)
and accurate propagated solutions.

3.1 Solution of the eigenvalue problem

The Arnoldi procedure combines some features of QR and power methods and constructs
eigenpairs of the large matrix AAA from the eigenpairs of a small matrix HHH. The power
method begins with a random vector vvv0 and constructs a sequence of vectors vvvi=AAAvvvi−1=

AAAivvv0. Let us consider the space generated by the vectors vvv0,AAAvvv0,··· ,AAAk−1vvv0 (i.e., the set of
linear combinations). We call it the k’th Krylov subspace and will denote it by Kk(AAA,vvv0).
We define a Ritz pair as a pair (xxxi,λi) that satisfies the Galerkin condition:

vvvT(AAAxxxi−λixxxi)=0, ∀vvv∈Kk(AAA,vvv0).

The k-step Arnoldi factorization of AAA∈Cn×n is a relation of the form:

AAAVVV =VVVHHH+ fff eeeT
k ,

where VVV∈Cn×k has orthonormal columns, VVVH fff =0, HHH∈Ck×k is upper Hessenberg with
a non-negative subdiagonal and {eeej}n

j=1 is the standard basis set for Cn.
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If (yyy,λ) is an eigenpair of HHH, since VVVH fff =0, it easily follows that λ is a Ritz value and
xxx=VVVyyy a corresponding Ritz vector. We assume that k≪n so that the eigenpairs of HHH can
be computed by a conventional method.

Also, the following relation is satisfied:

‖AAAxxx−xxxλ‖=‖AAAVVVyyy−VVVyyyλ‖=‖ (AAAVVV−VVVHHH)yyy‖=‖ fff eeeT
k yyy‖= β|eeeT

k yyy|, (3.12)

where ‖ ·‖ means the Euclidean norm and β=‖ fff ‖.

The process makes |eeeT
k yyy|→0, so that the Ritz pair (xxx,λ) well approximates an eigen-

pair of AAA. The Implicitly Restarted Arnoldi Method consists in a succession of Arnoldi
factorizations and eigenvalue estimations using the QR method.

4 The scission neutrons investigation

4.1 Stationary approach

Firstly, we consider the scission as a sudden transition between two different nuclear con-
figurations. Immediately-after-scission the neutrons are still characterized by their just-
before-scission wave functions |Ψi〉 but find themselves in the newly created potential of
their interaction with the separated fragments. Their wave functions become wave pack-
ets with few positive-energy components. The probability to populate such unbound
states gives the emission probability of a neutron that before scission has occupied the
state |Ψi〉:

Pi
em = ∑

unbound
states

|ai f |2, (4.1a)

ai f = 〈Ψi|Ψ f 〉=2π
∫

(

f i
1 f

f
1 + f i

2 f
f

2

)

ρdρdz=2π
∫

(

gi
1g

f
1 +gi

2g
f
2

)

dρdz. (4.1b)

|Ψ f 〉 are the immediately-after-scission eigenstates. From computational point of view it
is more convenient to obtain the bound states than the continuum states. Therefore we
have used:

Pi
em =1− ∑

bound
states

|ai f |2. (4.2)

Summing over all occupied states one obtains the total number of scission neutrons per
fission event

νsc =2∑
i

v2
i Pi

em. (4.3)

The factor of 2 is due to the spin degeneracy (there are 2 neutrons on each level, corre-
sponding to spin-up and spin-down). v2

i is the ground-state occupation probability of
|Ψi〉. To obtain it one can consider the neutrons either independent or pairing correlated.
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In the first case v2
i =1 if the eigenenergy ei is below some limit emax (around Fermi level)

and 0 otherwise (a step function). In the second case

v2
i =

1

2

(

1− ei−λ
√

(ei−λ)2+∆2

)

, (4.4)

with the parameters ∆ and λ deduced from the Bardeen-Cooper-Schrieffer (BCS) equa-
tions (see [16]):

n+nc

∑
i=n−nc

(

(ei−λ)2+∆2
)− 1

2 −2g̃(λ̃)ln
(2η

∆̃

)

=0, (4.5)

with the constraint that the particle number N =2∑i v
2
i is conserved (n = N/2). The two

cutoff parameters nc and η are connected by

2η =2nc/g̃(λ̃),

where g̃(λ̃) is the average level density at the Fermi energy. The smooth gap parameter

∆̃=13.3/
√

A MeV

was taken from the systematics of odd-even mass differences in nuclei throughout the
periodic table (see [17]).

Using the eigenstates, other characteristics of the process can be obtained, as the pri-
mary fragments’ excitation energy and the spatial distribution of the emission points.
Thus, the energy showing the degree of excitation in which the fragments are left is cal-
culated from

E∗
sc =2 ∑

bound
states

(V2
f −v2

f )e f , (4.6)

where

V2
f =∑

i

v2
i |ai f |2 (4.7)

is the occupation probability of the final state |Ψ f 〉 after the sudden transition and e f is
the corresponding eigenenergy.

The spatial distribution of the emission points is a function of the variables ρ and z
given by:

Sem(ρ,z)=∑
i

v2
i |Ψi

em(ρ,z)|2, (4.8)

where

|Ψi
em〉= |Ψi〉− ∑

bound
states

ai f |Ψ f 〉 (4.9)

is the part of the initial wave function that has been emitted.
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The numerical evaluation of integral in Eq. (4.1b) is performed by the Simpson for-
mula. With respect to ρ the formula is adapted as well to the special form of the solutions
g1,g2. Thus, close to ρ=0 we have used the following formula with variable coefficients:

1

2∆ρ

∫ ρj+2

ρj

g(ρ)dρ=αj g(ρj)+β jg(ρj+1)+αjg(ρj+2). (4.10)

The coefficients αj,β j result from the condition that the formula (4.10) is exact for the

functions ρΛ+1/2 and ρΛ+5/2. We have obtained:

αj =

1

2Λ+7

[

(j+2)Λ+ 7
2 − jΛ+ 7

2

]

− (j+1)2

2Λ+3

[

(j+2)Λ+ 3
2 − jΛ+ 3

2

]

[

(j+2)Λ+ 5
2 + jΛ+ 5

2

]

−(j+1)2
[

(j+2)Λ+ 1
2 + jΛ+ 1

2

] , (4.11a)

β j =
1

2Λ+3

(j+2)Λ+ 3
2 − jΛ+ 3

2

(j+1)Λ+ 1
2

−αj
(j+2)Λ+ 1

2 + jΛ+ 1
2

(j+1)Λ+ 1
2

. (4.11b)

In the limit j→∞, these coefficients tend to the constant coefficients of the standard Simp-
son formula, i.e., αj →1/6 and β j →2/3.

Before the calculation of the coefficients ai f (Eq. (4.1b)), the eigenfunctions provided
by ARPACK are orthonormalized by the Gram-Schmidt algorithm in which the quadra-
tures of the scalar product are done by the above described adapted Simpson formula.

We have applied the above formalism to study the emission of scission neutrons
during the fission of 236U. The numerical domain was: ρ ∈ [∆ρ,32], z∈ [−32,32], while
∆ρ = ∆z = 1/8. Number of grid points: N ≈ 1.3×105. The two deformations between
which the sudden transition is supposed to occur are characterized by the parameters
ǫi =0.985 and ǫ f =1.001 in the Cassini description of the nuclear shapes. The first value
corresponds to a configuration with two fragments connected by a neck, while the second
corresponds to separated fragments. The chosen values are in agreement with theoret-
ical predictions for the minimum value of the neck radius (see [18]). The fission can be
symmetric (each fragment has the mass 118) or, more frequently, asymmetric. As an ex-
ample we present the case when one of the fragments has the mass AL =86. Depending
of this mass and of ǫ one more deformation parameter (α1) is obtained. It is adjusted such
that the ratio of the volumes of the two fragments is equal to the ratio of the two masses
AH/AL. An idea of the shapes involved is given by the equipotential lines corresponding
to V0/2, V0 = 40.22 MeV being the depth of the nuclear potential (see Fig. 1, where the
values of these parameters are also mentioned).

For Ω=1/2, there are 41 bound states for the initial configuration and 41 for the final
one. For Ω=3/2 there are 27 states, 18 states for Ω=5/2, 9 states for Ω=7/2, 5 states for
Ω=9/2 and 2 states for Ω=11/2. In the Table 2 we give the scission neutron multiplicity
and the excitation energy (in MeV) at each Ω for the light fragment mass AL = 86. For
the occupation probabilities we have considered the particles independent (IP), in which
case a step function is used and also correlated (PC), in which case the BCS parameters
are used.
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Figure 1: Equipotential lines corresponding to half of the depth of the nuclear potential at initial and final
deformations.

Table 2: SN multiplicity and excitation energy for AL =86 at each Ω.

Ω νsc-IP νsc-PC Esc-IP Esc-PC

1/2 0.51734 0.47571 6.59002 3.00898

3/2 0.12290 0.14288 3.36928 2.91752

5/2 0.12235D-01 0.29941D-01 1.39202 2.24470

7/2 0.62626D-01 0.56349D-01 0.60892 1.25476

9/2 0.15587D-02 0.57264D-02 0.10724 1.50310

11/2 0.50968D-03 0.60584D-03 0.04671 0.13044

Sum 0.71716 0.71121 12.11418 11.05949

Table 3: SN multiplicity and excitation energy for AL =86, Ω=5/2.

∆ρ,∆z νsc-IP Esc-IP

1/8 0.012235 1.39202

1/16 0.012223 1.39198

To verify the dependence of the results on the step size we have calculated for one
case (AL = 86, Ω = 5/2 and Independent Particles probabilities) with a step size 2 times
smaller (∆ρ=∆z=1/16). The results are presented in the Table 3.

As one can see, the relative difference is less than 10−3.

In Fig. 2 the spatial distributions of the emission points for AL=86 (mass asymmetry)
and for AL=118 (mass symmetry) are shown (as functions of ρ and z, defined by Eq. (4.8)).
The contributions from all Ω’s between 1/2 and 11/2 have been taken into account. The
BCS probability parameters have been used.
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Figure 2: The distribution of the emission points at asymmetric (AL =86) and symmetric fission (AL =118).

In the used representation by contour lines, the dark regions correspond to the maxi-
mum values and one can see that the emission points are concentrated around the neck.
To identify its place, we added in each figure the equipotential lines corresponding to
V0/2 before and after scission.

In fact, we have obtained the scission neutron multiplicity and the excitation energy
for a set of light fragment masses AL equally distributed in the range [70,118]. In the case
of mass symmetry, the results have been compared with those corresponding to the wave
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functions obtained by diagonalization in a deformed oscillator basis, a good agreement
being observed (see [8]). The finite difference approach allows however the study of a
larger variety of configurations, including mass asymmetries. Both types of occupation
probability calculations have been used: step function and BCS. In a previous attempt
to estimate the multiplicities and the energies, we have used fixed values of probability
parameters (corresponding to AL =118) for all fragment masses (see [10]). Now, we have
determined these parameters for each mass ratio and we have used them in the present
evaluation. This improvement produces more accurate predictions.

For each AL we have considered several values of the projection of the total angular
momentum along the symmetry axis: Ω = 1/2,3/2,··· ,11/2. Note that the number of
bound states decreases as Ω increases. The variation of the quantities νsc and E∗

sc are
represented in the Figs. 3 and 4 along with time-dependent results (see next section).

A direct comparison of the calculated scission-neutron multiplicity with the mea-
surements is not possible at this moment since the separation of the scission and post-
acceleration components of the prompt neutron experimental data has not been done so
far. It is however interesting to note that, although the absolute values are different (the
scission neutrons representing only 30% of the total prompt neutrons), the oscillations
present in calculations (Fig. 3) resemble those observed experimentally [19]. The same is
valid for the primary-fragments’ excitation energy in Fig. 4: although it represents only a
part of the total excitation energy (the other part being the extra-deformation energy), its
relative variation with AL follows roughly the experimental total excitation energy [19].

4.2 Time dependent model

An alternative approach is to consider the fission as a time dependent fast (diabatic)
process. This implies the resolution of the bi-dimensional time-dependent Schrödinger
equation-TDSE. The wave functions before scission are propagated during a temporal
interval [0,T]. The potential is also time dependent, its deformation parameters changing
during propagation. The moment t=0 corresponds to ǫ=0.985, while t=T corresponds to
ǫ=1.001. Then the propagated functions are used instead Ψi in the previous calculations.
Thus, the physical quantities are evaluated in a more realistic model, since the scission is
in reality not a sudden process, but takes some time (short but not zero).

Practically, we consider a time step ∆t and advance in time a number N of steps by
numerically solving at each step the time-dependent Schrödinger equation (T=N∆t). As
initial solution one takes each Ψi. TDSE has the form

ih̄
∂Ψ(ρ,z,t)

∂t
= Ĥ(ρ,z,t)Ψ(ρ,z,t). (4.12)

Expanding Ĥ in Taylor series with respect to t and retaining the first two terms, the
formal solution of (4.12) can be written as (since only the potential V depends on t):

Ψ(t+∆t)= e−
i
h̄ [Ĥ(t)∆t+V′(t)(∆t2/2)]Ψ(t). (4.13)
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Using the approximation ex ≈ (1+x/2)/(1−x/2) (Padé of order [1,1]) we obtain the re-
lation (of Crank-Nicolson type-CN):

(

1+
i∆t

2h̄
Ĥ+

i∆t2

4h̄
V ′
)

Ψ(t+∆t)=
(

1− i∆t

2h̄
Ĥ− i∆t2

4h̄
V ′
)

Ψ(t).

We consider the same grid as before. Let us denote g
(n)
jk the approximation of g in the

point (ρj,zk) and at time tn =n∆t, where g is any of g1 and g2. The solution at time tn+1,

represented by the values g
(n+1)
jk , is obtained in terms of the solution at time tn, on the

basis of the above CN scheme, which turns into a linear system, after the approximation
of the partial derivatives appearing in Ĥ by the same finite differences formulae used in
the stationary equation. The matrix of the system is typically large and sparse. The direct
methods for solving (like Gauss) are inadequate, since they require too much computer
memory. We have chosen an iterative method, namely the gradient method. The attrac-
tiveness of this method for large sparse systems is that it references the system matrix
only through its multiplication by a vector, thus avoiding the storage of the matrix.

Given the system Ax=b of order M, the idea is to minimize the function

h(x)=
1

2
xAx−bx. (4.14)

This function is minimized when its gradient ∇h = Ax−b is zero, which is equivalent
to the original system. The minimization is carried out by generating a succession of
vectors pk and xk. At each stage a quantity αk is found that minimizes h(xk+αkpk) and the
iteration xk+1 is set equal to xk +αkpk. One of the most efficient variant is the biconjugate
gradient method (see [20]).

We note that the method works well for well-conditioned matrices, i.e., ”close” to the
identity matrix. This suggests applying this method to the preconditioned form of the
equation

Ax=b : (Ã−1A)x= Ã−1b.

It is supposed that the system with the matrix Ã can be easily solved. If Ã is close to A so
that Ã−1A≈ I the conjugate gradient algorithm will converge fast. There are several al-
gorithms to construct preconditioners, as the Incomplete LU Factorization and the Block
Jacobi, whose description can be found in [21].

The method is applied until some convergence condition is satisfied, like

||Ax−b||
||b|| ≤ǫ.

In practice we have used a subroutine based on this method adapted to complex systems
(see [22]).
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4.2.1 Artificial boundary conditions

To numerically solve the Schrödinger equation, the unbound physical domain should be
truncated to a finite region. The conditions on the boundaries of this computational do-
main require a special treatment to avoid the reflexions which affect the propagated wave
function and lead to errors in the calculation of the physical quantities. One possibility
is to extend enough the limits of the domain and to use null values at boundaries. If
the wavefunction is practically confined in a reduced area, the size of the computational
domain is reasonable. Otherwise, it becomes too large and the huge number of result-
ing grid points generates difficulties in computer solution. Other techniques should be
used in such cases, which allow reduced sizes of the numerical domain. Among them,
we mention the Transparent Boundary Conditions (TBC) and the Absorbing Boundary
Conditions (ABC) (see, e.g., [23–25]).

For our problem, a quite simple variant of TBC has been implemented, with satis-
factory efficiency. The idea is to assume near the boundary rB the following form of the
solution: g=g0 exp(ikrr), where g0 and kr are complex constants (a 1D notation was used).
Then, at the moment tn =n∆t, we have the relations

gn
B+1

gn
B

=
gn

B

gn
B−1

=exp(ikr∆r).

The second equality gives kr , which is eventually adjusted so that to ensure a nonnegative
flux, i.e., non radiative wave can enter in the numerical domain. The flux at the boundary
has the form:

F(rB)=
h̄

m
R(kr)|gB|2,

where R is the real part of kr . If F(rB) < 0, R(kr) is set to zero. Then gn
B+1 is expressed

in terms of gn
B. Supposing the same relation valid for the next time step, we obtain:

gn+1
B+1 = gn+1

B exp(ikr∆r). These linear relations are used in the finite difference formulae
for the derivatives at rB, when the CN scheme is applied. One can see that kr is changing
as the problem progresses.

In two spatial dimensions, this algorithm should be used at each point of the grid
belonging to boundaries. Of course, kr depends on the considered point.

4.3 Time dependent approach versus sudden approximation

In the Table 4 we present scission neutron (SN) multiplicities and excitation energies
(in MeV) obtained for different time intervals T at AL = 86. We have used a time step
∆t =1/256 (in units of 10−22s), such that T =1/2,1,4×10−22s correspond respectively to
128,256,1024 time steps. T =0 means sudden approximation.

In order to check the convergence with respect with ∆t we repeated the calculations
at AL =86 and T =1 using a time step 2 times smaller, i.e., ∆t=1/512. In the Table 5, we
summarize the results.
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Table 4: SN multiplicity and excitation energy for AL =86 at different T.

T νsc-IP νsc-PC Esc-IP Esc-PC

0 0.71716 0.71121 12.11418 11.05949

1/2 0.67652 0.67068 11.60120 10.54842

1 0.59526 0.59102 10.52238 9.39298

4 0.12590 0.12976 3.03274 2.07814

Table 5: Multiplicities and energies at AL =86, T =1 with different ∆t.

∆t νsc-IP νsc-PC Esc-IP Esc-PC

1/256 0.59526 0.59102 10.52238 9.39298

1/512 0.59524 0.59038 10.52308 9.41980

The agreement is quite good, especially for the Independent Particles case (the first 4
digits conserved). For this kind of nuclear calculations such an accuracy is sufficient.

In Figs. 3 and 4 we have added, respectively, the scission neutron multiplicities and
the excitation energies-in MeV obtained with N = 256 time steps (which corresponds to
T =1×10−22 s) for Ω =1/2,··· ,11/2 and different AL ∈ [70,118]. A comparison with the
sudden approximation (N =0,T =0) is thus possible.

One can see that the values of νsc and E∗
sc decrease when T increases (the sudden

approximation is an upper limit). The results are quite relevant for the variation of these
quantities with the time. The duration of the scission process is not well known. We
presented data at T =1×10−22 s for a complete set of mass asymmetries and an example
of longer (4×10−22 s) and shorter (1/2×10−22 s) time intervals for one mass asymmetry
(AL =86).

5 Conclusions

In order to numerically describe the emission of scission neutrons from fissioning nu-
clei we have used both the sudden approximation and a time dependent approach. This
implies the solution of the bi-dimensional Schrödinger equation (BDSE), both stationary
and time-dependent. Applying adequate procedures, which include Liouville transfor-
mation and special finite differences adapted to the solution behavior, we were able to
determine physical quantities like neutron multiplicity and fragments’ excitation energy.
The neutrons were considered independent as well as pairing correlated. These two as-
sumptions give rather close results. Of course, the occupation probabilities given by the
BCS function, which takes into account the pairing correlations, are expected to be more
realistic. The time-dependent approach is closer to the physical situation, but requires
more calculations. If the duration of scission is short (of order 1/2×10−22s) the sudden
approximation is acceptable, but normally this time is longer (of order 10−22s) and the
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time-dependent approach should be applied. Calculations of this type for a large series
of fissioning nuclei can contribute to an improved estimation and characterization of neu-
trons emitted during the nuclear fission. Note finally that the solution of BDSE is also of
interest in other research fields, like chemical physics or laser physics.
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