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Abstract. In this paper we present a generalized lattice Boltzmann based approach
for sliding-mesh local reference frame. This scheme exactly conserves hydrodynamic
fluxes across local reference frame interface. The accuracy and robustness of our scheme
are demonstrated by benchmark validations.
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1 Introduction

The fluid flows associated with rotating systems are quite complex and are characterized
by a variety of unsteady flow phenomena such as laminar-turbulent transitions, bound-
ary layer separation and reattachment, formation and evolution of vortices and above
all, mixing and entrainment processes. Such flows are found in almost every industrial
process involving fans, propellers, blowers, pumps, stirred tanks, turbo machinery com-
ponents etc. Although experiments [1, 2] are commonly conducted to understand the
complex physics of rotating systems, they are generally expensive, time consuming and
can only provide limited data.

Computational modeling of moving geometry across grids is generally difficult and
expensive. However, for certain types of motions, such as rotation, one may come up
with substantial simplifications. For simulation of flow with arbitrary geometry that is
rotating in time around a fixed axis, a rotating fan for example, the three dimensional
computational domain can be divided into an inner domain and outer domain. The
inner domain has its grid fixed with the rotating geometry so that the geometry does
not have a relative motion with respect to the grid. This forms a local reference frame
(LRF) domain ”body-fixed” with the rotating geometry. The grid in the outer domain
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is fixed with the ground and forms a ”ground-fixed” reference frame domain. Between
the inner domain and outer domain, there is a closed transparent interface to connect
fluid flows. Since there is no relative motion between geometry and its neighboring grid,
the difficulty in treating moving geometry can be avoided. The relative motion only
exists on the interface between the inner and outer grids. Because the interface has an
axisymmetric shape with the axis coinciding with the rotational axis, the relative motion
is only tangential, i.e., sliding, and no deformation to either domain occurs. This so-called
”sliding mesh” interface should only serve for computational purpose and should not
disturb the flow across it. The fluxes across the boundary from body fixed to ground fixed
frames and vice versa, including mass flux, momentum flux and heat flux etc, should be
conserved. This requires a nontrivial matching between two domains at the vicinity of
the interface.

The general idea of matching a rotating grid with a non-rotating one is not new. In
conventional Navier-Stokes based CFD, an axisymmetric volume mesh near such a slid-
ing mesh interface is usually used on inner and outer sides. This could be an extra con-
straint on mesh generation. Various numerical interpolations are also needed to match
fluid flows across the sliding mesh boundary. The task becomes significantly more diffi-
cult if non axisymmetric mesh such as Cartesian mesh is used. It would require expensive
computation of time varying weights that link the inner and outer grid points every-
where along the vicinity of the sliding mesh boundary. This could also seriously com-
promise accuracy of numerical solutions in terms of ensuring conservation laws. Many
conventional methods of sliding mesh can be found in literature. One early example is
the work of Murthy et al. [3, 4], whereby a sliding mesh technique was developed for
time-dependent simulation of the flow in mixing tanks. Later studies by Tabor et al. [5]
and Dasakapolous and Harris [6] further explored the applicability of traditional sliding
mesh methodology for mixing tanks and Rushton impeller stirred tanks.

The kinetic-theory based lattice Boltzmann method (LBM) is a well-known CFD ap-
proach for transient, viscous flow simulation that involves complex fluid phenomena [7].
LBM describes fluid flow in terms of a discrete kinetic equation for particle density dis-
tribution functions, namely the lattice Boltzmann equation (LBE). The macroscopic flow
properties are direct results of the moments of these particle distribution functions. At
the hydrodynamic limit it has been shown that the LBE recovers the Navier-Stokes equa-
tion [8, 9]. It has also been demonstrated recently that through a moment expansion
procedure, LBE can be extended to describe fluid dynamics beyond Navier-Stokes hy-
drodynamics [10–12].

LBM has many advantages over traditional CFD [7], particularly, the straightforward
boundary condition implementation enables flow simulation on a Cartesian grid system
while maintaining exact conservations [13]. This makes LBM very convenient for accu-
rately handling flow that involves complex geometry. Because of its kinetic nature, it is
also easy and more physical to model various complex fluid flows [7, 14]. Furthermore,
the unsteady Very-Large-Eddy-Simulation (VLES) turbulence model has been incorpo-
rated successfully into LBM [15, 16]. Its numerical accuracy and robustness have been
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widely demonstrated and validated in scientific research as well as in real engineering
applications [7, 17, 18]. Since rotating flows associated with LRF are usually highly un-
steady and require delicate handling of LRF interface, it is not surprising that LBM has
an advantage to deal with sliding mesh problems.

In this study, we present a complete LB based sliding mesh algorithm for rotating
fluid flow system and demonstrate its accuracy, robustness and capability in benchmark
validations. The paper is organized as follows: in the next sections, we first provide a
detailed description of the numerical scheme, then present three sets of numerical results
to validate the scheme and conclude at last.

2 Numerical algorithm

The basic sliding mesh lattice Boltzmann concept and algorithm for solving fluid flows
across different reference frames were formulated by Chen and Hoch in 2004 and 2005.
Inside each reference frame, the fluid flow is solved by the most commonly used D3Q19
LB-BGK model [9] with an external body force:

fi(x+ci,t+1)= fi(x,t)−
1

τ
( fi(x,t)− f

eq
i (x,t))+Fi(x,t).

Here fi(x,t) is the particle density distribution function and τ is the so-called single re-
laxation time. The equilibrium distribution function f

eq
i (x,t) has the following 3rd order

form:
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with ω0 = 1/3 for stop state, ωi = 1/12 for states in Cartesian directions and ωi = 1/36
for states in bi-diagonal directions. Here T0 = 1/3 is the constant lattice temperature.
The hydrodynamic quantities ρ and ρu are the zeroth and first order moments of the
distribution functions respectively:

ρ(x,t)=∑
i

fi(x,t), ρ(x,t)u(x,t)=∑
i

ci fi(x,t).

The external body force Fi(x,t) corresponds to the inertial force A(x,t) introduced by the
non-inertial rotating LRF:

A(x,t)=−Ω(t)×
(

Ω(t)×r(x,t)
)

−2Ω(t)×u′(x,t)−
dΩ(t)

dt
×r(x,t).

The Ω(x,t) is the rotational angular velocity of the LRF and the r(x,t) is the distance
vector from the origin point of LRF to the fluid position. u(x,t) is the local pre-collide
fluid velocity seen in the non-inertial LRF defined above. The fluid velocity in f

eq
i is

equal to the pre-collide u(x,t) shifted by A(x,t)/2:

u′(x,t)=u(x,t)+
A(x,t)

2
,
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the external body force has the following form [19]:

Fi =
(

1−
1

2τ

)

ρωi

( (ci−u′)·A

T0
+

(ci ·u
′)(ci ·A)

T2
0

)

.

It is worth pointing out that such a body force treatment has a second order accuracy in
velocity space and is essential to the accuracy of numerical simulations in LRF.

The most challenging part of simulating flows across different reference frames is the
flow transition across the sliding mesh boundary. To allow smooth and accurate infor-
mation exchange across the boundary, we first separate the LRF region from the ground
fixed region by introducing cylindrical double layered transparent surfaces. Indeed, any
rotational-axisymmetric surface is applicable here. Instead of direct matching between
inner and outer grids, flow transition is realized dynamically between the inner and outer
surface boundaries. The inner surface boundary is fixed with the inner Cartesian grids
and the outer surface boundary is fixed with the outer ones. Each of the cylindrical sur-
faces is then divided into m sets of rings orthogonal to the LRF rotational axis. Each ring
surface is made of a set of surface elements of the same size within the ring. The surface
elements within each ring have the same shape since the ring surface is axisymmetric.
There is no gap between the inner and outer surfaces, so that the outer surface elements
have the same size and shape as the inner ones. The only difference between the inner
and outer surfaces is that inner surface is facing the inner domain while the outer surface
is facing the outer domain.

Figure 1: Schematic showing the sliding mesh grid at time, t = 0 (left) and at a later time (right). Note that
the rotating geometry is shown in grey and the sliding mesh interface is shown in blue.

Since the inner grids and the associated LRF boundary surface, i.e., the inner surface,
are rotating while the outer ones are not, it results in a relative sliding motion between
the two surfaces. Note there is no relative motion between grids and the associate LRF
boundary, their geometrical weights are time independent and can be determined before
simulation (see Fig. 1). The only calculation needed during simulation is the matching
between inner and outer surface elements. Because of the identical size and shape for
surface elements inside a given ring, each surface element on one side intercepts at most
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W(t)

Figure 2: Illustration of matching of surface elements on sliding mesh boundary. The solid lines represent outer
LRF surface and the dashed lines represent the rotating inner sliding mesh surface. θ is the rotating angle and
ω(t) is the matching ratio.

two surface elements on the other side at any given time (Fig. 2). There is only one
matching ratio ω(t) for all surface elements in each ring:

ω(t)=
|Aout∩Ain|

|A|
, |Aout|= |Ain|= |A|,

where A
(

Ain,Aout
)

represents a surface (inner, outer) element on a ring, and |A| is its
area. Here ω is LRF rotating angle θ dependent and 0≤ω < 1. For each inner or outer
surface element, it receives ω part of flow information from one matched surface element
and (1−ω) part from the other matched one on the other side. Since ω is a scalar and
only needs to be calculated once for each ring at each time step, its computational cost
is minimum. In addition, matching of surface elements can be easily realized in real
operations by an indicator. Therefore the total computational cost of matching of surface
elements due to LRF sliding motion is tiny. For the purpose of simplicity in geometry
discretization, planar surface elements shown in Fig. 2 are used in current study. Their
approximation to a circular ring improves as more but smaller flat elements are used.

The standard gather and scatter scheme on surface element can be directly performed
on both sides. The original concept and scheme of frictionless boundary condition, in-
cluding details in surface scattering and gathering, on arbitrary geometries were formu-
lated by Chen et al. in 1998 (see [13]). This approach exactly conserves local mass and
surface tangential momentum fluxes while reflecting the normal momentum flux. It also
satisfies the local detailed balance. This boundary scheme can be extended naturally to
treat flow transition across LRF boundaries, so that both the normal and tangential mo-
mentum fluxes are conserved. The following are the detailed steps (c.f. [13]):

1. Gather incoming states and sample mass and momentum from neighbor cells on both sides of
LRF surfaces.

2. Match LRF surface elements between outer and inner surfaces. As mentioned earlier, each surface
element on one side communicates with two surface elements on the other side at any given time.
The matching ratio of two surface elements depends on the LRF rotational position.
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3. Transform the surface velocity from LRF to ground fixed reference frame on LRF side.

4. Calculate averaged values of mass ρ̄ and momentum ρu for each matched LRF surface element
pairs in ground fixed reference frame. Then the momentum ρuLRF values in LRF are also
calculated.

5. Construct f
eq
i (ρ̄,ρu) on surface element in ground fixed reference frame and f

eq
i (ρ̄,ρuLRF) on

surface element in LRF.

6. Apply the same surface collision rules in all surface elements as in [13].

7. Add proper skin friction τω according to local fluid viscous dissipation.

8. Ensure local mass conservation as in [13].

9. Scatter outgoing states back to neighbor cells.

Note that the surface velocity used in equilibrium calculation is a full velocity instead
of the surface tangential velocity [13]. It can be shown rigorously that such an extended
surface scheme conserves the mass and total momentum fluxes across LRF boundaries.
The satisfaction of flux conservations is essential to realization of accurate and smooth
transitions. The modified scheme of surface states scattering was proposed in [20] and
has been demonstrated extensively to achieve second order numerical accuracy. Since
many operational details, including gather and scatter procedure, surface collision rules
and mass conservation assurance, are exactly the same as those in [13, 20], we will not
repeat them in this paper.

The LBM boundary conditions for solid walls used in this paper are again the same
as those described in [13]. It should be noted that a rotating solid wall in the ground
fixed reference frame becomes a static wall in the LRF. This is indeed one of the original
purposes of LRF.

So far we have presented a complete LB scheme for LRF. For most of the engineering
applications, turbulence modeling is inevitable. The most common approach is to solve
partial differential equations (PDE) for turbulent kinetic energy κ and turbulent dissipa-
tion ε to compute an eddy viscosity νeddy [21]. The turbulence model we used in this paper
is the VLES model [15, 16, 21]. Since there are relative motions between reference frames,
the interior mesh and exterior mesh are mismatched at most of the simulation time. The
PDE can not be solved directly across the LRF boundaries. By employing a similar slid-
ing mesh concept as discussed above for LB, the scalar flux across LRF boundaries due
to scalar advection and diffusion of a scalar transport equation can be solved accurately
and smoothly without involving complicated numerical interpolations. The detailed al-
gorithm will be described in a separate paper.

3 Numerical validations

Based on the sliding mesh algorithm presented in the previous section for laminar/turbulent
flows, time accurate numerical validations were conducted for three different cases: 2D
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direct numerical simulation (DNS) of rotating Cylinder flow, 2D direct numerical sim-
ulation of cross flow past a single rotating blade and a 3D turbulent flow past a D4119
benchmark Propeller.

Figure 3: Schematic showing the test case of the rotating cylinder. Note that the grey region is the inner
cylinder. Blue region indicates the sliding mesh interface and the red region corresponds to the stationary outer
cylinder.

3.1 2D-DNS-Rotating cylinder

As a first test, a simple case of a 2D-DNS Rotating cylinder in Fig. 3 is considered to exam-
ine the accuracy of the scheme. The case consists of two cylinders with the inner cylinder
rotating at a fixed velocity and the outer cylinder stationary. The fluid viscosity is 0.01 in
lattice units for the case of resolution 16, and the corresponding τ is 0.53. The Reynolds
number is 147 and the rotating angular velocity is 0.00573 radians per lattice time step.
The sliding mesh interface (shown in blue) is specified at different distances from the ro-
tating cylinder. We conducted simulations of various resolutions for two different cases
corresponding, respectively, to the locations of sliding mesh interface with distances of
r/32 and r/2 from the inner rotating cylinder, where r is the radius of the inner rotat-
ing cylinder. Figs. 4 and 5 show comparisons of tangential velocity normalized by the
maximum velocity (the velocity value at the surface of inner rotating cylinder) between
the simulations with and without sliding mesh for the two different cases at resolutions
16, 32 and 64, respectively. They show the gradual decay in velocity as we transverse
from the rotating cylinder to the stationary cylinder. Figs. 6 and 7 show comparisons
of pressure values. As seen from the plots, one can clearly infer that there is a smooth
flow transition across the sliding mesh interface located at r/32 and r/2, indicating the
accuracy of the simulation in such a stressful situation with low viscosity and coarse res-
olution. Both simulations also show very good resolution convergence. Fig. 8 shows the
velocity errors measured by L2-norm verse simulation resolution. The error is defined as:

err=

√

∑n |u
lr f
n −u

no−lr f
n |

N
,
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Figure 4: Comparisons of normalized velocity pro-
files of the r/32 case.

Figure 5: Comparisons of normalized velocity pro-
files of the r/2 case.

Figure 6: Comparisons of Cp profiles of the r/32
case.

Figure 7: Comparisons of Cp profiles of the r/2
case.

Figure 8: Velocity error measured by L2-norm
verse resolution, d represents the sliding mesh
distance from the rotating cylinder.

where N is the total number of cells. The nearly exponential decay rates of the errors
further indicate that resolution convergence of our scheme is satisfactory. We also want
to point out that the scheme is capable of achieving good results consistently even when
the distance of sliding mesh interface to the solid wall is less than one cell.
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Fig. 9 Snapshots of velocity magnitude for the 2D-DNS-Crossflow-Blade Case. The sliding 

Figure 9: Snapshots of velocity magnitude for the 2D-DNS-Crossflow-Blade Case. The sliding mesh interface
is highlighted as a red circular region.

3.2 2D-DNS-Blade in cross flow

To further ascertain the accuracy of the scheme, a rotating blade in a weak incoming flow
is presented next. The Reynolds number is 115. The resolution across the blade is 32
and the rotating angular velocity is 0.0327 radians per lattice time step. Fig. 9 shows
instantaneous snapshots of velocity magnitude at different blade angles as the sliding
mesh region rotates. The rotating/sliding mesh interface is also indicated (in red color) in
Fig. 9. As seen from the snapshots, the flow structure of the blade (maxima and minima
of velocity) as it rotates is accurately captured by the current scheme. In addition, the
smooth transition and the appropriate exchange of information across the interface are
also indicated clearly in these images.

3.3 3D turbulent flow past D4119 Propeller

As the third and final validation test, a complex benchmark case of a propeller rotating in
a uniform flow was chosen to demonstrate the capability of the sliding mesh algorithm
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Figure 10: Schematic showing the sliding mesh region around the Propeller.

coupled with the turbulence solver. The typical Reynolds number for such a case is about
1.5×106. The D4119 Propeller is a three bladed propeller designed in the 1960’s to vali-
date lifting surface design methods (Fig. 10). The Propeller was simulated with different
advanced coefficients, J =V/Nd, where V is the advance velocity, n is the rotation speed
(10rps) of the Propeller and R is the radius (152.4mm) of the Propeller. Our simulation re-
sults are compared directly with the experimental data of Jessup et al. [22]. More details
about the Propeller geometry and experimental test conditions can be found in Jessup et
al. [22].

Figure 11: Instantaneous snapshots of surface pressure overlapped with isosurfaces of velocity magnitude for
the Propeller case.

Fig. 10 shows illustration of the cylindrical sliding mesh surrounding the blade re-
gion of the Propeller. The LRF region is inside the cylindrical sliding mesh. The case is
defined by 240 cells across the radius of the Propeller and is simulated in fully turbulent
mode (LBM-VLES approach). Time accurate sliding mesh simulations coupled with the
LBM-VLES approach were performed to test the accuracy and robustness of the current
sliding mesh scheme. Fig. 11 shows snapshots of the flow around the Propeller at differ-
ent time with surface pressure overlapped by λ2 (colored by velocity), which is a vortex
identification criteria proposed by Jeong and Hussain [23]. These images clearly demon-
strate the complex rotationality of the flow and show smooth flow transition across LRF
boundary.

Fig. 12 shows the comparisons of experiments/simulations for the Propeller effi-
ciency, torque and thrust coefficients for various advance coefficients. The efficiency of
the Propeller is well predicted at low advance coefficients with maximum under predic-
tion shown at the peak efficiency point. The torque and thrust coefficients are in general
well predicted for all advance coefficients.
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Figure 12: Experimental and Numerical Compar-
isons of Efficiency, Torque Coefficient and Thrust
Coefficient for the DTMB Propeller.

Fig. 13 Circumferential Averaged velocity component comparisons between

Figure 13: Circumferential Averaged veloc-
ity component comparisons between experi-
ments and simulations at a downstream Pro-
peller location of X/R=0.3281.

Fig. 13 shows comparisons of circumferentially averaged velocity components be-
tween the experiments and the LBM based sliding mesh simulations for the operating
condition corresponding to J = 0.833. The velocities are compared downstream of the
propeller at X/R = 0.3281, where X is positive downstream, with its origin at the pro-
peller reference line. Note that all velocities are normalized by the advance speed V.
The data in Fig. 13 is presented as line plots of velocity versus radius of the propeller. It
shows good agreements with experimental data at all locations, although the axial veloc-
ity is slightly over predicted away from the center. Due to page limitation, other detailed
results such as velocity distributions at downstream locations are not presented here.
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4 Conclusions

In this paper, we presented a generalized LB based sliding mesh scheme for LRF. The LRF
surface mesh is generated as standard solid wall without any special requirement. The
surface dynamics and matching scheme of the LRF interface obey conservation laws so
that the flow transition across the LRF boundary is accurate and robust. Since there is no
need for expensive time dependent weights calculation, the whole computational cost of
each LRF surface element is comparable to the cost of computing the standard static solid
boundary. The algorithm can be parallelized easily and achieve almost linear scalability
across massive clusters. The benchmark validations indicate that our scheme is effective
and accurate. Finally we would like to point out that our scheme has great potential in
broad applications, such as fan noise analysis, etc.
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