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Michel Fournié∗ and Alain Rigal
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Abstract. Within the projection schemes for the incompressible Navier-Stokes equa-
tions (namely ”pressure-correction” method), we consider the simplest method (of or-
der one in time) which takes into account the pressure in both steps of the splitting
scheme. For this scheme, we construct, analyze and implement a new high order com-
pact spatial approximation on nonstaggered grids. This approach yields a fourth order
accuracy in space with an optimal treatment of the boundary conditions (without er-
ror on the velocity) which could be extended to more general splitting. We prove the
unconditional stability of the associated Cauchy problem via von Neumann analysis.
Then we carry out a normal mode analysis so as to obtain more precise results about
the behavior of the numerical solutions. Finally we present detailed numerical tests for
the Stokes and the Navier-Stokes equations (including the driven cavity benchmark)
to illustrate the theoretical results.

AMS subject classifications: 65M06, 76D05
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1 Introduction

For four decades, projection methods have been widely developed for the numerical sim-
ulation of unsteady viscous incompressible flows — Navier-Stokes equations with prim-
itive variables: velocity, pressure. Within this class of methods detailed below, the main
purpose of this paper is the construction, analysis and implementation of high order
compact space approximations on nonstaggered grids.
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The survey paper of Guermond, Minev and Shen [32] gave recently a rather com-
plete overview of projection methods for incompressible flows. Our approach belongs to
the class of ”pressure-correction” methods presented in [32] (Part 3). Projection or split-
ting methods for incompressible flows were independently introduced by Chorin [1] and
Temam [2] forty years ago. They carried out the splitting of velocity and pressure for
Navier-Stokes equations which yields independent systems of elliptic equations for the
velocity and the pressure. These pioneering works [1, 2] have been published simul-
taneously with the fractional-step (or splitting) methods for multidimensional partial
differential equations problems (see Yanenko [35]). However these splittings imply a
decoupling of space variables for elliptic or parabolic problems (generalization of ADI
methods [30, 31, 38]). For Navier-Stokes equations, due to the specificity of the pressure
(non dynamic variable), the projection methods are not relevant of the fractional step
methodology.

The Chorin-Temam projection method [1, 2] completely decouples the velocity and
the pressure in two steps. The first step is a ”dynamic” step, an intermediate velocity
field is computed without taking the pressure into account. In the second step, the pres-
sure is obtained from an elliptic problem including the intermediate velocity carry out
in the first step. Through this choice of construction, this projection method is of order 1
independently of the approximation order of the time derivative [5].

The next stage in the development of projection methods begins with the paper of
Goda [3] in 1979. The main objective, subsequently followed by Kim-Moin [4], Van
Kan [25], was the construction of projection methods of order 2. Therefore the Chorin-
Temam approach is modified by the introduction of the pressure gradient in the first step.
In this paper we use the splitting of Goda [3]; however our construction and analyzes
may be extended to other projection methods.

The major feature of this paper is the use of spatial compact approximations of order
4 in the framework of projection methods. The efficiency, the robustness, the easy treat-
ment of boundary conditions prompt many authors [6, 9, 16, 17, 19, 33, 34], to develop
compact difference schemes (nine point schemes for 2D problems) for Navier-Stokes
equations in vorticity stream function formulation. We also refer to the papers of Ben-
Artzi et al. [20, 21] devoted to a compact scheme for Navier-Stokes equations under this
formulation using biharmonic operator. The development of approximation methods for
the pressure velocity formulation is crucial because their 3D generalization is quite natu-
ral. Following previous works on projection methods [10–12, 15, 37], we use the normal
mode analysis developed from the pioneering works of Godunov-Riabenkii, Kreiss et
al. [7,29,36] devoted to hyperbolic problems. Karniadakis, Israeli and Orszag [5], Orszag,
Israeli and Deville [23] are the first authors who have applied this analysis to projection
methods. The principle of normal mode analysis is the comparison, using Fourier and
Laplace transforms, of the solution modes of the differential problem with the solution
modes of the semi-discretized problem and those of the numerical approximation. This
approach, in simplified situations, allows some precise results about the behavior of the
numerical solutions, the influence of the boundary conditions and the presence of numer-
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ical boundary layers. Several recent works provide some detailed analyses of projection
methods for Navier-Stokes equations where the normal mode analysis is essential: E and
Liu [10–12], Johnston and Liu [15], Pyo and Shen [37]. This quite recent paper [37] gives a
thorough normal analysis for two second-order projection methods including a compar-
ison of this approach with the energy method. In our paper, the numerical experiments
are carried out so as to illustrate the theoretical results given by normal mode analysis
with different choices of parameters, like viscosity and discretization steps.

The main stages of this work are as follows. In Section 2, we introduce the splitting
method including time approximation. In Section 3, we construct the spatial compact
finite difference schemes of order 4 with new optimal computation of the divergence in
the intermediate velocity field. In Section 4, we present the von Neumann stability anal-
ysis for the associated Cauchy problem using Fourier transform and the normal mode
analysis for a ”periodic channel” (we consider a 2D rectangle with periodic boundary
conditions in one direction). Section 5 is devoted to the presentation of different numeri-
cal examples so as to validate the accuracy and stability properties of the approximation
scheme. Finally, we apply our algorithm to the benchmark test for driven cavity problem.

2 Semi-discrete incremental pressure-correction scheme (time

discretization)

We consider the time-dependent Navier-Stokes equations on a finite time interval [0,T]
and in an open, connected, bounded Lipschitz domain Ω=(0,1)2,






∂u

∂t
−ν∆u+(u·∇)u+∇p= f, on Ω×(0,T),

div(u)=0, on Ω×(0,T),

u=uD, on ∂Ω,

u(t=0)=u0,

(2.1)

where f is a smooth source term and u0∈H with

H =
{

v∈
[
L2(Ω)

]2
; div(v)=0; v·n|∂Ω

=0
}

.

Since the non linear term in the Navier-Stokes equations does not affect the convergence
rate of the splitting error [32], we hereafter shall be mainly concerned with the time-
dependent Stokes equations written in terms of the primitive variables, namely the ve-
locity u and the pressure p. We emphasize that all the results stated in this paper are ap-
plicable to the full non linear Navier-Stokes equations provided that sufficient regularity
on the solution holds. For the numerical tests, the Navier-Stokes problem is considered
with an explicit treatment of the non linear term (Adams-Bashforth) that we add to the
source term f so as to obtain a Stokes problem. In the presentation, the generic right hand
side will be denoted by F.
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We consider the standard incremental pressure-correction scheme which is a time-
marching technique composed of two sub-steps (Part 3 in [32]).

The first sub-step gives a provisional velocity u∗ (the pressure is treated explicitly)
and takes viscous effects into account. The second sub-step takes incompressibility into
account and is usually referred to the projection step

uk+1 = PHu∗,

where PH is the L2-orthogonal projector onto H.

In the original non incremental pressure-correction scheme introduced by Chorin and
Temam [1, 2], the pressure gradient is obviously missing in the first sub-step. Goda [3] is
the first author who has added a former value of pressure gradient in the first sub-step so
as to increase the accuracy of the projection scheme. This approach was popularized by
Van Kan [25]. To approximate the time derivative, we consider the incremental pressure-
correction scheme using the Backward Difference Formula (BDF). Let ∆t > 0 be a time
step and set tk = k∆t , for 0 ≤ k ≤ K = T/∆t. For any function g, we denote by gn the
approximation of g at the time level n and introduce

φn+1 = pn+1−pn.

We define the first-order scheme (Implicit Euler) (BDF1)






u∗−un

∆t
−ν∆u∗=Fn−∇pn, on Ω,

u∗=un+1
D , on ∂Ω,

(2.2a)






un+1−u∗

∆t
+∇φn+1 =0, on Ω,

div(un+1)=0, on Ω,

un+1 ·~n=un+1
D ·~n, on ∂Ω.

(2.2b)

The above algorithm can be generalized to a large class of time-marching algorithms
using higher order backward difference formula (see (BDFq) in [32]). For example the
second-order scheme (3 time levels) (BDF2) can be formulated by






1

∆t

[
3

2
u∗−

(
2un−

1

2
un−1

)]
−ν∆u∗ =Fn−∇pn,

u∗=un+1
D , on ∂Ω,

(2.3a)






3

2∆t

(
un+1−u∗

)
+∇φn+1 =0, on Ω,

div(un+1)=0, on Ω,

un+1 ·~n=un+1
D ·~n, on ∂Ω.

(2.3b)
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However, the splitting scheme has an irreducible splitting error of low order in time [25].
Hence, using a higher-order time stepping scheme does not significantly improve the
overall accuracy. So, we focus the present work on (BDF1) scheme that allows a thorough
analysis of the accuracy and stability. The present approach is also applicable to more
general algorithms of higher order in time but for such schemes an overall analysis can
not be realized.

3 High-order compact scheme (space discretization)

We choose a regular two-dimensional nonstaggered cartesian grid on Ω = (0,1)2, with
grid spacings ∆x and ∆y in x and y direction respectively. We index the nodes with
i =0,··· ,Nx+1, with respect to x, j=0,··· ,Ny+1, for y and the boundaries correspond to
i=0, i= Nx +1, j=0, j= Ny+1. For any function g, we denote gi,j the approximation of g
at the point indexed by (i, j).

The velocity ui,j = (ui,j,vi,j) is computed for i = 0,··· ,Nx+1, j = 0,··· ,Ny+1, and the
pressure pi,j is only computed on the interior nodes i=1,··· ,Nx, j=1,··· ,Ny.

This choice differs from a nonstaggered grids approach considering the nodes on the
boundaries for the pressure that is known to not prevent pressure oscillations [41]. The
capability of nonstaggered grids using a local pressure boundary conditions is proved
in [18].

We denote δx0 the first-order central difference with respect to x

δx0gi,j =
gi+1,j−gi−1,j

2∆x
.

The forward and backward operators are denoted δx+ and δx−, respectively

δx+gi,j =
gi+1,j−gi,j

∆x
and δx−gi,j =

gi,j−gi−1,j

∆x
.

The standard second-order central difference is denoted δ2
x

δ2
xgi,j =δx+δx−gi,j =

gi+1,j−2gi,j +gi−1,j

∆2
x

.

The difference operators δy0, δy+, δy− and δ2
y are similarly defined. Our fourth order

scheme is based on the fourth order approximations (see [7, 9])

∂

∂x
=

(
1+

∆
2
x

6
δ2

x

)−1
δx0+O(∆

4
x), (3.1a)

∂2

∂x2
=

(
1+

∆
2
x

12
δ2

x

)−1
δ2

x+O(∆
4
x). (3.1b)
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The approximation (3.1a) can be deduced from the non compact approximation (see [7])

∂

∂x
=

(
1−

∆
2
x

6
δ2

x

)
δx0+O(∆

4
x). (3.2)

When the reference node is the central node (i, j), we omit the indexes for example δx0g=
δx0gi,j.

3.1 Discretization of the first step (for the intermediate velocity u∗)

The classical high order compact scheme can be used for the first step. Using the approx-
imations (3.1a), (3.1b) and replacing Fn−∇pn by F̃n, the first step of (BDF1) scheme (2.2)
is written as

u∗−un

∆t
−ν

[(
1+

∆
2
x

12
δ2

x

)−1
δ2

xu∗+
(

1+
∆

2
y

12
δ2

y

)−1
δ2

yu∗

]
= F̃n. (3.3)

We multiply both sides of (3.3) by

A=
(

1+
∆

2
x

12
δ2

x

)(
1+

∆
2
y

12
δ2

y

)
=1+

∆
2
x

12
δ2

x+
∆

2
y

12
δ2

y +O(∆
2
x∆

2
y)

(neglecting the terms of order higher than 4) and obtain

A
(u∗

i,j−un
i,j

∆t

)
−ν

[(
1+

∆
2
y

12
δ2

y

)
δ2

x+
(

1+
∆

2
x

12
δ2

x

)
δ2

y

]
u∗= AF̃n.

Let us define

B=
(

1+
∆

2
y

12
δ2

y

)
δ2

x+
(

1+
∆

2
x

12
δ2

x

)
δ2

y.

Then u∗ is given by ( A

∆t
−νB

)
u∗= A

(
F̃n+

un

∆t

)
. (3.4)

The stencils associated with the operators A and B are compact with the shape

•i−1,j+1 •i,j+1 •i+1,j+1

•i−1,j •i,j •i+1,j

•i−1,j−1 •i,j−1 •i+1,j−1

In matrix form, the coefficients of A and B are respectively given by





1
12

1
12

2
3

1
12

1
12



 and





1
12∆2

y
+ 1

12∆2
x

5
6∆2

y
− 1

6∆2
x

1
12∆2

y
+ 1

12∆2
x

− 1
6∆2

y
+ 5

6∆2
x

− 5
3∆2

y
− 5

3∆2
x

− 1
6∆2

y
+ 5

6∆2
x

1
12∆2

y
+ 1

12∆2
x

5
6∆2

y
− 1

6∆2
x

1
12∆2

y
+ 1

12∆2
x




.
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Remark 3.1. The compactness property is crucial for a direct and accurate treatment of
the boundary conditions (see below). The right hand side of (3.4) contains ∇pn (in the
generic right hand side F̃n) and must be carefully computed. For the sake of simplicity,
in the next section, we carry out an explicit non compact approximation of order 4 given
by

∇x pn =
(

1−
∆

2
x

6
δ2

x

)
δx0pn and ∇y pn =

(
1−

∆
2
y

6
δ2

y

)
δy0pn.

3.2 Discretization of the second sub-step (for the pressure pn+1 via Φ
n+1)

Using the divergence equation in (BDF1) (2.2), we can characterize the pressure by the
following Poisson-Neumann system






∆φn+1 =
1

∆t
div(u∗), on Ω,

∂φn+1

∂n
=0, on ∂Ω.

(3.5)

We refer to the literature for pressure boundary conditions which are not consistent
boundary conditions [13]. For the sake of clarity, we considered the homogeneous Neu-
mann boundary condition. A natural extension of the present work can be made for other
type of boundary conditions.

In this step, the main difficulties consist in the computation of div(u∗) in the right
hand side of (3.5) and in the treatment of the boundary conditions. We now present a new
computation process using high-order compact discretization. Using classical fourth-
order discretization based on (3.1b) (and similar formula in y-direction), the problem
(3.5) is approximated by

(
1+

∆
2
x

12
δ2

x

)−1
δ2

xφn+1+
(

1+
∆

2
y

12
δ2

y

)−1
δ2

yφn+1 =
1

∆t
div(u∗).

With the same computations used to obtain (3.4) we have

(
1+

∆
2
y

12
δ2

y

)
δ2

xφn+1+
(

1+
∆

2
x

12
δ2

x

)
δ2

yφn+1 =
(

1+
∆

2
x

12
δ2

x

)(
1+

∆
2
y

12
δ2

y

) 1

∆t
div(u∗).

This scheme can be written with the compact operators A and B defined in (3.4)

Bφn+1 = A
1

∆t
div(u∗). (3.6)

We need a specific treatment to compute the right hand side of (3.6) at the order 4 and to
preserve the compactness property. First, we can express div(u∗) using the non compact
approximation (3.2)

div(u∗)=

((
1−

∆
2
x

6
δ2

x

)
δx0u∗+

(
1−

∆
2
y

6
δ2

y

)
δy0v∗

)
. (3.7)



M. Fournié and A. Rigal / Commun. Comput. Phys., 9 (2011), pp. 994-1019 1001

Applying operator A to (3.7) and neglecting High Order Terms (HOT: terms of order
higher than 4), we obtain

Adiv(u∗)=δx0u∗+δy0v∗+
∆

2
x

12

(
δ2

xδy0v∗−δ2
xδx0u∗

)
+

∆
2
y

12

(
δ2

yδx0u∗−δ2
yδy0v∗

)
+HOT.

We can rewrite this expression to reveal (δ2
xu∗+δ2

yu∗) and (δ2
xv∗+δ2

yv∗),

Adiv(u∗)=δx0u∗+δy0v∗+
(

∆
2
x

12
+

∆
2
y

12

)
δ2

yδx0u∗+
(

∆
2
x

12
+

∆
2
y

12

)
δ2

xδy0v∗

−
∆

2
x

12
δx0

(
δ2

xu∗+δ2
yu∗

)
︸ ︷︷ ︸

≈∆u∗

−
∆

2
y

12
δy0

(
δ2

xv∗+δ2
yv∗

)
︸ ︷︷ ︸

≈∆v∗

+HOT.

Moreover from the first sub step in (BDF1) scheme (2.2) we can explicitly compute ∆u∗

and ∆v∗

∆u∗=
1

ν

(u∗−un

∆t
−F̃n

)
. (3.8)

So, the computation of φ is given by

(
δ2

x+δ2
y+

(
∆

2
x

12
+

∆
2
y

12

)
δ2

yδ2
x

)
φn+1

=
1

∆t

[
−

∆
2
x

12ν
δx0

(u∗−un

∆t
− F̃n

1

)
−

∆
2
y

12ν
δy0

(v∗−vn

∆t
− F̃n

2

)
+δx0u∗

+δy0v∗+
(

∆
2
x

12
+

∆
2
y

12

)
δ2

yδx0u∗+
(

∆
2
x

12
+

∆
2
y

12

)
δ2

xδy0v∗
]

. (3.9)

In (3.9), the unknown φn+1 is only computed on the interior nodes (i = 1,··· ,Nx and j =
1,··· ,Ny) contrary to u and u∗ defined in the whole domain. Then the computation of the
right hand side of (3.9) is straightforward without introduction of numerical error. The
situation is different for the left hand side where the finite difference formula requires
φn+1 on the boundaries (i = 0, Nx +1 and j = 0, Ny+1). To overcome this difficulty, we
take the homogeneous Neumann boundary condition on φ into account to deduce the
following approximations of order 2, 3 and 4 [9] for the boundary y=0

φ0,j =φ1,j+O(∆
2
x), (3.10a)

φ0,j =
4

3
φ1,j−

1

3
φ2,j+O(∆

3
x), (3.10b)

φ0,j =
18

11
φ1,j−

9

11
φ2,j+

2

11
φ3,j+O(∆

4
x). (3.10c)

From numerical experiments with the three boundary formulas (3.10a), (3.10b), (3.10c),
we do not observe significant differences. So we retain the simplest scheme (3.10a) which



1002 M. Fournié and A. Rigal / Commun. Comput. Phys., 9 (2011), pp. 994-1019

preserves the compactness character of the discretization. We suggest that the error in-
troduced by (3.10a) is smaller than the error arising from the choice of the homogeneous
Neumann boundary condition in (3.5).

Remark 3.2. We refer to the paper of Gustafsson [26] to justify that the global convergence
rate is not destroyed by lower order numerical boundary conditions.

In conclusion, the determination of φ on the compact stencil is given by (3.9) using
(3.10a).

3.3 Discretization of the second sub-step (for the velocity un+1)

We consider the equation
1

∆t
(un+1−u∗)+∇φn+1 =0.

For the first component of velocity u, we use the difference operator (3.1a) to approximate
the first derivative and applying (1+∆

2
xδ2

x/6), we obtain

(
1+

∆
2
x

6
δ2

x

)( 1

∆t
(un+1−u∗)

)
+δx0φn+1 =0.

We denote Mx the operator (1+∆
2
xδ2

x/6), and obtain u by solving

Mxun+1 = Mxu∗−∆tδx0φn+1, (3.11)

where Mx is compact and its coefficients are given by




0 0 0
1
6

2
3

1
6

0 0 0



.

The second component of velocity v is similarly obtained

Myvn+1 = Myv∗−∆tδy0φn+1, (3.12)

where My is compact and its coefficients are given by




0 1

6 0

0 2
3 0

0 1
6 0



.

Due to the compactness of the operators, no specific treatment of the boundaries is nec-
essary for the velocity and (3.10c) is used for the pressure.
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4 Analysis of the projection schemes

In the first paragraph, we consider the linearized problem and prove the unconditional
stability in von Neumann sense. In the second paragraph, we demonstrate the stability
of the scheme using Godunov-Ryabenki (normal mode) analysis. To simplify the presen-
tation we fix ∆x =∆y =h.

4.1 von Neumann analysis

To analyze the stability of the (BDF1) scheme (2.2), we consider the homogeneous Cauchy
problem and use Fourier transform by replacing ui,j, vi,j, pi,j, by ûeI(iz1+jz2), v̂eI(iz1+jz2),

p̂eI(iz1+jz2), respectively with (z1,z2) in the range [−π,π] and I the imaginary pure unit.
Firstly, we eliminate the auxiliary intermediate field (u∗,v∗) and write the difference

scheme as a one-step recurrence in R
3, where (un+1,vn+1,pn+1) depends on (un,vn,pn).

We denote

Ax =
(

1+
h2

6
δ2

x

)
, Bx =

(
1+

h2

12
δ2

x

)
,

and analogously Ay and By in the y-direction.
From (3.4), (3.11) and (3.12) we have






u∗=
1

2

(
ν∆tAx(Bxδ2

y +Byδ2
x)

)−1(
(Ax+Ay)(Axun+1+∆tδx0pn+1−Axun)

)
,

v∗=
1

2

(
ν∆tAy(Bxδ2

y +Byδ2
x)

)−1(
(Ax +Ay)(Ayvn+1+∆tδy0 pn+1−Ayvn)

)
,

and we deduce with (3.9)

(Byδ2
x+Bxδ2

y)(pn+1−pn)

=
1

12

(
ν∆t Ax(Bxδ2

y+Byδ2
x)Ay

)−1(
−h2 AyBxδ2

y+Ay(6Ay
2+6Ay Ax−h2Byδ2

x)
)

δx0
2pn+1

+
1

12

(
ν∆t

2(Bxδ2
y+Byδ2

x)
)−1(

−h2Bxδ2
y−h2Byδ2

x+6Ay Ax+6Ay
2
)

δx0(un+1−un)

+
1

12

(
ν∆t(Bxδ2

y+Byδ2
x)Ay

)−1(
−h2Bxδ2

y−h2Byδ2
x+6Ax

2+6Ay Ax

)
δy0

2pn+1

+
1

12

(
ν∆t

2(Bxδ2
y+Byδ2

x)
)−1(

−h2Bxδ2
y−h2Byδ2

x+6Ax
2+6Ay Ax

)
δy0(vn+1−vn).

Finally, from (3.11) and (3.12), we have






Axun+1 =
1

2

(
ν∆t(Bxδ2

y +Byδ2
x)

)−1(
(Ax+Ay)(Axun+1+∆tδx0pn+1−Axun)

)

−∆tδx0(pn+1−pn),

Ayvn+1 =
1

2

(
ν∆t(Bxδ2

y +Byδ2
x)

)−1(
(Ax +Ay)(Ayvn+1+∆tδy0 pn+1−Axun)

)

−∆tδy0(pn+1−pn
)
.

(4.1)
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Considering (BDF1) scheme (2.2) for Wn =(un,vn,pn)T, we have

M1Wn+1 = M2Wn,

where the entries of the (3×3) matrix M1 are given by






(M1)1,1 =−
(
∆t

2ν(Bx δ2
y+Byδ2

x)
)−1

(−h2Bxδ2
y−h2Byδ2

x+6Ay Ax+6Ay
2)δx0,

(M1)1,2 =−
(
∆t

2ν(Bx δ2
y+Byδ2

x)
)−1

(−h2Bxδ2
y−h2Byδ2

x+6Ax
2+6Ay Ax)δy0,

(M1)1,3 =−
(

Ax∆tν(Bxδ2
y +Byδ2

x)
)−1

(−h2Bxδ2
y−h2Byδ2

x+6Ay Ax+6Ay
2)δx0

2

−(∆t Ayν
(

Bxδ2
y +Byδ2

x)
)−1

(−h2Bxδ2
y−h2Byδ2

x+6Ax
2+6Ay Ax)δy0

2

+12(Bxδ2
y+Byδ2

x),

(M1)2,1 =
(
ν∆t(Bxδ2

y +Byδ2
x)

)−1
Ax(−Ax−Ay+2ν∆t Bxδ2

y+2ν∆t Byδ2
x),

(M1)2,2 =0,

(M1)2,3 =
(
ν(Bxδ2

y+Byδ2
x)

)−1
(−Ax−Ay+2ν∆t Bxδ2

y+2ν∆t Byδ2
x)δx0,

(M1)3,1 =0,

(M1)3,2 =
(
ν∆t(Bxδ2

y +Byδ2
x)

)−1
Ay(−Ax−Ay+2ν∆t Bxδ2

y +2ν∆tByδ2
x),

(M1)3,3 =
(
ν(Bxδ2

y+Byδ2
x)

)−1
(−Ax−Ay+2ν∆t Bxδ2

y+2ν∆t Byδ2
x)δy0,

(4.2)

and the entries of the (3×3) matrix M2 are given by






(M2)1,1 =(M1)1,1, (M2)1,2 =(M1)1,2,

(M2)1,3 =12(Bxδ2
y+Byδ2

x),

(M2)2,1 =−
(
ν∆t(Bxδ2

y+Byδ2
x)

)−1
(Ax+Ay)Ax,

(M2)2,2 =0, (M2)2,3 =2∆tδx0, (M2)3,1 =0,

(M2)3,2 =−
(
ν∆t(Bxδ2

y+Byδ2
x)

)−1
Ay(Ax+Ay), (M2)3,3 =2∆tδy0.

(4.3)

So we define a matrix M = M−1
1 M2 which satisfies Wn+1 = MWn and we use 2D Fourier

transform defined above. We get Ŵn+1 = M̂Ŵn where M̂=G(z1,z2) is the (3×3) amplifi-
cation matrix of the scheme. M̂ is obtained and simplified using formal calculus tools.

The von Neumann stability is based on the eigenvalues of the amplification matrix.
The scheme is stable when the moduli of these eigenvalues are less than or equal to 1
(strictly less than 1 for multiple eigenvalues-Theorem 4.2.1 in [7]).

Theorem 4.1. The difference scheme (BDF1) (2.2) (Eqs. (3.4), (3.9), (3.11) and (3.12)) is un-
conditionally stable in the von Neumann sense.
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Proof. For all (z1,z2)∈ [−π,π]−{(0,0)}, let us define a,b,A and B by

a=cos2 z1

2
, b=cos2 z2

2
, (4.4a)

A=4−a−b−2ab

=
1

4
[10−4cosz1−4cosz2−cos(z1+z2)−cos(z1−z2)], (4.4b)

B=1+a+b. (4.4c)

These terms verify 0≤ a≤1, 0≤b≤1, B>0 and A>0 for (a,b) 6=(1,1).
By formal computations, we express the third order characteristic polynomial in func-

tion of the mesh ratio r=ν∆t/h2 under the form [x−B/(4Ar+B)]p(r) where

p(r)= a2(r)x2+a1(r)x+a0, (4.5)

with

a0 =6(a−b)2 A+4(1−a)2(1−b)2B, (4.6a)

a1(r)=−4(2a+1)(2b+1)A2r−2a0, (4.6b)

a2(r)=(2a+1)(2b+1)A(4Ar+B). (4.6c)

The particular case, z1 =0, z2 =0 must be considered separately. In this case, we have one
eigenvalue of the amplification matrix M̂ equal to 1 and two others equal to 0.

For z1 6=0,z2 6=0, we have one eigenvalue given by

vp1 =
B

4Ar+B
. (4.7)

The eigenvalue vp1 verifies 0<vp1 <1, and other eigenvalues are solutions of the second
degree polynomial equation (4.5). From (4.6a)-(4.6c), it is clear that a2(r) > 0, a1(r) < 0,
a0 >0, when (a,b) 6=(1,1).

The quantity a2(r) is an increasing function of r>0, so

a2(r)−a0 > a2(0)−a0 = p1, (4.8)

with
p1 =27abA+(1−a)(1−b)

[
3(a+b)A+3(a+b−2ab)B

]
>0, (4.9)

because a+b−2ab = [2−cos(z1−z2)−cos(z1+z2)]/4 is strictly positive. The product of
the moduli of both roots, equal to a0/a2(r), is thus less than 1.

The discriminant ∆ of equation (4.5) may be written

∆=16(2a+1)2(2b+1)2 A4r2−4a0 p1, (4.10)

so, for given a and b, there exists r0 >0, such that ∆≤0, for 0< r≤ r0 and ∆>0, for r> r0.
In the first case, both roots have the same modulus, less than 1 like their product. When
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r > r0, Eq. (4.5) has two positive roots and one of them is less than 1 because the product
of the two roots is less than 1. It is now easy to check that

p(1)= a2(0)−a0 = p1 >0, (4.11)

so 1 is outside the roots interval and both roots also lie inside the unit disk.

4.2 Normal mode analysis

In this section we demonstrate the stability and fourth-order accuracy of the new (BDF1)
scheme (2.2) using Godunov-Ryabenki (normal mode) analysis. We consider the un-
steady 2D Stokes equations on [−1,1]×(0,2π)×(0,T) given by






∂u

∂t
−ν∆u+∇p=0,

div(u)=0,
(4.12)

with periodic boundary conditions in y and no-slip boundary condition u=0, for x=−1,1.
We assume solutions of the form

u(x,y,t)= eikyu(x,t), v(x,y,t)= eikyv(x,t), p(x,y,t)= eiky p(x,t). (4.13)

For simplicity we use the same notations for u,v and p in both sides of these relations.
Then the solutions of (4.12) are reduced to a family of 1D problems, indexed by k ∈Z,
given by 





∂u

∂t
+

∂p

∂x
−ν

∂2u

∂x2
+νk2u=0,

∂v

∂t
+ikp−ν

∂2v

∂x2
+νk2v=0,

∂u

∂x
+ikv=0,

(4.14)

with the boundary conditions u(±1,t)=v(±1,t)=0.
The normal mode solutions of (4.14) take the form

u(x,t)= eσtu(x), v(x,t)= eσtv(x), p(x,t)= eσt p(x). (4.15)

By plugging (4.15) into (4.14), we obtain






σu+
∂p

∂x
−ν

∂2u

∂x2
+νk2u=0,

σv+ikp−ν
∂2v

∂x2
+νk2v=0,

∂u

∂x
+ikv=0,

(4.16)



M. Fournié and A. Rigal / Commun. Comput. Phys., 9 (2011), pp. 994-1019 1007

with boundary conditions

u(±1)=v(±1)=0. (4.17)

There are two families of solutions, symmetric and antisymmetric (odd and even). The
analysis of each solution is essentially the same and we focus on the former. The odd
solutions of (4.16) are given by






u= Acosh(kx)+Bcos(µx),

v=
i

k
(Aksinh(kx)−Bµsin(µx)),

p=−σ
A

k
sinh(kx),

(4.18)

where

σ=−ν(µ2+k2). (4.19)

It then follows that σ<0 in (4.15) and as expected the solutions of (4.12) decay in time.
In order to satisfy the boundary conditions u(±1)= v(±1)=0, constants A and B in

(4.18) must verify
{

Acosh(k)+Bcos(µ)=0,

−Aksinh(k)+Bµsin(µ)=0.
(4.20)

From (4.20), we deduce a compatibility condition. In the interval (−π/2+lπ,π/2+
lπ), l =0,±1,±2,··· , there is a unique real solution µ which satisfies

µtan(µ)+ktanh(k)=0. (4.21)

We can express the symmetric solutions






u(x)=cos(µx)−
cos(µ)cosh(kx)

cosh(k)
,

v(x)=
−isin(µx)µ

k
−

icos(µ)sinh(kx)

cosh(k)
,

p(x)=
σ cos(µ)sinh(kx)

kcosh(k)
.

(4.22)

Finally, from (4.21) and (4.22), we remark that the incompressibility condition is satisfied.
We now carry out analogous calculations for the compact finite difference scheme

(BDF1) (2.2) (Eqs. (3.4), (3.9), (3.11) and (3.12)). Using (4.13), we obtain






u∗n+1−un

∆t
−

∂2u∗n+1

∂x2
+

∂pn

∂x
+k2u∗n+1 =0, on Ω,

v∗n+1−vn

∆t
−

∂2v∗n+1

∂x2
+ikpn+k2v∗n+1 =0, on Ω,

u∗n+1(±1,t)=0,

(4.23a)
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un+1−u∗n+1

∆t
+

∂pn+1

∂x
−

∂pn

∂x
=0, on Ω,

vn+1−v∗n+1

∆t
+ik(pn+1−pn)=0, on Ω,

∂un+1

∂x
+ikvn+1 =0, on Ω,

un+1 ·~n(±1,t)=0.

(4.23b)

For the semi-discrete problem (4.23), we assume normal mode solutions of the form

un =κnu(x), vn =κnv(x), pn =κn p(x), (4.24a)

u∗n+1 =κn+1u∗(x), v∗n+1 =κn+1v∗(x). (4.24b)

By plugging (4.24) into (4.23), we obtain






κu∗−u

∆t
−κ

∂2u∗

∂x2
+

∂p

∂x
+k2κu∗=0, on Ω,

κv∗−v

∆t
−κ

∂2v∗

∂x2
+ikp+k2κv∗=0, on Ω,

u∗(±1,t)=0,

(4.25a)






κ
u−u∗

∆t
+κ

∂p

∂x
−

∂p

∂x
=0, on Ω,

κ
v−v∗

∆t
+ikp(κ−1)=0, on Ω,

∂u

∂x
+ikv=0, on Ω,

u ·~n(±1,t)=0.

(4.25b)

The set of the resulting equations can be solved and we get two families of solutions,
even and odd. The odd solutions are given by

u(x)=−
κ∆t Akcosh(kx)

−1+κ
−

kDcos(µx)

µ
, (4.26a)

v(x)=
−i∆tkAκ sinh(kx)

−1+κ
+iDsin(µx), (4.26b)

u∗(x)=−
(2κ−1)∆tAkcosh(kx)

(−1+κ)κ
+

(−1+κ)λC∆tcos(λx)

κ
−

kDcos(µx)

µ
, (4.26c)

v∗(x)=
−i(2κ−1)kA∆tsinh(kx)

(−1+κ)κ
+

i(−1+κ)k∆tCsin(λx)

κ
+iDsin(µx), (4.26d)

p(x)= Asinh(kx)+Csin(λx), (4.26e)

where

λ2 =
κ

ν(1−κ)∆t
−k2, µ2 =−k+

1−κ

νκ∆t
. (4.27)
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In order to satisfy the boundary conditions u∗(±1)= 0, v∗(±1)= 0, u(±1)= 0 constants
A, C and D in (4.26) must verify

−
(2κ−1)∆tAkcosh(k)

(−1+κ)κ
+

(−1+κ)λC∆tcos(λ)

κ
−

kDcos(µ)

µ
=0, (4.28a)

−
(2κ−1)∆tAksinh(k)

(−1+κ)κ
+

(−1+κ)k∆tsin(λ)C

κ
+Dsin(µ)=0, (4.28b)

−
κ∆t Akcosh(k)

−1+κ
−

kDcos(µ)

µ
=0. (4.28c)

From (4.28), we deduce a compatibility condition. In the interval (−π/2+lπ,π/2+
lπ), l =0,±1,±2,··· , there is a unique real solution µ which satisfies

k
(2κ−1)

κ2
tanh(k)+k2 (−1+κ)2

κ2λ
tan(λ)+tan(µ)µ=0. (4.29)

Therefore, the values of A, C and D are given by

A=
µcos(µ)(−1+κ)

k∆t cosh(k)µκ
, C=−

kµcos(µ)(−1+κ)

kλcos(λ)κ∆tµ
, D=−

µ

k
.

So we deduce the solutions of the semi-discretized system (4.25)

u(x)=−
cos(µ)cosh(kx)

cosh(k)
+cos(µx), (4.30a)

v(x)=−
icos(µ)sinh(kx)

cosh(k)
−

isin(µx)µ

k
, (4.30b)

u∗(x)=−
cos(µ)(2κ−1)cosh(kx)

κ2cosh(k)
−

cos(µ)(−1+κ)2cos(λx)

cos(λ)κ2
+cos(µx), (4.30c)

v∗(x)=−
icos(µ)(2κ−1)sinh(kx)

κ2 cosh(k)
−

icos(µ)k(−1+κ)2sin(λx)

λcos(λ)κ2
−

isin(µx)µ

k
, (4.30d)

p(x)=
cos(µ)(−1+κ)sinh(kx)

∆t cosh(k)kκ
−

cos(µ)(−1+κ)sin(λx)

λcos(λ)κ∆t
. (4.30e)

It is clear from (4.30) that the numerical scheme has a couple of new modes not shared
by the original problem (4.12). We see that there is a fundamental change of character in
the numerical profile of p. These spurious numerical modes represented by λ defined in
(4.27) are introduced by the projection procedure and do not appear in the velocity. By
identification of the growth rate κ in (4.13) and the growth rate eσ∆t in (4.24a), we can
deduce the accuracy in time of the projection method. Indeed,

κ−1

κ∆t
=σ+O(∆t).

This implies that the accuracy is in ∆t, the order of the finite difference approximation
introduced by the time discretization.
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We can observe from the form of the spurious numerical modes and the definition
of λ that the error introduced in the pressure must be controlled to keep λ real (λ2 =
κ/ν(1−κ)∆t−k2≥0). This constraint supposes that ν∆t is sufficiently small in comparison
with modes k. This remark is confirmed by numerical tests (see section below). A related
analysis is carried out by Strikwerda and Lee [8] who used a normal mode analysis in
the half-plane and showed that the pressure approximation can be first-order accurate at
most.

Now we consider the finite difference discretization of (2.2) using (3.4), (3.9), (3.11)
and (3.12). Plugging (4.30) into these discrete equations, we compute the corresponding
errors denoted by Erru∗

(3.4), Errv∗

(3.4) for the first and second components of the intermediate

field in (3.4), Erru
(3.11), Errv

(3.12) for the first and second components of the velocity in (3.11),

(3.12) and Err
p

(3.9)
for the pressure in (3.9). We obtain






Erru∗

(3.4) =72eikykκν∆t
2(−1+k)cos(µx)+O(h4),

Errv∗

(3.4) =−72ieikyνκ∆t
2µ(−1+k)sin(µx)+O(h4),

Erru
(3.11) =O(h4), Errv

(3.12) =O(h4), Err
p

(3.9)
=O(h4).

(4.31)

We observe a second-order error in time in the computation of u∗ and v∗ only. Moreover,
the above expressions in (4.31) confirm the fourth order of the spatial approximation. The
global accuracy of the algorithm is governed by the splitting error (of order 1 in our case).
This error can be improved with minor modifications (see [32]).

5 Numerical examples

In order to validate the proposed scheme and test its robustness, we apply it to different
Stokes and Navier-Stokes 2D problems. The computations are made on various grid
sizes and time steps, and for different values of the viscosity. We report the maximum
absolute errors for the velocity and the pressure on the grids and compute some rates of
convergence. All results are linked with theoretical arguments.

5.1 Stokes problem

Test 5.1. Stationary polynomial example for Stokes problem.

We consider Ω=(0,1)×(0,1) and consider the exact solution (u,v,p) given by






u(x,y,t)= x2(1−x)2(2y−6y2+4y3),

v(x,y,t)=−y2(1−y)2(2x−6x2+4x3),

p(x,y,t)= x2y2(2x−3)(2y−3).

(5.1)

The source term f in (2.1) is deduced from the exact solution.



M. Fournié and A. Rigal / Commun. Comput. Phys., 9 (2011), pp. 994-1019 1011

Remark 5.1. This example does not introduce non physical boundary condition. Indeed,
our scheme enforces Neumann boundary condition ∂p/∂n=0 which is not generally the
right one. Then we do not introduce numerical boundary layer which would limit the
accuracy of the scheme.

In the following, N = 1/∆x = 1/∆y represents the number of grid points in both di-
rections and Nk =1/∆t represents the number of iterations necessary to arrive at the final
time Tf = 1. The solution does not depend on time, however it is computed using our
algorithm which is a time marching process. So the method can be interpreted as a fixed
point algorithm. Here, the iteration in time (in relation with Nk) must be considered as
an iteration index independent of time.

In Tables 1 and 2 we consider the Stokes problem with ν equal to 1 and 10−2 respec-
tively and report the errors on (u,v,p) in maximum norm after 100 iterations (∆t =10−2).
In Figs. 1 and 2, we plot the Log(error) versus Log(∆x) to study the slope of the curves
associated to Tables 1 and 2, respectively.

Table 1: Errors for ν=1 after 100 iterations.

N erru
∞ errv

∞ err
p
∞

20 0.1958292E-06 0.1958292E-06 0.1252270E-05
30 0.3872679E-07 0.3872679E-07 0.2844922E-06
40 0.1227335E-07 0.1227335E-07 0.9602300E-07
50 0.5036730E-08 0.5036730E-08 0.4079812E-07
60 0.2430611E-08 0.2430611E-08 0.2013498E-07
70 0.1312240E-08 0.1312240E-08 0.1104018E-07
80 0.7692046E-09 0.7692046E-09 0.6547615E-08
90 0.4801650E-09 0.4801650E-09 0.4124670E-08
100 0.3149938E-09 0.3149937E-09 0.2724832E-08

Table 2: Errors for ν=10−2 after 100 iterations.

N erru
∞ errv

∞ err
p
∞

20 0.8462582E-07 0.8462582E-07 0.9762751E-08
30 0.1683172E-07 0.1683172E-07 0.2223235E-08
40 0.5316980E-08 0.5316980E-08 0.7525865E-09
50 0.2187092E-08 0.2187092E-08 0.3202063E-09
60 0.1054144E-08 0.1054144E-08 0.1583109E-09
70 0.5693178E-09 0.5693178E-09 0.8701462E-10
80 0.3339215E-09 0.3339215E-09 0.5172651E-10
90 0.2083148E-09 0.2083148E-09 0.3265532E-10
100 0.1367918E-09 0.1367918E-09 0.2161893E-10

Remark 5.2. We observe the same behavior for different choices of the number of itera-
tions Nk, which emphasizes the time independence.



1012 M. Fournié and A. Rigal / Commun. Comput. Phys., 9 (2011), pp. 994-1019

10
−2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

 

 

3.9972

3.6551

3.9943

3.7754

3.9963

3.8733

4.0001

3.9125

4.0013

3.9349

u
v
p

Figure 1: Rates of convergence for Table 1.
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Figure 2: Rates of convergence for Table 2.

This stationary numerical example allows to verify the fourth order accuracy of the
high order compact approximation. The rates of convergence are very close to 4 for both
values of ν. Reducing the value of ν, the absolute errors decrease in particular for the
error on the pressure (the decreasing factor is approximately equal to ν). The error on the
pressure is larger than the error on the velocity for ν=1 and we observe a switch between
these errors for ν=10−2. We refer to the following test for justifications.

Test 5.2. Non stationary example for Stokes problem.

We consider the flow decayed by viscosity problem [6, 20] governed by the Stokes
equations in Ω=(0,1)×(0,1), which has analytical solutions given by






u(x,y,t)=−cos(πx)sin(πy)e−2tν,

v(x,y,t)=sin(πx)cos(πy)e−2tν,

p(x,y,t)=−
1

4

[
cos(2πx)+cos(2πy)

]
e−4tν.

(5.2)

For this problem, the solution is computed at the final time Tf = 1. Note that the time
accuracy of the splitting scheme is intrinsically of first order (independently of the time
discretization scheme-see the Section 4.2 on normal mode analysis and [5]), so a high
order accuracy is difficult to observe.

In Tables 3 and 4, the errors are given for ν=1 using different time steps ∆t=10−2 and
∆t =10−3 respectively. The associated rate of convergence plots are shown in Figs. 3 and
4. We observe that the error on the pressure is dominant in comparison with the errors on
the velocity components. When ∆t is not sufficiently small (Table 3), a numerical locking
on the pressure is observed (the error on the pressure slightly increases for N≥50). This
phenomenon disappears when we take a smaller value of ∆t (Table 4).

Remark 5.3. Numerical locking is already observed in paper [32] and the inconsistency
between theoretical and numerical results is explained. In particular, the importance of
the norms used for error analysis is outlined with non uniform error estimates.
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Table 3: ν=1, ∆t =10−2 and Tf =1.

∆x erru
∞ errv

∞ err
p
∞

0.5000000E-01 0.1233524E-03 0.1311406E-03 0.7547192E-02
0.3333333E-01 0.6997886E-04 0.7630907E-04 0.3360876E-02
0.2500000E-01 0.4186219E-04 0.4679139E-04 0.1812012E-02
0.2000000E-01 0.2591338E-04 0.2995322E-04 0.1287058E-02
0.1666667E-01 0.1606394E-04 0.1938024E-04 0.1806931E-02
0.1428571E-01 0.9608855E-05 0.1241132E-04 0.2318810E-02
0.1250000E-01 0.7186720E-05 0.7960057E-05 0.2662619E-02
0.1111111E-01 0.6502817E-05 0.7103729E-05 0.2903055E-02
0.1000000E-01 0.6066820E-05 0.7098557E-05 0.3076859E-02

Table 4: ν=1, ∆t =10−3 and Tf =1.

∆x erru
∞ errv

∞ err
p
∞

0.5000000E-01 0.1288364E-03 0.1296244E-03 0.9609371E-02
0.3333333E-01 0.7780175E-04 0.7847844E-04 0.5607374E-02
0.2500000E-01 0.5091399E-04 0.5146454E-04 0.3703372E-02
0.2000000E-01 0.3559771E-04 0.3606961E-04 0.2652050E-02
0.1666667E-01 0.2622014E-04 0.2662426E-04 0.1997495E-02
0.1428571E-01 0.2005423E-04 0.2041232E-04 0.1563452E-02
0.1250000E-01 0.1582012E-04 0.1613757E-04 0.1259447E-02
0.1111111E-01 0.1277771E-04 0.1306553E-04 0.1037530E-02
0.1000000E-01 0.1053014E-04 0.1079103E-04 0.8701147E-03
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Figure 3: Rates of convergence for Table 3.
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Figure 4: Rates of convergence for Table 4.

Numerical results for smaller values of viscosity are given in Tables 5 and 6 for ν =
10−2 and ν = 10−3 respectively. Corresponding convergence graphs are given in Figs. 5
and 6. We observe better results when ν decreases (which is a good behavior for many
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Table 5: ν=10−2, ∆t =10−3 and Tf =1.

∆x erru
∞ errv

∞ err
p
∞

0.5000000E-01 0.4244778E-03 0.4244431E-03 0.4086144E-03
0.3333333E-01 0.2736903E-03 0.2737142E-03 0.2413999E-03
0.2500000E-01 0.1846338E-03 0.1846609E-03 0.1598767E-03
0.2000000E-01 0.1322363E-03 0.1322616E-03 0.1150902E-03
0.1666667E-01 0.9875961E-04 0.9878186E-04 0.8605229E-04
0.1428571E-01 0.7652394E-04 0.7654402E-04 0.6795741E-04
0.1250000E-01 0.6089793E-04 0.6091582E-04 0.5436766E-04
0.1111111E-01 0.4962310E-04 0.4963944E-04 0.4519655E-04
0.1000000E-01 0.4116901E-04 0.4118383E-04 0.3776019E-04

Table 6: ν=10−3, ∆t =10−3 and Tf =1.

∆x erru
∞ errv

∞ err
p
∞

0.5000000E-01 0.1890485E-03 0.1890308E-03 0.4252715E-04
0.3333333E-01 0.1380316E-03 0.1380280E-03 0.3132902E-04
0.2500000E-01 0.1080305E-03 0.1080295E-03 0.2205604E-04
0.2000000E-01 0.8577757E-04 0.8577730E-04 0.1611181E-04
0.1666667E-01 0.6896707E-04 0.6896702E-04 0.1218756E-04
0.1428571E-01 0.5636801E-04 0.5636806E-04 0.9606198E-05
0.1250000E-01 0.4673419E-04 0.4673426E-04 0.7707441E-05
0.1111111E-01 0.3930466E-04 0.3930475E-04 0.6383898E-05
0.1000000E-01 0.3345764E-04 0.3345772E-04 0.5328079E-05
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Figure 5: Rates of convergence for Table 5.
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Figure 6: Rates of convergence for Table 6.

applications-large values of the Reynolds number). In particular the accuracy on the
pressure becomes better than the accuracy on the velocity. This point can be justified
by the normal mode analysis. Indeed, the spurious numerical modes are governed by λ
defined in (4.27) which must be a real value. When ν∆t decreases, λ increases and the
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additional term in the pressure term p in (4.30) decreases. Moreover the influence of the
boundary condition for the pressure is less important for weakly viscous flows.

In the above tests, the theoretical rates of convergence are not observed. The structure
of the global approximation error of our algorithm is very intricate. Therefore, many
numerical tests cannot clearly show an accuracy of order 4. We suggest that this limitation
is governed by the first order in time of the splitting (and time discretization) which
prevents to observe high order rates. Indeed, when ∆x decreases (with few points) the
fourth-order discretization give us rapidly a good accuracy smaller than the error in time.
However, high order can be recovered considering ∆t and ∆x dependent. In Tables 7, 8
(Figs. 7, 8), we impose that the discrete Reynolds number Reh=ν∆t/∆

2
x is fixed and equal

to 1. For this choice the scheme presents a very good behavior and reveals its capability
to capture an accurate solution with few discretization points and few iteration steps.
These tests outline the stability and robustness of the algorithm.

Table 7: ν=10−2, ν∆t/∆
2
x =1 and Tf =1.

∆x erru
∞ errv

∞ err
p
∞

0.5000000E-01 0.1688531E-02 0.1691965E-02 0.2497973E-02
0.3333333E-01 0.2528387E-03 0.2546877E-03 0.4522883E-03
0.2500000E-01 0.5175519E-04 0.5245221E-04 0.8670854E-04

Table 8: ν=10−3, ν∆t/∆
2
x =1 and Tf =1.

∆x erru
∞ errv

∞ err
p
∞

0.1666667E-01 0.1966207E-03 0.1963517E-03 0.5089191E-04
0.1111111E-01 0.2370202E-04 0.2361196E-04 0.6071143E-05
0.8333333E-02 0.2934769E-05 0.2983764E-05 0.9637596E-06

10
−1.6

10
−1.5

10
−1.4

10
−5

10
−4

10
−3

10
−2

 

 

4.6832

4.2147

5.5138

5.7416

u
v
p

Figure 7: Rates of convergence for Table 7.
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Figure 8: Rates of convergence for Table 8.



1016 M. Fournié and A. Rigal / Commun. Comput. Phys., 9 (2011), pp. 994-1019

Test 5.3. Navier-Stokes problem-Comparison with driven cavity benchmark.

For Navier-Stokes problem, the same test problems (5.1) and (5.2) give similar be-
havior, so we present results for the classical driven cavity problem where high order
schemes in space are recommended, in particular for high Reynolds number simula-
tions [40]. So we solve the model problem for ν = 10−3 with ∆x = ∆y = 1/128 (N = 128)
and we compare our results with those obtained by Ghia et al. [39] as the benchmark
solutions. In [39] the steady Navier-Stokes equations in the stream function-vorticity for-
mulation is used. This approach, however, does not reveal the time evolution of the flow
after the lid is set in motion. At t = 0 the lid velocity u is instantaneously set from zero
to one, thereby slowly setting in motion the fluid initially at rest. The formation of the
large primary eddy as well as that of the first counter-rotating secondary eddy in the
lower right corner can be observed rather well. The counter-rotating eddy in the lower
left corner, however, needs considerably longer time interval to develop.
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Figure 9: Streamlines for ν=10−3 with ∆x =∆y =1/128.

The streamlines contours for this test are presented in Fig. 9. The computation of
the streamlines is a post-process task and is performed using simple finite difference
approximation. More precisely, we consider ∂ψ/∂x =−v, with ψ(x = 0) = 0. For all j =
0,··· ,N, ψ0,j =0, so using first order approximation we deduce ψ1,j =−∆xv0,j+ψ0,j =0 and
using second order approximation we compute ψi,j =−2∆xvi−1,j+ψi−2,j, for i = 2,··· ,N.
This figure is comparable with the well known figure obtained in [39] with the same
position of the center in [0.53125,0.5625]. The value of ψ at this point is equal to −0.110046
and is very closed to the benchmark solution of Ghia et al. [39] where ψ=−0.117929. This
difference can be explained by the post-process which is less accurate than a computation
of ψ by solving the Navier-Stokes problem in Streamline-Vorticity formulation.

Figs. 10 and 11 show the velocity profiles for u along the vertical lines and v along
the horizontal lines passing through the geometric center of the cavity. The values given
in [39] are reported in the figures and used to validate our results.
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Figure 10: Vertical profile for u.
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Figure 11: Horizontal profile for v.

6 Conclusions

In this paper, we present a detailed construction of a new compact scheme of order 4 for
projection methods on nonstaggered grids. We employed tensorized central 3 points dif-
ference operators which allows an efficient implementation. The treatment of the bound-
ary condition is optimal for the velocity and among different choices we retain an ap-
proximation of the pressure which preserves the compactness of the scheme. A rigorous
analysis of von Neumann type and a thorough normal mode analysis have been carried
out. The main advantage of the normal mode analysis is that it reveals the particular er-
ror structures, such as spurious boundary layer or spurious highly oscillatory terms and
their explicit dependence on dynamic viscosity ν. Hence, the projection-type schemes are
particularly suitable for high Reynolds number flows. We observed that supplementary
terms introduced by high order terms do not deteriorate the structure of the solution and
allow to obtain unconditional stability. Although we use a first order projection method,
the accuracy and the rates of convergence of numerical results are very satisfactory for a
reasonable range of values of the viscosity ν (1 to 10−3). We emphasize that our scheme
presents a very good stability and robustness for a wide field of values of the parameters
: time and space steps, viscosity. Moreover, the computed solution for the driven cavity
may be favorably compared with the benchmark solutions.

References

[1] A. J. Chorin, The Numerical Solution of the Navier-Stokes Equations for an Incompressible
Fluid, AEC Research and Developpement REPORT, NYO-1480-82, New York University,
New York, 1967.

[2] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Am-
sterdanm, 1979.

[3] K. Goda, A multistep technique with implicit difference scheme for calculating two or three
dimentional cavity flows, J. Comput. Phys., 30 (1979), 76–95.
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