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Abstract. Recent studies on applications of the lattice Boltzmann method (LBM) and
the finite-difference lattice Boltzmann method (FDLBM) to velocity slip simulations
are mostly on one-dimensional (1D) problems such as a shear flow between parallel
plates. Applications to a 2D problem may raise new issues. The author performed
numerical simulations of rotational slip flow in coaxial cylinders as an example of 2D
problem. Two types of 2D models were used. The first were multi-speed FDLBM mod-
els proposed by the author. The second was a standard LBM, the D2Q9 model. The
simulations were performed applying a finite difference scheme to both the models.
The study had two objectives. The first was to investigate the accuracies of LBM and
FDLBM on applications to rotational slip flow. The second was to obtain an experi-
ence on application of the cylindrical coordinate system. The FDLBM model with 8
directions and the D2Q9 model showed an anisotropic flow pattern when the relax-
ation time constant or the Knudsen number was large. The FDLBM model with 24
directions showed accurate results even at large Knudsen numbers.

PACS: 47.11.-j, 47.45.-n, 51.10.+y

Key words: Finite-difference lattice Boltzmann method, rarefied gas flow, rotational slip flow,
cylindrical coordinate.

1 Introduction

A rarefied gas flow is represented properly by the Boltzmann equation. However, the
Boltzmann equation is an equation in the phase space: physical space plus velocity space.
Burden in computing is enormous. Therefore, in an intermediate flow such as the velocity
slip, where both the Navier-Stokes flow and the rarefied gas flow co-exist, the lattice
Boltzmann method (LBM) and the finite-difference lattice Boltzmann method (FDLBM)
are potentially ideal flow solvers if they can represent the rarefied gas flow properly.
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Figure 1: Velocity slip fluctuations by the relative angle to the wall.

There are many recent studies on applications of the LBM and the FDLBM to veloc-
ity slip simulations [1–10]. Most studies so far are applications to one-dimensional (1D)
problems such as a shear flow between parallel plates. The author conducted a simu-
lation of shear flow between parallel plates using the D2Q9 model [11] and found that
the velocity slip fluctuates considerably (32 percents) when the relative angle to the wall
changes (see Fig. 1). Therefore, in order to apply the LBM or FDLBM to 2D problems,
the dependency on the inclination angle must be decreased by increasing the number of
directions of velocity particles.

In this study, the author studied a 2D problem, simulating a rotational slip flow. Two
types of 2D models were used. The first are multi-speed thermal FDLBM [12] and its
derivative models with different number of velocity particles. The second is the standard
LBM model, D2Q9 [13]. The cylindrical coordinate system was adopted in the simula-
tion. To obtain an experience on application of the cylindrical coordinate system to a
slip flow is another objective of this study. Before proceeding to the FDLBM simulations,
a review of a no-slip solution by the Navier-Stokes analysis and numerical simulations
by the continuous Boltzmann equation were conducted to understand the rotational slip
phenomena.

Quantities used in this paper are nondimensional based on the reference density ρ0,
the reference length L, and the reference temperature T0 (where R is gas constant).

Length (x,y,r) by L,

Speed (ur,uθ,c,ck,ckiα) by
√

RT0,

Time (t,τ) by L/
√

RT0,

Internal energy (e) by RT0,

Density, distribution function (ρ, fki, f
eq
ki ) by ρ0,

Distribution function per unit velocity volume ( f , f eq) by ρ0/(RT0),

Momentum flow (Pθr) by ρ0RT0,
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Torque (T,Tintg) by ρ0RT0L2,

Viscosity (µ) by ρ0

√

RT0L,

Angle (θ,φ) by rad,

Angular velocity (ω) by rad
√

RT0/L.

2 Analytical solution by the Navier-Stokes equations

Schematic view of the rotational slip flow is shown in Fig. 2. Gas is filled between coaxial
cylinders, whose radii are r1=1.0 and r2=2.0. The inner cylinder is at rest while the outer
cylinder rotates at constant speed uθw =0.01.
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r2

x

y

u w

r

Figure 2: Schematic view of rotational slip flow.

Analytical solution based on the Navier-Stokes equations is presented as follows [14].
The torque T per unit angle acting on the layer of gas at radius r is

T =µr3 dω

dr
, (2.1)

where µ is the viscosity coefficient and ω is the angular velocity. Therefore, the torque
Tintg integrated over the angle θ =0 to 2π is

Tintg =
∫ 2π

0
Tdθ =2πµr3 dω

dr
. (2.2)

The differential equation (2.2) is readily integrated since in a steady state Tintg is not de-
pendent on r,

Tintg

∫ r2

r1

dr

r3
=2πµ

∫ ω2

ω1

dω. (2.3)

Therefore, since ω1=0.0 and ω2=uθw/r2, the following torque formula for no-slip Navier
Stokes solution is obtained:

Tintg =4πµ
r2

1r2
2

r2
2−r2

1

uθw

r2
. (2.4)
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The angular velocity ω and the rotational velocity uθ at radius r are expressed as follows:

ω =
Tintg

4πµ

( 1

r2
1

−
1

r2

)

, uθ =
Tintg

4πµ

( 1

r2
1

−
1

r2

)

r. (2.5)

3 Solution by the continuous Boltzmann equation

The rotational slip flow was solved by the continuous Boltzmann equation applying the
diffuse reflection condition to the walls. The cylindrical coordinate system, the physical
space (r,θ) and the velocity space (c,φ) shown in Fig. 3, was applied.

x

y

r
θ

φc

Figure 3: Cylindrical coordinate system used in the continuous Boltzmann simulation.

The Boltzmann equation for the distribution function f with the BGK collision term
(relaxation time constant τ) is written as (see Appendix)

∂ f

∂t
+ccosφ

∂ f

∂r
+

csinφ

r

(∂ f

∂θ
−

∂ f

∂φ

)

=−
f − f eq

τ
, (3.1a)

f eq =
ρ

2πe
exp

[

−
c2+u2

r +u2
θ−2c(ur cosφ+uθ sinφ)

2e

]

. (3.1b)

Sufficiently fine grid system was applied to obtain accurate data for comparison with
the FDLBM simulations, which enabled us to drop the angle θ from the independent
variables in view of the cylindrical symmetry (∂/∂θ =0).

The macroscopic quantities of the density ρ, the radial velocity ur, the rotational ve-
locity uθ, and the internal energy e are obtained integrating the following moments of the
distribution function, where dc is a volume element in the velocity space (dc= cdcdφ):

ρ=
∫

f dc, (3.2a)

ρur =
∫

f ccosφdc, ρuθ =
∫

f csinφdc, (3.2b)

ρ
(

e+
u2

2

)

=
∫

f
c2

2
dc. (3.2c)
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Figure 4: Grid of the velocity space used in the continuous Boltzmann simulation.

The viscosity coefficient µ has the following relationship:

µ=ρeτ. (3.3)

The radial position and the velocity space were discretized as follows (see Fig. 4):

r= r1+n∆r (n=0,··· ,N), (3.4a)

c= k∆c (k=0,··· ,K), (3.4b)

φ= i∆φ (i=−I+1,··· ,0,··· , I), (3.4c)

where the increments are as follows (cco is a cut off speed):

∆r=
r2−r1

N
, ∆c=

cco

K
, ∆φ=

π

I
. (3.5)

In the gas region r1 < r < r2 (or 1≤ n≤ N−1), the distribution function f new at t+∆t
was calculated from the distribution f (r,c,φ) (or f (n,k,i) by the grid expression) at t by
the following finite difference scheme:

f new = f −
[

ccosφ
∂ f

∂r
−

csinφ

r

∂ f

∂φ
+

f − f eq

τ

]

∆t. (3.6)

The derivatives were calculated by the second order upwind scheme as follows, where
the only variable pertinent to the differentiation is indicated as the subscript:

∂ f

∂r
=











3 fn−4 fn−1+ fn−2

2∆r
, if cosφ≥0,

3 fn−4 fn+1+ fn+2

−2∆r
, if cosφ<0,

(3.7a)

∂ f

∂φ
=















3 fi−4 fi−1+ fi−2

2∆φ
, if sinφ<0,

3 fi−4 fi+1+ fi+2

−2∆φ
, if sinφ≥0.

(3.7b)
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However, at the node n = 1, for cosφ ≥ 0, and at the node n = N−1, for cosφ < 0, the
second order upwind scheme (3.7a) is not applicable. The first order upwind scheme
was applied there,

∂ f

∂r

∣

∣

∣

n=1
=

f1− f0

∆r
(cosφ≥0),

∂ f

∂r

∣

∣

∣

n=N−1
=

fN−1− fN

−∆r
(cosφ<0). (3.8)

The boundary condition on the outer cylinder (n= N) is as follows.
The incident distribution fN (cosφ ≥ 0) was calculated from the gas region by the

evolution equation (3.6) with the second order upwind scheme (3.7a) and (3.7b). The
emissive distribution (cosφ < 0) is a local equilibrium distribution f eq(ρw,uθw,ew). The
density ρw is determined so as to give a zero mass flow normal to the wall,

∫

cosφ>0
fNccosφdc+

∫

cosφ<0
f eq(ρw,uθw,ew)ccosφdc=0. (3.9)

Consequently, the density ρw was calculated as

ρw =−

∫

cosφ>0 fNccosφdc
∫

cosφ<0 f eq(ρw =1.0,uθw,ew)ccosφdc
. (3.10)

The boundary condition on the inner cylinder (n=0) was performed in a similar way.
The integrations (3.2a)-(3.2c) and (3.10) were calculated by the trapezoidal rule. For

example,
∫

f dc was calculated as follows, where f (n,k,i) is abbreviated to fk,i:

∫

f dc=∆φ∆c2

[

I

3
f0,0+

I

∑
i=−I+1

f1,i+2
I

∑
i=−I+1

f2,i+···

+(K−1)
I

∑
i=−I+1

fK−1,i+
3K−1

6

I

∑
i=−I+1

fK,i

]

. (3.11)

The number of radial grids N and the number of azimuthal grids I in the velocity
space were set as the same values of radial grids N and azimuthal grids J in the physical
space for the FDLBM simulation, which will be shown in the next section.

N =100 (∆r=0.01), I =100 (∆φ=0.01π). (3.12)

Dependence study for the number of velocity speed grids K was performed with the cut-
off speed cco = 6.0. The grid ∆c has an effect on the accuracy through the integrations
(3.2a)-(3.2c) and (3.10). It was investigated whether Eqs. (3.2a)-(3.2c) reproduce accu-
rate macroscopic quantities when the equilibrium distribution f eq (ρ=1.0, ur =0.0, uθ =
0.01, e = 1.0) is substituted to the equations. The relative errors (uθ−0.01)/0.01, for
K = 100,200,400,600,800,1000 with I = 100 are shown in Fig. 5. The convergence rate
is second order as Eq. (3.11) implies. The value of K was determined so that the relative
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Figure 5: Dependence study for the number of velocity speed grids K.

error is an order of 0.1 % (or 10−3). Consequently, following values were applied to the
simulation.

K =500, cco =6.0, (∆c=0.012). (3.13)

Simulations for τ =0.01,0.05,0.1,0.2 started from an equilibrium state at rest with ρ=1.0
and e=1.0. Time increment ∆t=0.0008 was commonly used in the continuous Boltzmann
simulations.

The simulation result of the radial velocity ur was zero at any radial position. The
results of uθ and ω versus r are shown in Fig. 6. The Boltzmann solution approaches the
no-slip Navier-Stokes solution as expected as τ approaches zero.

τ=0.2

τ=0.1

τ=0.05

τ=0.01
No-slip N-S solution

Radius r

R
o

ta
ti

o
n

a
l

v
e
lo

c
it

y
u

θ

Cont. Boltzmann solution

1.0 1.5 2.0
0.000

0.005

0.010

τ=0.2

τ=0.1

τ=0.05

τ=0.01

No-slip N-S solution

Radius r

A
n
g
u

la
r

v
e
lo

c
it

y
ω

Cont. Boltzmann solution

1.0 1.5 2.0
0.000

0.001

0.002

0.003

0.004

0.005

Figure 6: Rotational velocity uθ and angular velocity ω versus r by the continuous Boltzmann equation.

On the kinetic theory, the viscous force per unit area is defined by the momentum
flow Pθr; consequently, the torque T per unit angle is defined as follows:

Pθr =
∫

f cθcrdc, T =−r2Pθr, (3.14)
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Figure 7: Torque T per unit angle for various τ by the continuous Boltzmann equation. The torque on the
Navier-Stokes assumption for each τ is also shown to demonstrate the N-S flow area.

where cr = ccosφ, and cθ = csinφ.

The torque per unit angle calculated from the continuous Boltzmann simulation is
shown in Fig. 7. It is constant through the area as the conservation law predicts. The
torque per unit angle on the Navier-Stokes assumption (2.1) was calculated using ω by
the continuous Boltzmann solution. It is shown in the same figure. The region where
the Navier-Stokes assumption agrees with the Pθr definition indicates the area where the
Navier-Stokes equation is valid (N-S flow area). The figure shows that the N-S flow area
dominates almost an entire region when τ=0.01. The N-S flow area shrinks as τ increases
and when τ =0.2 the Navier-Stokes assumption is not valid anywhere.

4 Numerical simulations by the FDLBM models

4.1 Octagon family

Three models with different number of velocity particles were used: Octagon model,
Double Octagon model and Triple Octagon model. Derivation of the models is presented
in [11].

The evolution of the distribution function fki is governed by the following equations:

∂ fki

∂t
+ckix

∂ fki

∂x
+ckiy

∂ fki

∂y
=−

1

τ
( fki− f

eq
ki ), (4.1a)

f
eq
ki =ρFk

[(

1−
u2

2e
+

u4

8e2

)

+
1

e

(

1−
u2

2e

)

ckiξ uξ +
1

2e2

(

1−
u2

2e

)

ckiξ ckiηuξuη

+
1

6e3
ckiξckiηckiζuξuηuζ +

1

24e4
ckiξckiηckiζckiχuξuηuζuχ

]

. (4.1b)
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Figure 8: Unit vectors of moving particles of the Octagon family. From left to right, Octagon model, Double
Octagon model, and Triple Octagon model.

Velocity particles of the models consist of a rest particle and 4 speeds of moving par-
ticles that go forward in 8, 16, and 24 directions. The moving particles (ckix,ckiy) for
each model are obtained through multiplying the unit vectors (Fig. 8) by the speeds ck

(k=1,2,3,4).
For the Octagon model,

ck

(

cos
2π

8
(i−1),sin

2π

8
(i−1)

)

(i=1−8), (4.2)

for the Double Octagon model,

ck

(

cos
2π

16
(i−1),sin

2π

16
(i−1)

)

(i=1−16), (4.3)

and for the Triple Octagon model,

ck

(

cos
2π

24
(i−1),sin

2π

24
(i−1)

)

(i=1−24). (4.4)

The macroscopic quantities of the density ρ, the velocity uα, and the internal energy e
are calculated from the distribution function,

ρ=∑
k,i

fki, (4.5a)

ρuα =∑
k,i

fkickiα, (4.5b)

ρ
(

e+
u2

2

)

=∑
k,i

fki
c2

k

2
. (4.5c)

The viscosity coefficient µ has the following relationship:

µ=ρeτ. (4.6)

The weighting coefficients Fk in the local equilibrium distribution function (4.1b) are

F0 =1−B0(F1+F2+F3+F4), (4.7a)



1302 M. Watari / Commun. Comput. Phys., 9 (2011), pp. 1293-1314

F1 =
B4e4+B3(c2

2+c2
3+c2

4)e3+B2(c2
2c2

3+c2
3c2

4+c2
4c2

2)e2+B1c2
2c2

3c2
4e

c2
1(c2

1−c2
2)(c2

1−c2
3)(c2

1−c2
4)

, (4.7b)

F2 =
B4e4+B3(c2

3+c2
4+c2

1)e3+B2(c2
3c2

4+c2
4c2

1+c2
1c2

3)e2+B1c2
3c2

4c2
1e

c2
2(c2

2−c2
3)(c2

2−c2
4)(c2

2−c2
1)

, (4.7c)

F3 =
B4e4+B3(c2

4+c2
1+c2

2)e3+B2(c2
4c2

1+c2
1c2

2+c2
2c2

4)e2+B1c2
4c2

1c2
2e

c2
3(c2

3−c2
4)(c2

3−c2
1)(c2

3−c2
2)

, (4.7d)

F4 =
B4e4+B3(c2

1+c2
2+c2

3)e3+B2(c2
1c2

2+c2
2c2

3+c2
3c2

1)e2+B1c2
1c2

2c2
3e

c2
4(c2

4−c2
1)(c2

4−c2
2)(c2

4−c2
3)

. (4.7e)

The coefficients B0, B4, B3, B2, and B1 for each model are summarized in Table 1.

Table 1: Coefficients B0, B4, B3, B2, and B1 for each model.

B0 B4 B3 B2 B1

Octagon 8 48 -6 1 -1/4
Double Octagon 16 24 -3 1/2 -1/8
Triple Octagon 24 16 -2 1/3 -1/12

Selection of the moving particle speeds ck is arbitrary as far as the condition 0< c1 <

c2 < c3 < c4 is satisfied. The speeds were determined so that the average particle speed
agrees with the theoretical value, since in the BGK approximation, the Knudsen number
Kn is defined by the relaxation time constant τ and the average particle speed c̄,

Kn=τc̄. (4.8)

The theoretical average particle speed is

c̄=

√

π

2
e. (4.9)

The FDLBM average particle speed was calculated using the equilibrium distribution
with uα =0.0,

ρc̄=∑
k,i

f
eq
ki ck. (4.10)

The speeds were determined to give the best match around e = 1.0. Refer to [10] for the
determination procedure. The result is (c1,c2,c3,c4) = (0.816,1.806,2.978,4.469), which is
common to all three models. The average particle speed, which is common to all three
models, is compared with the theory in Fig. 9.
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Figure 9: Average particle speed of the Octagon family and the theory.

4.2 D2Q9 model

The evolution of the distribution function fi is governed by the following equations:

∂ fi

∂t
+cix

∂ fi

∂x
+ciy

∂ fi

∂y
=−

1

τ
( fi− f

eq
i ), (4.11a)

f
eq
i =ρwi

[

1+3
ciξ uξ

c2
+

9

2

ciξciηuξuη

c4
−

3

2

u2

c2

]

. (4.11b)

The velocity particles (cix,ciy) consist of a rest particle and 8 moving particles (Fig. 10),

(0,0) (i=0), (4.12a)

c
(

cos
[π

2
(i−1)

]

,sin
[π

2
(i−1)

])

(i=1−4), (4.12b)

√
2c

(

cos
[π

2
(i−5)+

π

4

]

,sin
[π

2
(i−5)+

π

4

])

(i=5−8), (4.12c)

where c is the basic particle speed. In the simulation, c=1.0 was assumed.

0 1

2

3

4

56

7 8

Figure 10: D2Q9 model particles.
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The weighting coefficients wi in the local equilibrium distribution function (4.11b) are
defined as follows:

wi =
4

9
(i=0),

1

9
(i=1−4),

1

36
(i=5−8). (4.13)

The macroscopic quantities of the density ρ and the velocity uα are calculated from the
distribution function,

ρ=∑
i

fi, (4.14a)

ρuα =∑
i

ficiα. (4.14b)

The viscosity coefficient µ has the following relationship:

µ=
1

3
ρc2τ. (4.15)

4.3 Numerical simulation scheme

The same finite-difference scheme was applied to the Octagon family and D2Q9 simu-
lations. Since the difference between them is only in the subscript: ki versus i, in this
section the formulation for the Octagon family is described.

ckix

ckiy

x

y

r
θ

Figure 11: Cylindrical coordinate system used in the FDLBM simulation.

The cylindrical coordinate system was adopted to the physical space as shown in
Fig. 11. Since the objective of the FDLBM simulation is to investigate the effect of the
angle θ, the physical space shown in Fig. 12 was applied, different from the physical space
of the continuous Boltzmann simulation in Section 3 where the cylindrical symmetry was
used.

The position (r,θ) is expressed as the grid system (n, j),

r= r1+n∆r (n=0,··· ,N), θ = j∆θ (j=−2,··· , J+2), (4.16)

where the increments are defined as follows:

∆r=
r2−r1

N
, ∆θ =

π

J
. (4.17)
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Figure 12: Grid of the physical space used in the FDLBM simulation.

In the gas region r1<r<r2 (or 1≤n≤N−1), and 0≤θ≤π (or 0≤ j≤ J), the distribution
function f new

ki at t+∆t was calculated from the distribution fki at t by the following finite
difference scheme (see Appendix):

f new
ki = fki−

[

ckir
∂ fki

∂r
+ckiθ

∂ fki

r∂θ
+

1

τ
( fki− f

eq
ki )

]

∆t. (4.18)

Velocities in the cylindrical coordinate have following relationships with those in the
Cartesian coordinate:

ckir = ckix cosθ+ckiy sinθ, ckiθ =−ckix sinθ+ckiy cosθ, (4.19a)

ur =ux cosθ+uy sinθ, uθ =−ux sinθ+uycosθ. (4.19b)

The derivatives at position (n, j) were calculated by the second order upwind scheme,

∂ fki

∂r
=











3 fki,n−4 fki,n−1+ fki,n−2

2∆r
, if ckir≥0,

3 fki,n−4 fki,n+1+ fki,n+2

−2∆r
, if ckir <0,

(4.20a)

∂ fki

∂θ
=















3 fki,j−4 fki,j−1+ fki,j−2

2∆θ
, if ckiθ ≥0,

3 fki,j−4 fki,j+1+ fki,j+2

−2∆θ
, if ckiθ <0.

(4.20b)

However, at the node n = 1, for ckir ≥ 0, and at the node n = N−1, for ckir < 0, the sec-
ond order upwind scheme (4.20a) is not applicable. The first order upwind scheme was
applied there,

∂ fki

∂r

∣

∣

∣

n=1
=

fki,1− fki,0

∆r
(ckir ≥0),

∂ fki

∂r

∣

∣

∣

n=N−1
=

fki,N−1− fki,N

−∆r
(ckir <0). (4.21)

The boundary condition on the outer cylinder (n = N) is as follows. The incident
distribution fki,N (ckir ≥0) was calculated from the gas region by the evolution equation
(4.18) with the second order upwind scheme (4.20a) and (4.20b).
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The emissive distribution (ckir <0) is a local equilibrium distribution f
eq
ki (ρw,uθw,ew).

The density ρw was determined so as to give a zero mass flow normal to the wall,

ρw =−
∑ckir>0 fki,Nckir

∑ckir<0 f
eq
ki (ρw =1.0,uθw,ew)ckir

. (4.22)

The boundary condition on the inner cylinder (n=0) was treated in a similar way.
To ensure the second order upwind scheme for ∂ fki/∂θ (4.20b) at θ=0 and π, two lines

of extra grids, j=−1,−2, and j= J+1, J+2, were added at each end. The distributions fki,j

at the extra grids were given utilizing anti-symmetrical relationship as follows:

f0,−1 = f0,J−1, f0,−2 = f0,J−2, fki,−1 = fki⋆ ,J−1, fki,−2 = fki⋆ ,J−2, (4.23a)

f0,J+1 = f0,1, f0,J+2 = f0,2, fki,J+1 = fki⋆ ,1, fki,J+2 = fki⋆ ,2, (4.23b)

where the subscript i⋆ indicates the opposite direction of the subscript i. As an example,
the anti-symmetrical relation for the Octagon model is shown in Table 2.

Table 2: Anti-symmetrical relation for the Octagon model.

i 1 2 3 4 5 6 7 8
i⋆ 5 6 7 8 1 2 3 4

Grid dependence study was performed using the Octagon model with τ=0.2 varying
the number of radial grids N and the number of azimuthal grids J. The effect of N was
investigated varying N =25,50,100,150 with J =100. Assuming the finest case is the true
solution, following RMS error was evaluated at the common 26 radial positions.

∆uθ =

√

∑(uθ−uθ.true)2

number of samples
. (4.24)

Similarly the effect of J was investigated varying J = 30,50,100,150, with N = 100. The
relative errors ∆uθ/uθw are shown in Fig. 13. The values of N and J were determined
so that the relative error is less than 0.1 % (or 10−3). N = 50 is satisfactory. However,
following values were applied to the simulation:

N =100 (∆r=0.01), J =100 (∆θ =0.01π). (4.25)

Time increment ∆t=0.001 was commonly used in the FDLBM simulations.

5 Results of the FDLBM simulation

5.1 Results by the Octagon family

Simulations for τ = 0.01,0.05,0.1, and 0.2 started from an equilibrium state at rest with
ρ = 1.0 and e = 1.0. The steady state rotational velocity uθ in the flow domain for the
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Figure 13: Dependence study for the number of radial grids N and the number of azimuthal grids J.
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Figure 14: Octagon model. Rotational velocity uθ in the flow domain for τ =0.01,0.05,0.1 and 0.2.

Octagon model with various τ are shown in Fig. 14. The flow is uniform for small τ,
however, non-uniformity becomes prominent as τ increases.

To confirm it more clearly, the rotational velocity uθ for τ = 0.2 at the angles θ =
0,π/10,π/5 (or 0◦,18◦,36◦) are shown in Fig. 15. The model’s dependence on the an-
gle θ, in particular in the vicinity of the inner cylinder, is apparent. The uθ distributions
for the Double Octagon and the Triple Octagon are shown in Fig. 16. For the Triple Oc-
tagon model, the dependence is almost negligible and the agreement with the continuous
Boltzmann solution is perfect.
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Figure 15: Rotational velocity uθ versus r for
Octagon model with τ=0.2 at θ=0◦,18◦ ,36◦.
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Figure 16: Rotational velocity uθ versus r for Double Octagon and Triple Octagon model with τ = 0.2 at
θ = 0◦,18◦ ,36◦. For Triple Octagon model, simulation result by the continuous Boltzmann equation is shown
for comparison.

The torque T per unit angle was calculated as

T =−r2Pθr =−r2∑
k,i

fkickiθckir. (5.1)

The torque per unit angle at the angles θ = 0◦,18◦,36◦ for the Octagon, Double Octagon,
and Triple Octagon are shown in Fig. 17. The torque Tav averaged over θ = 0 to π are
also shown in the figures. Although the torque T at each θ fluctuates, the average Tav is
constant.

The torque Tintg was obtained by multiplying Tav at r = 1.5 by 2π. The difference of
Tintg between the Octagon, Double Octagon, and Triple Octagon is very small. Tintg for
the Triple Octagon versus τ is shown in Fig. 18. The no-slip solution by the Navier-Stokes
equation obtained in Section 2 and the results by the continuous Boltzmann simulation
in Section 3 are shown in the same figure. The agreement with the continuous Boltzmann
equation is perfect. They approach the no-slip Navier-Stokes solution as expected as τ or
the Knudsen number Kn decreases.
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Figure 17: Torque T per unit angle for Oc-
tagon, Double Octagon, and Triple Octagon
at θ =0◦,18◦ ,36◦.
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Figure 18: Torque integrated Tintg for Triple
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Navier-Stokes equation and the results by the
continuous Boltzmann simulation are shown
for comparison.

5.2 Results by the D2Q9 model

The rotational velocity uθ in the flow domain for the D2Q9 model with various τ are
shown in Fig. 19.
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Figure 19: D2Q9 model. Rotational velocity uθ in the flow domain for τ =0.01,0.05,0.1 and 0.2.
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Figure 20: D2Q9 model. Rotational velocity uθ for τ = 0.2 and torque T per unit angle for various τ at
θ =0◦,18◦ ,36◦.

The rotational velocity uθ for τ = 0.2 and the torque T per unit angle at the angles
θ =0◦,18◦,36◦ are shown in Fig. 20. The non-uniformity due to the angle θ is as large as
the Octagon model.

5.3 Computing time

Simulations were performed using a personal Dell Inspiron 1525 computer with Intel
Core2. The computing time required to obtain a steady state for the continuous Boltz-
mann and the FDLBM simulations with τ=0.01 and 0.1 are summarized in Table 3. In the
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Table 3: Computing time required to obtain a steady state for the continuous Boltzmann and the FDLBM
simulations with τ =0.01 and 0.1.

Cont. Boltz. Triple Oct. Double Oct. Octagon D2Q7
τ =0.01 14288min 582min 391min 217min 99min

(9d 22h 8min) (9h 42min) (6h 31min) (3h 37min) (1h 39min)
τ =0.1 2312min 88min 61min 31min 13min

(38h 32min) (1h 28min) (1h 1min)
Velocity space 501×200 1+4×24 1+4×16 1+4×8 1+8
Physical space 101 101×105 101×105 101×105 101×105

table, the grid size of the velocity space or the number of velocity particles, and the grid
size of the physical space are also summarized. The computing time for τ =0.01 is about
7 times that for τ=0.1 since transmission of the torque is slow from the low viscosity. The
ratio of computing time for the Triple Octagon, Double Octagon, Octagon, and D2Q9 is
roughly 6 : 4 : 2 : 1. It is understandable that the computing time for the FDLBM simula-
tion increases in proportion to the number of velocity particles since the physical spaces
are common. The computing time for the continuous Boltzmann simulation is about 25
times that for the Triple Octagon simulation. If the continuous Boltzmann simulation
were to be performed with the same physical space grids, the computing time would be
2500 times that for the Triple Octagon simulation. If a more efficient integration method
is applied to the continuous Boltzmann simulation or the accuracy is compromised, it is
possible to apply a coarser grid system and to shorten the computing time. Nevertheless,
directly solving the continuous Boltzmann equation remains a daunting task.

6 Conclusions

Numerical simulations of rotational slip flow in coaxial cylinders were conducted to
study applicability of the LBM and FDLBM to a velocity slip phenomenon in 2D envi-
ronment. The cylindrical coordinate system was successfully applied.

In order to decrease the dependency on the inclination angle to the wall, sufficient
number of directions of velocity particles are necessary. The Octagon and D2Q9 models,
whose moving velocity particles go forward in eight directions, show a strong depen-
dency on the inclination angle when the Knudsen number is large. The dependency
on the inclination angle for the Triple Octagon model whose moving velocity particles
go forward in 24 directions is quite small. The simulation results by the Triple Oc-
tagon model agree very well with those by the continuous Boltzmann simulation and
approaches the no-slip Navier-Stokes solution as the limit of small Knudsen number.

An increase in accuracy is accomplished in compensation for the computational cost.
The ratio of computing time for the Triple Octagon, Double Octagon, Octagon, and D2Q9
is roughly 6 : 4 : 2 : 1, which is proportional to the number of velocity particles. If the
continuous Boltzmann simulation were to be performed with the same physical space
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grids as the FDLBM, the computing time would be 2500 times that for the Triple Octagon
simulation. Even if a more efficient integration method is applied or the accuracy is
compromised, directly solving the continuous Boltzmann equation remains a daunting
task.

The author believes that the FDLBM is an ideal solver in an intermediate flow, where
both the Navier-Stokes flow and the rarefied flow co-exist, if the model has sufficient
velocity particles like the Triple Octagon model.

Appendix

Boltzmann equation in the cylindrical coordinate system

The Boltzmann equation in the cylindrical coordinate system is summarized [15,16]. The
convection term of the Boltzmann equation in the Cartesian coordinate, where the inde-
pendent variables are (x,y,cx,cy), is expressed as

cx
∂ f

∂x
+cy

∂ f

∂y
. (A.1)

If the cylindrical coordinate system (r,θ) is introduced to the physical space, several ex-
pressions for the convection term are possible depending on the treatment of the velocity
space (c1,c2) (see Fig. 21). The spatial derivatives are changed according to the following
relations:

∂

∂x
=

∂r

∂x

∂

∂r
+

∂θ

∂x

∂

∂θ
+

∂c1

∂x

∂

∂c1
+

∂c2

∂x

∂

∂c2
, (A.2)

∂

∂y
=

∂r

∂y

∂

∂r
+

∂θ

∂y

∂

∂θ
+

∂c1

∂y

∂

∂c1
+

∂c2

∂y

∂

∂c2
. (A.3)

The relationship between (x,y) and (r,θ) is

r=
√

x2+y2, θ = tan−1
(y

x

)

. (A.4)

x

y

r
θ

c r
c θ

φc
cx

cy

Figure 21: Cylindrical coordinate system: the physical space and velocity space.
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Consequently,
∂r

∂x
=cosθ,

∂r

∂y
=sinθ,

∂θ

∂x
=−

sinθ

r
,

∂θ

∂y
=

cosθ

r
. (A.5)

Cylindrical coordinate 1: f (r,θ,cx,cy)

This expression was adopted in the FDLBM simulation. The velocity space remains un-
changed; consequently, is independent from the physical space

∂cx

∂x
=

∂cx

∂y
=

∂cy

∂x
=

∂cy

∂y
=0. (A.6)

Therefore, the convection term is expressed as

(cx cosθ+cy sinθ)
∂ f

∂r
+
−cx sinθ+cy cosθ

r

∂ f

∂θ
. (A.7)

Cylindrical coordinate 2: f (r,θ,c,φ)

This expression was adopted in the continuous Boltzmann simulation. The velocity space
rotates in accordance with the physical space. The variables (c,φ) are expressed as

c=
√

c2
x+c2

y, φ= tan−1
(−cxy+cyx

cxx+cyy

)

, (A.8)

∂c

∂x
=

∂c

∂y
=0,

∂φ

∂x
=

sinθ

r
,

∂φ

∂y
=−

cosθ

r
. (A.9)

Consequently, the convection term becomes

(cx cosθ+cysinθ)
∂ f

∂r
+
−cx sinθ+cycosθ

r

∂ f

∂θ
+

cx sinθ−cy cosθ

r

∂ f

∂φ

=(cx cosθ+cysinθ)
∂ f

∂r
+
−cx sinθ+cycosθ

r

(∂ f

∂θ
−

∂ f

∂θ

)

=ccosφ
∂ f

∂r
+

csinφ

r

(∂ f

∂θ
−

∂ f

∂φ

)

. (A.10)

Cylindrical coordinate 3: f (r,θ,cr ,cθ)

This expression frequently appears in texts. The velocity space rotates in accordance with
the physical space and the variables (cr,cθ) are functions of (x,y),

cr =
cxx+cyy
√

x2+y2
, cθ =

−cxy+cyx
√

x2+y2
, (A.11)

∂cr

∂x
=−

cθ sinθ

r
,

∂cr

∂y
=

cθ cosθ

r
,

∂cθ

∂x
=

cr sinθ

r
,

∂cθ

∂y
=−

cr cosθ

r
. (A.12)
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Consequently, the convection term becomes

(cx cosθ+cysinθ)
∂ f

∂r
+
−cx sinθ+cycosθ

r

∂ f

∂θ
+

cθ(−cx sinθ+cy cosθ)

r

∂ f

∂cr

+
cr(cx sinθ−cycosθ)

r

∂ f

∂cθ
= cr

∂ f

∂r
+

cθ

r

∂ f

∂θ
+

c2
θ

r

∂ f

∂cr
−

crcθ

r

∂ f

∂cθ
. (A.13)

References

[1] C. Y. Lim, C. Shu, X. D. Niu, and Y. T. Chew, Application of lattice Boltzmann method to
simulate microchannel flows, Phys. Fluids., 14 (2002), 2299–2308.

[2] X. Nie, G. D. Doolen, and S. Chen, Lattice-Boltzmann simulations of fluid flows in MEMS, J.
Stat. Phys. 107 (2002), 279–289.

[3] M. Sbragaglia, and S. Succi, Analytical calculation of slip flow in lattice Boltzmann models
with kinetic boundary conditions, Phys. Fluids., 17 (2005), 093602.

[4] S. Ansumali, and I. V. Karlin, Kinetic boundary conditions in the lattice Boltzmann method,
Phys. Rev. E., 66 (2002), 026311.

[5] G. H. Tang, W. Q. Tao, and Y. L. He, Lattice Boltzmann method for gaseous microflows using
kinetic theory boundary conditions, Phys. Fluids., 17 (2005), 058101.

[6] Y. Zhang, R. Qin, and D. R. Emerson, Lattice Boltzmann simulation of rarefied gas flows in
microchannels, Phys. Rev. E., 71 (2005), 047702.

[7] X. D. Niu, S. A. Hyodo, T. Munekata, and K. Suga, Kinetic lattice Boltzmann method for
microscale gas flows: issues on boundary condition, relaxation time, and regularization,
Phys. Rev. E., 76 (2007), 036711.

[8] V. Sofonea, and R. F. Sekerka, Diffuse-reflection boundary conditions for a thermal lattice
Boltzmann model in two dimensions: evidence of temperature jump and slip velocity in
microchannels, Phys. Rev. E., 71 (2005), 066709.

[9] V. Sofonea, and R. F. Sekerka, Boundary conditions for the upwind finite difference lattice
Boltzmann model: evidence of slip velocity in micro-channel flow, J. Comput. Phys., 207
(2005), 639–659.

[10] M. Watari, Velocity slip and temperature jump simulations by the three-dimensional thermal
finite-difference lattice Boltzmann method, Phys. Rev. E., 79 (2009), 066706.

[11] M. Watari, Relationship between accuracy and number of velocity particles of the finite-
difference lattice Boltzmann method in velocity slip simulations, J. Fluids. Eng., 132 (2010),
101401.

[12] M. Watari, and M. Tsutahara, Two-dimensional thermal model of the finite-difference lattice
Boltzmann method with high spatial isotropy, Phys. Rev. E., 67 (2003), 036306.

[13] Y. H. Qian, D. D’Humieres, and P. Lallemand, Lattice BGK models for Navier-Stokes equa-
tion, Europhys. Lett., 17 (1992), 479–484.

[14] R. A. Millikan, Coefficients of slip in gases and the law of reflection of molecules from the
surfaces of solids and liquids, Phys. Rev., 21 (1923), 217–238.

[15] M. N. Kogan, Rarefied Gas Dynamics, Plenum, New York, 1969.
[16] Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications, Birkhäuser,
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