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Abstract. We consider the grid resolution necessary to resolve combustion in a mix-
ture of calorically imperfect ideal gases described by detailed kinetics and multicom-
ponent transport. Using the steady premixed laminar flame as a paradigm, the re-
quired spatial discretization to capture all detailed physics in the reaction zone is found
via 1) determination of the finest grid used in a standard software tool which employs
adaptive mesh refinement, 2) examination of peak values of intermediate species mass
fractions in the flame zone as a function of grid size, 3) a formal grid resolution study,
and 4) a robust new eigenvalue analysis developed to estimate the finest length scale.
Application to laminar premixed flames in hydrogen-air flames reveals that the finest
length scale is on the order of 10−4 cm for combustion at atmospheric pressure. Res-
olution at this scale is shown to be necessary to capture detailed species mass fraction
profiles; other features such as steady flame speeds and equilibrium thermochemical
properties do not have such a stringent length scale requirement.

AMS subject classifications: 65, 76, 80
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1 Introduction

Here we will employ a few basic numerical strategies to develop reliable tools which can
give estimates of the grid size necessary for a mathematically verified calculation of re-
acting flows. The estimates are developed for a simple configuration: a one-dimensional
steady laminar flame. Indeed, it may come as a surprise that such straightforward tools
as grid convergence studies of laminar flames have not been highlighted in the literature.
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But that is in fact the status quo, and the absence of such studies, coupled with the ul-
timate need for accurate reacting flow calculations for more complex scenarios, justifies
the straightforward exercise presented here.

There is some ambiguity in the combustion literature about what constitutes a re-
solved solution. Many consider a calculation to be resolved if certain global or derived
quantities, such as steady flame speed, are insensitive to grid size. Indeed, these are
necessary conditions. However, as discussed by Roache [1], convergence of only global
quantities is not a sufficient indicator of a fully resolved solution, and taken alone can
lead to incorrect conclusions. While a derived quantity may be a function of all depen-
dent variables, it may be insensitive to errors in some of them. Which variables they are
insensitive to is problem-dependent, and impossible to determine a priori. In the con-
text of a combustion problem, the fact that one may be using a grid which captures the
correct flame speed offers no guarantee that species mass fractions have been accurately
predicted.

Here, we follow Roache [1] and adopt the more rigorous characterization of a resolved
solution as one in which all dependent variables throughout the domain are insensitive to
changes in discretization size. This more demanding characterization is fully consistent
with standard notions found in the broader mathematical and scientific computing liter-
ature, cf. [2–6]. The exercise of demonstrating the harmony of the discrete solution with
the foundational mathematics is known as verification [7]. Neglecting this issue can give
rise to solutions whose macro-behavior depends on the size of the grid and the algorithm
that has been used to solve the mathematical model.

For multi-scale problems, verification is difficult due to the range of the scales, which
may span many orders of magnitude. Nonlinearity can induce significant coupling across
the scales so that errors at small scales can rapidly cascade to the large scales. Moreover,
the strength of the coupling across the scales is not known a priori. So, all the physical
scales of the mathematical model have to be captured in order to have full confidence
that predictions are repeatable, grid-independent, and thus verifiable. The main aim
of this paper is to estimate the required spatial resolution to capture all physical scales
in a standard multi-scale problem: the steady one-dimensional laminar premixed flame
propagating freely at atmospheric pressure in a stoichiometric mixture of hydrogen-air
described by detailed kinetics and multi-component transport.

In a complementary study, two of the authors [8] gave a robust method to provide
an accurate determination of the finest length scale in the reaction zone of a Chapman-
Jouguet detonation based on spatial eigenvalue analysis. It was concluded that the re-
quired spatial discretization for detonations in hydrogen-air mixtures initially at atmo-
spheric pressure is ∼10−4 cm. Here, the method employed in [8] to calculate the length
scales for gas phase detonation is implemented with modification for deflagration. The
method is reliable in that it has little dependence on the details of the underlying numer-
ical method used to calculate the laminar flame. It simply requires a local determination
of the state of the system. As such, it is able to estimate accurately the length scales using
a fundamental mathematical approach. Lastly, the present study extends some of our
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preliminary work on laminar flames [9, 10].

The paper is organized as follows. In Section 2, the governing partial differential
equations (PDEs) for unsteady reactive flow are presented. These are reduced into a sys-
tem of differential algebraic equations (DAEs) which describes the spatial evolution of
the state variables. In this section we also describe the numerical algorithm. In Section 3,
results are given. In Section 3.1, the algorithm is verified by comparison with calculations
given by Smooke et al. [11] for a laminar premixed flame in a hydrogen-air mixture using
a standard adaptive refinement method. On a related problem, we then give a simple
estimate of the necessary grid resolution by examining the finest grid size employed by
the adaptive method. Then in Section 3.2 we use simulations on several uniform grids to
see how a challenging intermediate species mass fraction’s peak value converges within
the flame zone. Next, in Section 3.3, a more rigorous verification is given by a grid con-
vergence study to demonstrate the necessary and sufficient discretization size required to
guarantee that the prediction of dependent variables throughout the domain is insensi-
tive to grid size. Lastly in Section 3.4, all the length scales predicted by the corresponding
spatial eigenvalue problem are shown, and the finest length scale is compared with the
flame thickness. This comparison is presented for a wide range of pressures.

2 Mathematical model

2.1 Governing equations

The following unsteady equations, in conservative form, describe the system under con-
sideration: a one-dimensional adiabatic laminar premixed mixture of N molecular species
composed of L atomic elements which undergo J reversible reactions [12, 13] with no
body force:
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ũ2

2

))
=−

∂

∂x̃

(
ρũ
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i )+ω̇iMi, 1≤ i≤N−1. (2.4)

Here, we use the tilde to denote the laboratory reference frame. The independent vari-
ables are the spatial coordinate x̃ and time t̃. The dependent variables are mixture density
ρ, mixture velocity ũ, mixture pressure p, mixture viscous stress τ, mass-based specific in-
ternal energy of the mixture e, total heat flux Jq, and for the ith specie, Yi, Jm

i , and ω̇i, which
are the mass fraction, the diffusive mass flux, and the molar production rate per unit vol-
ume, respectively. The constant Mi is the molecular mass of specie i. Eqs. (2.1)-(2.3)
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describe the conservation of mass, linear momentum, and energy, respectively. Eq. (2.4)
is an evolution equation for N−1 species. This system of equations is completed by
adopting a standard set of constitutive equations for an ideal mixture of reacting calor-
ically imperfect ideal gases. The mixture is taken to react according to the law of mass
action for detailed chemical kinetics with Arrhenius temperature-dependency. For dif-
fusive momentum and energy transport, appropriate mixture diffusivity coefficients are
adopted; for diffusive mass-transport a multi-component diffusion model is employed.
Details are found in Appendix A.1.

The complete system is simplified to the following form which commonly appears in
the literature to model stationary laminar premixed flames at constant pressure and low
Mach number, cf. [14–17]:

d

dx
(ρu)=0, (2.5)

ρucp
dT

dx
+

dq

dx
+

N

∑
i=1

(
Jm
i

dhi

dx
+ω̇iMihi

)
=0, (2.6)

ρu
dYi

dx
+

dJm
i

dx
= ω̇iMi, 1≤ i≤N−1. (2.7)

Here x and u are the distance coordinate and fluid particle velocity, respectively, mea-
sured in the reference frame in which the flame is stationary, cp is the mixture-averaged
specific heat at constant pressure, T is the temperature, q is the Fourier heat flux, and
hi is the enthalpy of specie i. These are completed with an appropriate set of boundary
conditions:

x=0 : T =To, Yi+
Jm
i

ρoS
=Yio, 1≤ i≤N−1, (2.8)

x→∞ :
dT

dx
→0,

dYi

dx
→0, 1≤ i≤N−1, (2.9)

x= x f : T =Tf , (2.10)

where S is the flame speed, x f is a specified spatial point and Tf is the specified temper-
ature at that location [15]. These are commonly used to study deflagration, though other
formulations are possible. These boundary conditions are sufficient for freely propagat-
ing flames, where for this type of flame the mass flow rate is unknown [16, 17], so the
temperature at an interior spatial point has to be specified. The point x f and temperature
Tf have to be selected such that all the gradients approach zero at the cold boundary at
x=0. A detailed reduction of Eqs. (2.1)-(2.4) to Eqs. (2.5)-(2.7) is given in Appendix A.2.

A solution for the boundary value problem with the boundary conditions can be ob-
tained by discretizing the spatial domain using finite differences. The resulting alge-
braic system of equations is then solved iteratively using a damped modified Newton’s
method, where the solution iterate is brought into the convergence domain by using
pseudo-time integration [14]. We will use this method for our steady flame calculations.
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In all cases the iterative errors we obtain correspond to a relative tolerance RTOL=10−9

and absolute tolerance ATOL=10−14, as defined in detail in [14]. The values utilized are
five orders of magnitude more stringent than the default values; moreover, the absolute
tolerance is approaching the machine precision error.

The standard form of Eqs. (2.5)-(2.7) is inconvenient for a rigorous eigen-analysis of
the length scales. For this task, a non-traditional system of DAEs is more convenient.
Following lengthy analysis, one obtains the system of DAEs:

A(z)·
dz

dx
= f(z). (2.11)

Appendix A.2 gives details of the reduction to Eq. (2.11). Here z is a set of state variables,
A is a singular matrix, and f is a set of forcing functions; see Eqs. (A.26)-(A.27).

2.2 A posteriori length scale analysis

To accurately determine the length scales over which the system evolves, an eigenvalue
analysis of Eq. (2.11) can be performed. Since A is singular, standard eigenvalue analy-
sis is not applicable. Instead, the generalized eigenvalues of this dynamical system are
calculated [18]. Employing the generalized eigenvalue method on a singular system is a
robust method to distinguish small physically based eigenvalues from those which are
mathematically zero. This is particularly important in multi-scale problems where ordi-
nary eigenvalue analysis often generates a set of eigenvalues for which the distinction is
either difficult or impossible. The mathematical zero eigenvalues arise from the invari-
ants of the problem.

Assume first that z=ẑ(x) has been determined by some appropriate numerical method
so that ẑ(x) satisfies Eqs. (2.5)-(2.10) (and thus also Eq. (2.11)). Consider then an arbitrary
spatial point x = x∗ at which the state variables are z = ẑ(x∗) = z∗. By defining the per-
turbation from ẑ(x) as z′(x) = z(x)− ẑ(x), and linearizing Eq. (2.11) about x = x∗, one
finds

(
A∗+Ψ
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)
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)
·
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dẑ
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+
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)
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)
, (2.12)

where A∗ =A(z∗), f∗ = f(z∗) are now locally constant, J∗ is the locally constant Jacobian
evaluated as

J∗ik =
∂ fi

∂zk

∣∣∣∣
z=z∗

, 1≤ i,k≤2N+2, (2.13)

and Ψ
∗ is a locally constant third-order matrix given by

Ψ∗
ijk =

∂Aij

∂zk
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, 1≤ i, j,k≤2N+2. (2.14)
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By considering only linear terms in Eq. (2.12) and employing the fact that A∗·dẑ/dx|x=x∗=
f∗, one finds that

A∗ ·
dz′

dx
= J∗ ·z′−Ψ

∗ ·z′ ·
dẑ

dx

∣∣∣∣
x=x∗

, (2.15)

which can be compactly rewritten as

A∗ ·
dz′

dx
=B∗ ·z′, (2.16)

where
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dẑj

dx
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x=x∗

)
, 1≤ i,k≤2N+2. (2.17)

Next, adopt the standard assumption that

z′ = eλxv, (2.18)

where λ and v are constants to be determined. Substitution of Eq. (2.18) into Eq. (2.16)
yields the generalized eigenvalue problem

λA∗ ·v=B∗ ·v, (2.19)

where λ is in general a complex number denoting the generalized eigenvalue, and v is
the corresponding generalized eigenvector. Solving for λi, i = 1,··· ,2N−L, then from
Eq. (2.18) it is easily seen that the length scales over which the perturbations evolve are
given by the reciprocal of the real part of these eigenvalues,

ℓi =
1

|Re(λi)|
, 1≤ i≤2N−L. (2.20)

In general, the eigenvalues are complex, where the reciprocals of the real parts provide
the length scales of amplitude growth, and the reciprocals of the imaginary parts repre-
sent the oscillatory length scale. In this work, the eigenvalues are purely real, except in
some limited portions of the domain. By evaluating the eigenvalues at each spatial point,
the length scales over which the system evolves are determined. As a result, the mini-
mum size of discretization to capture the finest scale of the system can be determined.
We note that this minimum scale is not necessarily required everywhere in the domain.
However, this might justify the use of spatially adaptive algorithms.

2.3 Computational method for spatial eigenvalues

A double precision FORTRAN-77 code has been developed and linked with the Interna-
tional Mathematical and Statistical Libraries (IMSL) routines DFDJAC for Jacobian eval-
uation, DGVLRG for generalized eigenvalues estimation, and a double precision version
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of the public domain edition of the CHEMKIN package [19, 20] to obtain kinetic rates and
thermodynamics properties, a double precision version of the public domain edition of
the TRANSPORT package [21] to calculate multi-component transport properties of species,
and a double precision version of the public domain edition of the PREMIX algorithm [14]
to obtain the steady structure of adiabatic laminar premixed flames.

In this study, the resolved structure is obtained by solving the standard form, Eqs. (2.5)-
(2.7), and the eigenvalues are obtained from Eq. (2.16). Most calculations are performed
on a uniform grid to enable the grid resolution study. As a check, using a standard option
available in PREMIX, some results are obtained on a grid that is adaptively refined to control
the error and capture regions of steep gradient. A second order central difference scheme
is employed to discretize the spatial derivatives. All calculations presented have been
performed on a single processor 3.2 GHz Hewlett-Packard machine, and typical calcula-
tions were completed within one minute. Some highly resolved calculations done in grid
convergence studies required significant run times; the most resolved calculation took
several weeks.

3 Results

A stoichiometric hydrogen-air mixture at po=1 atm is considered, where the initial molar
ratio is given by 2H2+O2+3.76N2. A kinetic model identical to that of Smooke et al. [11],
with L=3 elements, N =9 species, and J =19 reversible reactions is used; see Table 1. In
this mechanism, the reactant species are H2,O2,H,O,OH,HO2,H2O2, and H2O. The inert
diluent is N2. The non-unity coefficients of the collision efficiency of the ith specie with
the third body in the jth reaction are listed in Table 2. To verify our predictions, we 1)
informally compare our results to those previously reported in the literature and more
rigorously examine the finest length scale used in a standard adaptive grid modeling
strategy, 2) determine the grid resolution necessary to accurately capture the peak value
of a challenging intermediate specie, HO2, which is most active in the flame zone, 3)
perform a formal grid convergence study, and 4) present the results of the spatial eigen-
value analysis and compare the length scale predictions with the direct computational
evidence. For all dependent variables zi, the relative errors, E∞i throughout the entire
domain are obtained from the following formula:

E∞i = max
xo≤x≤xeq

∣∣∣∣
zexact

i (x)−zi(x)

zexact
i (x)

∣∣∣∣. (3.1)

Here we take xo to be the location of the cold boundary and xeq to be the location of
the equilibrium state. In practice, both xo and xeq will be approximated by finite num-
bers; also, the exact solution for a state variable zexact

i (x) is estimated by a highly refined
discrete solution, to be described in more detail in the following sections.
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Table 1: Reaction mechanism rate coefficients for hydrogen-air mixture.

j Reaction Aj

[
(mole/cm3)

(
1−∑

N
i=1 ν′ij

)

/s/Kβ j

]
β j Ej [cal/mole]

1 H2+O2 ⇋OH+OH 1.70×1013 0.000 47780
2 OH+H2 ⇋ H2O+H 1.17×109 1.300 3626
3 H+O2 ⇋OH+O 5.13×1016 −0.816 16507
4 O+H2 ⇋OH+H 1.80×1010 1.000 8826
5 H+O2+M⇋ HO2+M 2.10×1018 −1.000 0

6 H+O2+O2 ⇋ HO2+O2 6.70×1019 −1.420 0
7 H+O2+N2 ⇋ HO2+N2 6.70×1019 −1.420 0
8 OH+HO2 ⇋ H2O+O2 5.00×1013 0.000 1000
9 H+HO2 ⇋OH+OH 2.50×1014 0.000 1900

10 O+HO2 ⇋O2+OH 4.80×1013 0.000 1000
11 OH+OH ⇋O+H2O 6.00×108 1.300 0
12 H2+M⇋ H+H+M 2.23×1012 0.500 92600
13 O2+M⇋O+O+M 1.85×1011 0.500 95560
14 H+OH+M⇋ H2O+M 7.50×1023 −2.600 0
15 H+HO2 ⇋ H2+O2 2.50×1013 0.000 700
16 HO2+HO2 ⇋ H2O2+O2 2.00×1012 0.000 0
17 H2O2+M⇋OH+OH+M 1.30×1017 0.000 45500
18 H2O2+H ⇋ HO2+H2 1.60×1012 0.000 3800

19 H2O2+OH ⇋ H2O+HO2 1.00×1013 0.000 1800

Table 2: Third body collision efficiency coefficients, αji. All other values not in the table are 1.

Reaction H2 H H2O
5 3.3 1 21
12 3 2 6
14 1 1 20

3.1 Adaptive refinement verification

The following calculations use the standard adaptive mesh refinement technique avail-
able in the PREMIX code. For informal verification, a calculation is performed to repro-
duce the temperature and species profiles of the stoichiometric, atmospheric pressure
hydrogen-air flame found in Smooke et al. [11]. Eqs. (2.5)-(2.7) with the boundary condi-
tions Eqs. (2.8)-(2.10) are solved; this model is identical to that of [11]. The specified spa-
tial point is x f =0.05 cm, the specified temperature is Tf =400 K, and the temperature of
the unburned mixture is To =298 K. In this particular calculation, while the Dufour effect
in the heat flux model is neglected, the Soret effect in the mass flux model is considered
to match the model in [11]. Although considering one of these terms and neglecting the
other violates Onsager reciprocity, this is done here for verification purposes only. The
results are illustrated in Fig. 1; visual inspection shows that the stationary flame structure
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Figure 1: Temperature and species mole fraction (χi = MYi/Mi) profiles vs. distance in a stoichiometric
hydrogen-air flame, To =298 K, po =1 atm.

is identical to that of [11]. To enable direct comparison with [11], we plot mole fraction,
χi = MYi/Mi; the remainder of our species profiles which follow are in terms of mass
fraction, Yi.

The predictions shown in Fig. 1 support the standard interpretation of a flame. In
short, for small x there is a preheat zone where major species have nearly constant mass
fractions. In this zone, minor species have small mass fractions which exhibit exponential
growth, though this is not evident on the linear scale of Fig. 1, and the temperature rises
slowly. At a certain location within the flame structure, minor species achieve critical val-
ues which enable vigorous reaction in what is called the flame zone. Here, some radical
species such as HO2 acquire large, sharply peaked, values relative to their values in the
cold and near-equilibrium regions. For larger x, the system relaxes to a final equilibrium.
In this region, exothermic recombination reactions dominate as the major product H2O
is formed in large quantities. Though not evident on the linear scale shown in Fig. 1, the
solutions are mildly corrupted near the cold boundary x=0, preventing an effective dis-
play of flame dynamics in this region. Due to finite double precision machine accuracy,
some of the reactive species mass fractions near the cold boundary 1) artificially converge
to negative values, and 2) show oscillations. Nevertheless, the behavior away from the
cold boundary has no obvious errors.

In order to suppress numerical anomalies near the cold boundary so as to fully ex-
pose the behavior in all regions of the flame, the cold boundary temperature is raised
to 800 K for our remaining calculations. Fully resolved steady temperature and species
profiles for this temperature are shown in Figs. 2 and 3. Although linear scales are usu-
ally used in the literature, here log-log and semi-log scales have been employed to better
illustrate the disparate scales. Fig. 2 shows the spatial distribution of species mass frac-
tions throughout the entire flame zone. At x ≈ 5×10−4 cm, the minor species growth
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Figure 3: Temperature vs. distance for the stoichiometric hydrogen-air flame, To =800 K, po =1 atm.

rates change slightly, which reveals that significant dissociation reactions at this scale are
induced. Another increase in the minor species mass fraction growth rates is noted at
x≈10−2 cm, which indicates the occurrence of more vigorous chemical interaction of the
minor species. For 10−2 < x < 2.2×100 cm, the minor species mass fractions continue to
increase rapidly with different growth rates. On the other hand, the major species H2,O2,
and N2 have essentially constant mass fractions. Just past x=2.2×100 cm, which is near
the end of the preheat zone, all the species mass fractions undergo significant change, and
the radicals’ mass fractions reach their maximum values. At x=2.4×100 cm, exothermic
recombination of radicals commences forming the predominant product H2O. This zone
extends up to x = 1.4×101 cm; after that, the system comes to an equilibrium where all
spatial gradients vanish. To confirm this, the spatial domain is extended to x = 102 cm,
but no further changes are noted.

In Fig. 3, the temperature profile is presented. At x ≈ 2.2×100 cm, the reaction un-
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dergoes a particularly vigorous stage in which the change in temperature is significant.
Thus, the ignition point can be assigned; it is defined as the point where the temperature
gradient dT/dx reaches its maximum value. Also, this particular point defines the end of
the preheat zone and the beginning of the reaction zone. For this case the ignition point is
assigned at x=2.315×100 cm. We adopt the simple estimate for the characteristic reaction
length scale (i.e. flame thickness) given by Williams [22], pp. 130-136,

ℓreaction =
k

ρocpS
, (3.2)

where for this case ℓreaction =1.60×10−3 cm.

The location of the finest grid predicted by the adaptive refinement algorithm is in fact
in the flame zone, near x=2.3 cm, and the resolution necessary to achieve the prescribed
error tolerance was ∆x=6×10−5 cm. Note that this is over an order of magnitude smaller
than ℓreaction.

3.2 Intermediate species peak capturing verification

The accurate capture of the peak values of species which are highly active only in the
flame zone poses a computational challenge. We systematically examine the grid reso-
lution necessary for the precise prediction of one such specie, HO2. For this, the PREMIX

code [14] is now used to obtain solutions over a wide range of uniform grid sizes: 3×
10−2 ≤ ∆x ≤ 6.25×10−5 cm. Here, the error-control feature in the adaptive refinement
algorithm of PREMIX is suppressed to enable these calculations.

Table 3: Peak value of YHO2
and relative error as functions of ∆x.

∆x [cm] YHO2
, peak EHO2

3.0×10−2 1.33366×10−4 2.23×10−1

1.0×10−2 1.60060×10−4 6.71×10−2

1.0×10−3 1.69659×10−4 1.11×10−2

1.25×10−4 1.71143×10−4 2.47×10−3

6.25×10−5 1.71566×10−4 -

The peak values of YHO2
as a function of ∆x are listed in Table 3. Assuming the value

obtained on the finest grid to be “exact” allows calculation of EHO2
; here the calculation

of E is restricted to peak values. For coarse grids, there are large relative errors in peak
values; the error decreases as the grid size is decreased. We see in Fig. 4 a close view of
how the HO2 mass fraction profile varies with the grid resolution. Fig. 4 does not display
the result for ∆x=6.25×10−5 cm as on this scale it is indistinguishable from that found for
∆x=1.25×10−4 cm. Clearly the peak, and the behavior near the peak, is under-resolved
for ∆x≥10−2 cm. Most of the structure near the peak is well resolved for ∆x =10−3 cm;
for ∆x=1.25×10−4 cm, the error is very small; EHO2

=2.47×10−3.
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3.3 Grid convergence verification

While correct capture of peak values of challenging species is a necessary condition for
grid resolution, a more systematic and rigorous verification is given by a formal grid
convergence study, which is reported next. The result for one dependent variable, YOH,
is presented in Fig. 5. Results for all other variables bear remarkable similarity to that
for YOH, and so are not presented here. Solutions are obtained on eight different uniform
grids. The “exact” solution is estimated using Richardson’s extrapolation from the three
finest grids [1]. In computing the error via Eq. (3.1), points with species mole fraction be-
low 10−10 were excluded because of potential roundoff corruption in the double precision
calculations.

Fig. 5 shows that to obtain a desirable E∞OH <0.1 in this problem, a spatial resolution
of ∆x ≤ 2×10−4 cm has to be utilized. Larger grid sizes can induce unacceptably large
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relative errors; e.g. for ∆x = 10−2 cm the relative error in YOH is 40! In addition, it is
found that the error at the finest two spatial discretizations is converging towards the
exact solution at a rate of O(∆x1.64). It appears in Fig. 5 that the rate of convergence
is increasing as ∆x decreases. Finite computational resources prevented the use of finer
grids; it is expected that on even finer grids, a convergence rate of O(∆x2), consistent with
the truncation error of the finite difference discretization, would have been achieved.

Consideration of the spatial distribution of YOH at four different grid resolutions,
shown in Fig. 6, provides additional insight. Here, attention is focused on a region at
the onset of flame ignition. Clearly one sees that for ∆x = 3×10−2 cm and 1×10−2 cm,
relative to calculations on a finer grid, there are orders of magnitude difference in the
predictions of YOH. Only for the finer grid resolution is YOH seen to be converging to
achieve a small relative error.
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Figure 6: Spatial distribution of YOH at various discretization sizes for the hydrogen-air flame simulation with
To =800 K and po =1 atm.

In contrast, for this problem, the relative errors in laminar flame speed are not as sen-
sitive. Fig. 7 shows the relative error in laminar flame speed (S−Se)/Se as a function of
∆x, where Se is the approximation to the exact laminar flame speed found from Richard-
son extrapolation from the three finest grids. To keep the relative error in S below 0.1,
one need only employ a ∆x ∼ 2×10−3 cm. For ∆x = 10−2 cm, the relative error in S is
approximately 0.4, much smaller than that for species mass fractions.

3.4 Spatial eigenvalue analysis verification

Having the fully resolved structure in hand, the local Jacobian and the spatial generalized
eigenvalues are calculated from the cold boundary to near equilibrium. As a result, the
local length scales ℓi are predicted throughout the domain; these results are shown in
Fig. 8. The multi-scale nature of the problem and the length scales over which the species
evolve are clearly shown. The finest length scale and the largest length scale for this
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system vary from 7.60×10−4 cm and 1.62×107 cm in the preheat zone to 2.41×10−4 cm
and 2.62×100 cm in the reaction zone, respectively.

The evolution of a particular specie is not associated with a particular length scale,
since the species mass fractions depend on local linear combinations of all eigenmodes.
So, the species mass fractions can vary on these scales through the entire domain. The
finest scale in the preheat zone, ∼10−3 cm, is a good predictor of when significant varia-
tion of minor species is exhibited, although the variations are very small. In the preheat
zone, x < 2 cm, the scales are all relatively invariant with x. This is likely because the
major species and many minor species themselves exhibit little variation in this region.
Slight changes are mainly a consequence of the growth of minor species such as HO2 and
H2O2. At the beginning of the flame zone, near x∼ 2 cm, the finest length scale begins
to drop to ∼ 10−4 cm. It is in this region that there are many active growing modes, as
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reflected for example in the local peaks of HO2 studied earlier. As the flame relaxes to
equilibrium at x ∼ 10 cm, the finest scale relaxes. Here it is likely that such fine scales
are associated with decaying modes, as there are no fine scale structures evident in the
final relaxation towards equilibrium. As the system approaches equilibrium, all of the
eigenvalues are real: half are positive, and half are negative. Thus, the equilibrium point
is a high order saddle node.

We note that the spatial eigenvalue analysis gives results consistent with the detailed
grid convergence analysis. The eigenvalue analysis is potentially more conservative than
the grid convergence study since some or many eigenmodes associated with fine scale
eigenvalues may in fact be of negligible amplitude. This is likely the case on the approach
to equilibrium, but not the case in the flame zone. In any case, the grid convergence study
is comprehensive in that it reflects the magnitude of all modes. Since the detailed spatial
profiles reveal that the largest resolution errors reside in the flame zone, we speculate
that it is in this region that the spatial eigenvalues give the best estimate of where the
finest resolution is required.
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Figure 9: The flame thickness and the finest length scale predicted by eigenvalue analysis vs. pressure for
stoichiometric hydrogen-air flame, To =800 K.

Following the same procedure, a comparison between the predicted finest length
scale ℓ f inest and the flame thickness ℓreaction over a wide range of pressures is presented
in Fig. 9. The figure reveals that the finest length scale is well correlated with the flame
thickness and that both decrease as pressure is increased. On the other hand, ℓ f inest is
at least one order of magnitude smaller than ℓreaction, which indicates the presence of
reaction-induced scales smaller than the flame thickness.

The present approach has been extended to several other stoichiometric mixtures [23]:
1) methane-air, 2) ethane-air, 3) propane-air, 4) ethylene-air, and 5) acetylene-air. The
GRI 3.0 mechanism [24] with L=5 elements, N =53 species, and J =325 reversible reac-
tions was adopted as a kinetic model. For each mixture, two cases were studied: 1) the
freely propagating laminar flame, and 2) the Chapman-Jouguet detonation. Results in all
cases were consistent with those presented for hydrogen-air mixtures.
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4 Conclusions

One-dimensional steady calculations reveal that for an adiabatic laminar premixed flame
freely propagating in stoichiometric hydrogen-air mixtures described by detailed kinetics
and multi-component transport, the required grid resolution to formally resolve all mod-
eled flow structures, including detailed species mass fractions, is at the micron-level for
flames at atmospheric pressure. The requirements are less stringent if one seeks only to
correctly capture such macro-features as flame speed and equilibrium properties. How-
ever, it should be noted that employing a grid on which the flame speed or other derived
quantity is grid-insensitive does not guarantee that detailed species mass fractions are
grid-insensitive.

The micron length scale has been predicted by an adaptive refinement algorithm,
analysis of the peak values of intermediate species in the flame zone, a formal grid con-
vergence study, and detailed spatial eigenvalue analysis. The length scale predictions
are fully reflective of the underlying physics of advection and diffusion coupled with
detailed kinetics, and not the particular numerical method chosen. The implications for
future calculations of challenging combustion dynamics remain to be seen, but it is likely
that proper accounting of commonly modeled state variables gives rise to more stringent
computational grid requirements than are commonly employed.
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Appendix

A.1 Constitutive relations

The system of equations, (2.1)-(2.4), is completed by adopting the following constitutive
relations:

Jm
i =ρ

N

∑
k=1
k 6=i

MiDikYk

M

(
1

χk

∂χk

∂x̃
+

(
1−

Mk

M

)
1

p

∂p

∂x̃

)
−DT

i

1

T

∂T

∂x̃
, 1≤ i≤N−1, (A.1)
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, (A.2)
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∂x̃
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N

∑
i=1

ρ̄i, e=h−
p

ρ
, (A.3)
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l , (A.4)

ω̇i =
J

∑
j=1

νijrj, 1≤ i≤N, (A.5)
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kj = Aj Tβ j exp
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Kc
j =

( pre f

ℜT

)∑
N
i=1 νij

exp

(
−

∑
N
i=1 µ̄o

i νij

ℜT

)
, 1≤ j≤ J, (A.8)
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N

∑
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In Eqs. (A.1)-(A.19), the dependent variables are mixture-average molecular mass M,
Fourier heat flux q, mass-based specific enthalpy of the mixture h, and for the ith specie,
χi,ρ̄i,cpi,s

o
i , and µ̄o

i , which are the mole fraction, the molar concentration (i.e. molar den-
sity), mass-based specific heat at constant pressure, mass-based specific enthalpy, mass-
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based specific entropy at standard pressure, and molar-basis specific chemical poten-
tial, respectively. For each reaction from j = 1,··· , J, the new variables are rj,kj,and Kc

j ,

which denote the reaction rate, the temperature-dependent Arrhenius coefficient, and
the equilibrium constant, respectively. For the lth element, Ye

l and Je
l are the element mass

fraction and element mass flux. The variables Dik,k,and DT
i are the multi-component

diffusion coefficients, the temperature-dependent mixture thermal conductivity, and the
thermal diffusion coefficient of specie i, where these three variables are computed from
the solution of the detailed L-matrix system given by Dixon-Lewis [25]; due to extreme
length, details are omitted here. The constant parameters are the universal gas constant
ℜ = 8.314×107 erg mole−1 K−1, the reference pressure pre f = 1 atm, and the reference

temperature Tre f =298 K. For the ith specie h
f
i ,s

f
i ,a1i,··· ,a7i denote the mass-based specific

enthalpy of formation, the reference state mass-based specific entropy, and the coeffi-

cients of the curve fit for cpi,h
f
i , and s

f
i which can be found in [20]. For each reaction

from j = 1,··· , J, we have Aj,β j,Ej,ν
′′
ij ,ν

′
ij,and νij which represent the collision frequency

factor, the temperature-dependency exponent, the activation energy, the stoichiometric
coefficient of specie i denoting the number of moles of reactants and products, and the
net stoichiometric coefficient, respectively. Moreover, for the jth reaction ρ̄Mj

and αji are
the third body molar concentration and the coefficients of the collision efficiency of the
ith specie with the third body, where these coefficients play a role only in the reactions
that contain a third body. In addition, for each element from l = 1,··· ,L, ml denotes the
element mass and φli the element index of specie i, which gives the number of moles of
element l in specie i.

Eqs. (A.1)-(A.2) are appropriate for a mixture of ideal gases [26], and describe multi-
component mass diffusion fluxes including the Soret effect, and the heat flux including
the Dufour effect. Eq. (A.3) defines Fourier’s law, the thermal state equation for an ideal
gas mixture, and the definition of enthalpy, respectively. Eq. (A.4) constrains the species
and element mass fractions as well as species and element mass fluxes to sum to unity
and zero, respectively. Eqs. (A.5)-(A.8) are expressions of the molar species evolution
rate per unit volume of specie i, the law of mass action, the Arrhenius reaction rate,
and the equilibrium constant, respectively. Eq. (A.9) is an expression for the third body
molar concentration in reaction j. Eqs. (A.10)-(A.11) define the temperature-dependent
enthalpy, entropy, and chemical potential for specie i at the reference pressure, respec-
tively. Eq. (A.12) gives mixture rules for mixture mass-based specific enthalpy and heat,
and the mixture-averaged molecular mass. Eqs. (A.13)-(A.14) define the mole fraction of
specie i, the molar concentration of specie i, the molecular mass of specie i, and the net
stoichiometric coefficients, respectively. Eq. (A.15) is a stoichiometric constraint on ele-
ment l in reaction j which represents a mass balance for each element. Eq. (A.16) defines

the element mass fraction and flux. Finally, Eqs. (A.17)-(A.19) are curve fits of cpi, h
f
i , and

s
f
i . Formally, to complete the system, one must also consider a constitutive equation for

the stress, such as τ =(4/3)µ(∂ũ/∂x̃), where µ is the first viscosity coefficient; this does
not play a role in our analysis.
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A.2 Dynamical system model equations

We describe here the reductions necessary to arrive at a set of DAEs to describe the flame
structure. The complete system of PDEs, Eqs. (2.1)-(2.4), is first reduced into a system of
ordinary differential equations (ODEs) by relaxing the time-dependent behavior of the
system to a steadily propagating flame front with constant, albeit unknown, flame speed
S. A Galilean transformation is applied to the system with the frame speed equal to the
flame speed,

x= x̃+St̃, (A.20a)

t= t̃, (A.20b)

u= ũ+S. (A.20c)

The spatial coordinate x is a flame front-attached coordinate, and u is the mixture velocity
in the flame frame. Consequently, the equations that govern the structure of a steady
flame are obtained, where after employing the third equation in Eq. (A.3) and standard
manipulations they become, in a non-conservative form,

d

dx
(ρu)=0, (A.21a)

ρu
du

dx
+

dp

dx
−

dτ

dx
=0, (A.21b)

ρu
dh

dx
+

dJq

dx
−u

dp

dx
−τ

du

dx
=0, (A.21c)

ρu
dYi

dx
+

dJm
i

dx
= ω̇iMi, 1≤ i≤N−1. (A.21d)

At this point, the low-Mach number assumption is adopted, which has the consequence
of rendering the thermodynamic pressure constant and suppressing the viscous dissipa-
tion and the advection of pressure in Eq. (A.21c). This assumption is reasonable for de-
flagration [22], and implies that for a fixed mass flux the momentum equation no longer
need be considered. Subsequently, all the thermodynamic properties, throughout the
reaction zone, are evaluated at the surrounding thermodynamic pressure, po. Eqs. (2.5)-
(2.7) are obtained by employing Eqs. (A.21a) and (A.21d), substituting Eqs. (A.2), (A.10),
and the first equation in (A.12) into Eq. (A.21c), and neglecting the Dufour effect, fol-
lowing the same approach as in Aris [27]. Returning to Eq. (A.21), if we multiply the
evolution of species, Eq. (A.21d), with mlφli, sum from i=1 to N, and employ Eqs. (A.5),
(A.15)-(A.16), and (A.21a), the governing equations are recast in a conservative form by
adding Eq. (A.21a) to Eqs. (A.21c)-(A.21d):

d

dx
(ρu)=0, (A.22a)
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d

dx
(ρuh+ Jq)=0, (A.22b)

d

dx
(ρuYe

l + Je
l )=0, 1≤ l≤ L−1, (A.22c)

d

dx
(ρuYi+ Jm

i )= ω̇iMi, 1≤ i≤N−L. (A.22d)

This system of ODEs, describing the steadily propagating laminar premixed flame, con-
sists of N+1 equations. These are supplemented by the N ODEs embodied in Eqs. (A.1)-
(A.3), forming a total of 2N+1 ODEs. Thus the 2N+1 boundary conditions of Eqs. (2.8)-
(2.10) are required.

It is useful to have additional values of variables at boundaries. Using Eqs. (A.3),
(A.10), (A.12), and (A.16) the following expressions are derived

ρo =
po

ℜTo∑
N
i=1

Yio
Mi

, (A.23a)

ho =
N
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Yio

(
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f
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cpi(T̃)dT̃

)
, (A.23b)

Ye
lo =ml

N

∑
i=1

φliYio

Mi
, 1≤ l≤ L. (A.23c)

By utilizing the boundary conditions (A.23), the homogeneous ODEs, Eq. (A.22), can be
integrated exactly. Subsequently, the governing equations become

ρu=ρoS, (A.24a)

ρoSh+ Jq =ρoSho, (A.24b)

ρoSYe
l + Je

l =ρoSYe
lo, 1≤ l≤ L−1, (A.24c)

d

dx
(ρoSYi+ Jm

i )= ω̇iMi, 1≤ i≤N−L. (A.24d)

At this stage the variable S is considered a fixed parameter for a given calculation; an
iterative technique is used to determine S so that all boundary conditions are satisfied.
The equations are most conveniently posed as a set of 2N+2 DAEs in terms of 2N+2
state variables; specie mass fraction Yi, (i = 1,··· ,N), specie mass flux Jm

i , (i = 1,··· ,N),
temperature T, and Fourier’s heat flux q. This system, in a compact representation, is

A·
dz

dx
= f, (A.25)
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where
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with

D= Dik−
N

∑
m=1
m 6=i

DimYmM

Mk
, 1≤ i,k≤N, (A.27a)

Ṁ=

[
ρoSI(N−L)×(N−L) 0(N−L)×L

0L×(N−L) 0L×L

]
, (A.27b)

I=

[
I(N−L)×(N−L) 0(N−L)×L

0L×(N−L) 0L×L

]
, (A.27c)

Q=

[
0 0
−k 0

]
. (A.27d)

Note that A is a singular matrix of dimension (2N+2)×(2N+2) with rank of 2N−L,
f is a set of (2N+2)×1 non-linear functions of the state variables z, also of dimension
(2N+2)×1, and I is the identity matrix. Here, the dimensions of D,Ṁ, and I are N×N,
while the dimension of Q is 2×2.

The dynamical system (A.25) is useful for length scale analysis via generalized eigen-
values. Direct solution of this system for the reaction zone structure is possible, in princi-
ple. However, the problem can be shown to be a high order shooting problem, rendering
direct solution difficult.
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