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Abstract. This paper is concerned with the elliptic problems with nonlinear Stefan-
Boltzmann boundary condition. By combining with the monotone method, the Robin-
Robin domain decomposition methods are proposed to decouple the nonlinear inter-
face and boundary condition. The monotone properties are verified for both the mul-
tiplicative and the additive domain decomposition methods. The numerical results
confirm the theoretical analysis.
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1 Model problems

Let u be the solution of Laplace equation with nonlinear Stefan-Boltzmann boundary
condition arising from the steel-making industry:

−∆u=0 in Ω, (1.1)

∂u

∂n
=0 on ΓN , (1.2)

λ
∂u

∂n
=−σ(u4−u4

e ) on Γe, (1.3)

u=us on Γs, (1.4)
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Figure 1: Domain with composite heat-resistant materials and partial corroded domain.

where u represents the temperature of the heat-resistant materials, us >0 is the tempera-
ture of the melting-steel, ue>0 is the temperature of the exterior air , and the temperature
of the steel is higher than the temperature of the exterior air. Ω=

⋃

Ωi is the domain made
of composite heat-resistant materials, and the heat conduction coefficient of the material
λ may be different in the every subdomain Ωi. The Boltzmann thermal fourth power
law (1.3) is imposed on the exterior boundary surrounded by air, and σ is the Boltzmann
radiation coefficient. Let ui =u|Ωi

and λi =λ|Ωi
. Then

λ1
∂u1

∂n1

∣

∣

∣

Γ

+λ2
∂u2

∂n2

∣

∣

∣

Γ

=0 (1.5)

at the interface boundary Γ = Ω1∩Ω2 according to the heat transfer law, here n1 is the
outer unit normal vector from Ω1 to Ω2, and n2 from Ω2 to Ω1. Specially, another rela-
tionship

λ1
∂u1

∂n1
=−σ(u4

1−u4
2) (1.6)

is observed by the experiments which is different from the conventional condition u1|Γ =
u2|Γ. This condition (1.6) is explained as following: the interface Γ is an approximation
of very thin layer which is filled with air, and the Boltzmann thermal fourth power law
is applied to the heat transfer between the high temperature materials and air, and (1.6)
can be obtained by removing the variable of the air temperature.

In the steel-making procedure, the boundary Γ0 may be corroded after long-time high
temperature heat process [6, 7, 30], the detection of the corrosion is very important, and
stable and efficient solvers for the problem (1.1)-(1.6) are the base of any corrosion de-
tected algorithm.

Among the various techniques for the nonlinear partial differential equations, the
monotone method is one powerful tool to obtain the existence, uniqueness and other
properties of the solutions [5, 15, 19, 26]. Moreover, by using the technique of upper and
lower solutions, efficient algorithms can be constructed to solve the nonlinear equations,
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and the numerical solutions of the iterative sequences will converge monotonically and
linearly to the solutions of partial difference equations (see [8, 10, 14–16, 18, 19, 21]). In
order to speed up the convergence rate of the iterative method, an accelerated method is
proposed in [17] to obtain quadratic convergence in the sense of Euclid norm.

On the other hand, the domain decomposition methods (DDMs) are naturally suit-
able for our composite material problems (see the monographs [23, 27] and references
therein). With the DDM framework, the code can be simplified and modularized even
for the nonlinear problems. Specially the Robin-Robin DDM can be used to decouple
our nonlinear Robin-type interface condition. For the linear problems, the convergences
of the Robin-Robin DDMs have been analyzed in [4, 11, 22, 24]. While for the nonlinear
problems, the researches mainly focused on the overlapping Schwarz methods and the
nonlinear right hand side (see [1–3, 12, 13, 29]).

In this paper, we follow Pao’s monotone method [14–17] to solve the elliptic system
in single domain, and give the convergence analysis in the sense of discrete maximum
norm. For the composite material problems, we use the Robin-Robin domain decom-
position methods to solve the composite material problems, the nonlinear interface and
boundary conditions are dealt by the monotone methods and the monotone properties
of the iterative sequences in the DDMs can be proven as the case of the single domain.

The paper is organized as follows. One single domain problem is considered in
Section 2, and the upper and lower solutions are introduced, the monotone Picard-FD
method and Newton-FD method are constructed, and the convergence rate for both
methods are proven in sense of discrete maximum norm. In Section 3, the additive Robin-
Robin DDM and multiplicative Robin-Robin DDM are proposed to solve the coupled
nonlinear interface condition, and the monotone property is verified for both methods.
The numerical results are given in Section 4, which confirm our theoretical analysis. Fi-
nally the short conclusions are given in Section 5.

2 The monotone methods in one single domain

In this section, we consider the elliptic equations in one single domain Ω:

Lu= f (x,u) in Ω, (2.1)

Bu= g(x,u) on ∂Ω, (2.2)

where L=−∆, and B represents the boundary operator which is the identity operator I
at the Dirichlet boundary Γs, and the unit normal derivative operator ∂

∂n at the Neumann
boundary ΓN and nonlinear Robin boundary (Stefan-Boltzmann) Γe. By introducing two
auxiliary functions c(x,u) and b(x,u), one iterative sequence u(k) can be generated from
the initial guess u(0):

Lu(k)+c(x,u(k−1))u(k) = f (x,u(k−1))+c(x,u(k−1))u(k−1) in Ω, (2.3)

Bu(k)+b(x,u(k−1))u(k) = g(x,u(k−1))+b(x,u(k−1))u(k−1) on ∂Ω. (2.4)
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Denote the upper sequence {u(k)} with the upper solution ũ as initial guess, and the
lower sequence {u(k)} with the lower solution û as initial guess respectively. We recall
that the upper solution satisfies the inequalities:

Lu≥ f (x,u) in Ω, (2.5)

Bu≥ g(x,u) on ∂Ω, (2.6)

and the lower solution satisfies the reversed inequalities in (2.5)-(2.6). We assume that
the upper solution ũ and lower solution û are ordered, i.e, ũ≥ û, and denote the sector
J = 〈û,ũ〉 all the function set of v in C(Ω) such that û≤v≤ ũ.

There are two special ways to choose the auxiliary functions c(x,u) and b(x,u) which
leads to two kind of iterative methods:

• Picard-type method: here c(x,u) and b(x,u) are constants or functions independent
of u or k, and

c(x)≥max
{

0,sup
u∈J

{− f ′u}
}

, b(x)≥max
{

0,sup
u∈J

{−g′u}
}

,

where f ′u (or g′u) the partial derivative of f (or g) with respect to u;

• Newton-type method: here c(x,u)=− f ′u(x,u) and b(x,u)=−g′u(x,u).

For convenience, we suppress the dependence of the functions f (x,u),g(x,u),c(x,u)
and b(x,u) on x, and denote them by f (u),g(u),c(u),b(u) or c,b if c(x,u) and b(x,u) are
independent of u.

In the Picard-type method, it can be verified that for û≤u2≤u1≤ ũ,

f (u1)− f (u2)≥−c(u1−u2), g(u1)−g(u2)≥−b(u1−u2). (2.7)

Therefore the upper and lower sequences own the monotone property ([15], Lemmas 4.1,
4.2):

u(0)≤u(k)≤u(k+1)≤u≤ ū≤ ū(k+1)≤ ū(k)≤ ū(0), (2.8)

where the minimal solution u is the limit of the lower sequence u(k) and the maximal
solution ū is the limit of the upper sequence ū(k), respectively.

Obviously, in Newton-type method, the motivation to modify the definition of the
auxiliary functions c(x,u) and b(x,u) is to get the quadratic convergence, while it is
needed to be checked when the monotone property (2.8) holds. In [17], Pao proposed
another way to accelerate the iterative process:

c(k) =max

{

0,max
{

− ∂ f

∂u
,u(k)≤u≤ ū(k)

}

}

, (2.9a)

b(k) =max

{

0,max
{

− ∂g

∂u
,u(k)≤u≤ ū(k)

}

}

. (2.9b)

Therefore the monotone property (2.8) is considered in the first place. The following
lemma demonstrates the monotone property of the iterative sequences.



646 W. Chen, J. Cheng, M. Yamamoto and W. Zhang / Commun. Comput. Phys., 8 (2010), pp. 642-662

Lemma 2.1. Assume that c(u),b(u) are bounded nonnegative function in Ω× J. If the functions
f and g satisfy

f (u)− f (v)≥−c(u)(u−v), g(u)−g(v)≥−b(u)(u−v) (2.10)

for any û≤v≤u≤ ũ, then the sequence of (2.3)-(2.4) has the monotone property:

ˆ̂u≤u(k+1)≤u(k)≤ ū(0), (2.11)

where ˆ̂u≤ũ is one lower solution, and u(k) is one upper solution of (2.1)-(2.2). And if the functions
f and g satisfy

f (u)− f (v)≥−c(v)(u−v), g(u)−g(v)≥−b(v)(u−v) (2.12)

for any û≤v≤u≤ ũ, then the lower sequences of (2.3)-(2.4) has the monotone property:

u(0)≤u(k)≤u(k+1)≤u, (2.13)

where u≥ û is one upper solution, and u(k) is one lower solution of (2.1)-(2.2). Moreover, if both
conditions hold, then ū(k) and u(k) are the ordered upper and lower solutions, respectively.

Let us briefly discuss the conditions (2.10) and (2.12). Note that c≥ 0 and these two
conditions hold if f is monotonically nondecreasing with respect to u: f (u)≥ f (v) for
v≤u. Otherwise we can use

f (u)− f (v)≥max{−c(u),−c(v)}(u−v), û≤v≤u≤ ũ. (2.14)

So if c does not depend on u, then the conditions (2.10) and (2.12) are just the condition
(2.7). In [28], Wang proposed a different accelerated monotone iteration process. By
carefully considering the effect of the smallest eigenvalue of the stiffness matrix, two side
monotone iteration sequences like (2.8) can be still constructed.

Now let us be back to our model problem, where f (x,u)≡0 and g(x,u)=−σ(u4−u4
e ).

Since us ≥ ue, it is easily checked that ũ = maxx us is the upper solution and û = minx ue

is the lower solution. And if the Newton method is considered, it is better to be used
in one-side way, that is to say, to use the upper sequences to solve this problem, and the
monotone property can be guaranteed by Lemma 2.1. Moreover, our choice for b(k) is
same as Pao’s choice, i.e., (2.9b).

2.1 Numerical schemes and convergence results

In the numerical method, the finite difference method is used to discretize the Laplacian
operator. Insider the domain Ω, the five-point finite difference scheme is used to approx-
imate the Laplace operator. Let h be the stepsize and the finite difference solution uh for
the problem (2.1)-(2.2) satisfies the equation:

−∆huh = fh(uh) in Ωh, (2.15)
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and u0,j =(us)0,j at the nodal points of Γ0,h, and

4ui,N−2ui,N−1−ui+1,N−ui−1,N =h2 fi,N on ΓN,h, (2.16a)

4ui,0−2ui,1−ui+1,0−ui−1,0 =h2 fi,0 on ΓN,h, (2.16b)

4uN,j−2uN−1,j−uN,j+1−uN,j−1 =h2 fN,j+2hgN,j on Γe,h. (2.16c)

Denote Ωh,Γ0,h,ΓN,h and Γe,h the corresponding sets of the nodal points, and the mirror
method is used to get second order approximation at the nodal points of ΓN,h and Γe,h.
We may rewrite the above algebraic equations as

Lhuh = fh(uh) in Ωh, (2.17)

Bhuh = gh(uh) on ∂Ωh. (2.18)

By combining the finite difference method with the Picard or Newton processes (2.3)-

(2.4), the nonlinear system (2.17)-(2.18) can be solved iteratively: If the initial values u
(0)
h =

u
(0)
i,j are known, find the finite difference solution u

(k)
h = u

(k)
i,j by the following iteration

process

Lhu
(k)
h +c

(k−1)
h u

(k)
h = f

(k−1)
h +c

(k−1)
h u

(k−1)
h in Ωh, (2.19)

Bhu
(k)
h +b

(k−1)
h u

(k)
h = g

(k−1)
h +b

(k−1)
h u

(k−1)
h on ∂Ωh. (2.20)

Here

f
(k−1)
h = f (xij,u

(k−1)
i,j ), g

(k−1)
h = g(xij,u

(k−1)
i,j ), ch = c(xij), bh =b(xij),

in the Picard-FD sequence or

c
(k−1)
h = c(xij,u

(k−1)
ij ), b

(k−1)
h =b(xij,u

(k−1)
ij )

in the Newton-FD sequence.

In both methods, denote {u
(k)
h } (or {u

(k)
h }) the sequence {u

(k)
h } if the initial u

(0)
h value

is taken by discrete upper solution ũh (or discrete low solution ûh respectively). Similar
monotone property holds in the discrete cases: If the condition (2.10) holds, then the

sequences {u
(k)
h } has the monotone property:

ˆ̂uh≤ ū
(k+1)
h ≤u

(k)
h ≤uh, (2.21)

where ˆ̂uh≤ũh is a discrete lower solution, and u
(k)
h is also a upper solution of (2.17)-(2.18).

And if the condition (2.12) holds, then the sequences {u
(k)
h } has the monotone property:

ûh≤u
(k)
h ≤u

(k+1)
h ≤uh, (2.22)
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where uh ≥ ûh is a discrete upper solution, and u(k) is also a discrete lower solution of
(2.17)-(2.18).

Note that the upper sequence u
(k)
h (or the low sequence) converge monotonically to

the discrete maximal solution uh of (2.17)-(2.18) (or the discrete minimal solution re-
spectively). Pao has obtained the quadratic convergence of the Newton-FD sequence
in the sense of Euclid norm(discrete 2-norm), here we show that linear convergence of
the Picard-FD sequence and the quadratic convergence of the Newton-FD sequence in
the discrete maximum norm. For any grid function vh on the nodal point set D, the dis-
crete maximum norm |vh|D = maxxi,j∈D |vi,j|D. In the following two results, we assume
that f ′u,g′u ≤0 for u∈ J, and then the solution uh is unique. This condition can be slightly
weakened (see [17]).

Theorem 2.1. Let u
(k)
h be the upper sequence of Picard-FD iteration scheme. If f ′u,g′u≤0 for u∈ J

and (2.10) is satisfied, then there exists ρ<1 such that

|u(k+1)
h −uh|Ω ≤ρ|u(k)

h −uh|Ω. (2.23)

Proof. Let F(u)= f (u)+c(x)u, G(u)= g(u)+c(x)u, and e
(k)
h =u

(k)
h −uh. Then e

(k)
h satisfies

the error equations:

−∆he
(k+1)
h +che

(k+1)
h = Fh(u

(k)
h )−Fh(uh), in Ωh, (2.24)

e(k+1) vanishes at the nodal points of Γ0,h,

(

4+h2cN,j+2hbN,j

)

e
(k+1)
N,j −2e

(k+1)
N−1,j−e

(k+1)
N,j+1−e

(k+1)
N,j−1

=h2Fh(u
(k)
N,j)+2hGh(u

(k)
N,j)−h2Fh(uh)−2hGh(uh) on Γe,h, (2.25)

and

(4+h2ci,N)e
(k+1)
i,N −2e

(k+1)
i,N−1−e

(k+1)
i+1,N−e

(k+1)
i−1,N =h2

(

Fh(u
(k)
h )−Fh(uh)

)

i,N
, (2.26)

(4+h2ci,0)e
(k+1)
i,0 −2e

(k+1)
i,1 −e

(k+1)
i+1,0 −e

(k+1)
i−1,0 =h2

(

Fh(u
(k)
h )−Fh(uh)

)

i,0
(2.27)

at the points of ΓN,h. If we assume that |e(k+1)
h | attains its maximum value at xi,j:

|e(k+1)
i,j |= |e(k+1)

h |
Ω

, (2.28)

then by the discrete maximum principle [9, 25], at this point xi,j, | f ′u| 6=0 (if xi,j ∈Ωh) and
| f ′u|+|g′u| 6= 0 (if xi,j ∈ ∂Ωh). If xi,j ∈ Ωh, we can assume that ci,j > 0. Otherwise, since

c = max{0,supu∈J{− f ′u}}, we have Fh(u
(k)
h )−Fh(uh) = 0 at the point xi,j. Then by the

discrete maximum principles, the neighbor points of xi,j also attain the same maximum
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value, and we can move the point xi,j to another point such that ci,j>0. Moreover, if e
(k+1)
h

attains its maximum at xi,j ∈Ω, then −∆he
(k+1)
i,j ≥0 and

e
(k+1)
i,j ≤ 1

ci,j

(

Fh(u
(k)
h )−Fh(uh)

)

=
1

ci,j

(

∂ f

∂u
(ξi,j)+ci,j

)

e
(k)
i,j , (2.29)

where uh ≤ ξh ≤ u(k). This estimation also holds if xi,j ∈ ΓN,h. Let us consider xi,j ∈ Γe,h.
Note that

h2
(

Fh(u
(k)
h )−Fh(uh)

)

+2h
(

Gh(u
(k)
h )−Gh(uh)

)

=
(

h2
(

f ′u(ξh)+ch

)

+2h
(

g′u(ξh)+bh

)

)

e
(k)
h . (2.30)

If e
(k+1)
h attains its maximum at xN,j ∈Γe,h, then

e
(k+1)
N,j ≤ 1

h2cN,j+2hbN,j

(

h2
(

f ′u(ξN,j)+cN,j

)

+2h
(

g′u(ξN,j)+bN,j

)

)

e
(k)
N,j. (2.31)

Now define the mesh-function ρij:

ρi,j =















1

ci,j
f ′u(ξi,j)+1, xi,j ∈Ωh∪Γa,h,

1

hcN,j+2bN,j

(

h f ′u(ξN,j)+2g′u(ξN,j)
)

+1, xi,j ∈Γe,h.
(2.32)

Therefore the above estimates can be rewritten as: if e
(k+1)
h attains the maximum at xi,j,

then
0≤|e(k+1)

h |
Ω
≤ρi,je

(k)
i,j . (2.33)

From the definitions of b and c, we have ρi,j <1. Now set ρ=minρi,j, we have

|e(k+1)
h |

Ω
≤ρ|e(k)

h |
Ω

, (2.34)

which is the desired result.

If f (x,u) is independent of u, i.e., f (x,u) = f (x), then we can set c = 0, and e
(k)
h only

attains its maximum values on the boundary nodal points of Γe,h, and

ρi,j =
1

bN,j

∂g

∂u
(ξN,j)+1.

Now if we consider the Stefan-Boltzmann condition g(u) = −σ(u4−u4
e ), then g′(u) =

−4σu3. Note that uh≤ ξh ≤u
(k)
h . Consequently, g′(ξh)≤−4σu3

h. Moreover if we take

b=sup{−g′(u),ũ≤u≤u},

then bh =4σu3, and ρ≤1−|u3
h/u3|

Γb
.
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Theorem 2.2. Assume that f ′u and g′u≤0 for u∈J and (2.10) is satisfied, f ′′u and g′′u are continuous
and bounded for u∈ J. Let uk

h be the upper sequence of Picard-FD iteration scheme. Then there
exists an C such that

|u(k+1)
h −uh|Ω ≤C|u(k)

h −uh|2Ω. (2.35)

Proof. Let e
(k)
h = u

(k)
h −uh. Then e

(k)
h also satisfies the error equations (2.24)-(2.27) if we

replace ch by c
(k)
h and bh by b

(k)
h . Let us expand f (uh) at u

(k)
h :

f (uh)= f (u
(k)
h )+ f ′(u

(k)
h )(uh−u

(k)
h )+

f ′′(ξ)

2
(uh−u

(k)
h )2. (2.36)

Then

F(u
(k)
h )−F(uh)=− f ′′(ξ)

2
(uh−u

(k)
h )2. (2.37)

In a similar manner of Lemma 2.1, one mesh grid function can be defined:

α
(k)
h =



















f ′′u (ξ)

2 f ′u(u
(k)
h )

, xi,j ∈Ωh∪Γa,h,

1

2(h f ′u(u
(k)
h )+2g′u(u

(k)
h ))

(

h f ′′u (ξ)+2g′′u (ξ)
)

, xi,j ∈Γe,h,
(2.38)

and α
(k)
h = 0 at the points where the denominators f ′u(u

(k)
h ) or h f ′′u +2g′′u vanishes. Then

we have

|u(k+1)
h −uh|Ω ≤|α(k)

h |
Ω
|u(k)

h −uh|2Ω. (2.39)

Define

α1 =

sup
u∈J

| f ′′u |

2min
u∈J

| f ′u|
, α2 =

sup
u∈J

|h f ′′u +2g′′u |

2min
u∈J

(

|h f ′u(u
(k)
h )+2g′u|

)

,

and C=max{α1,α2} if α1 and α2 are finite or takes the finite one. Then |α(k)
h |

Ω
≤C, which

proves the lemma.

3 Domain decomposition methods for the composite materials

problems

The non-overlapping domain decomposition methods are naturally suitable to split the
coupled interface boundary condition (1.6). Two Robin-Robin DDMs can be constructed
here: one is the multiplicative version and the another is additive one.
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Multiplicative Robin-Robin domain decomposition method: Staring form the ini-

tial guesses u(− 1
2 ) and u

(0)
2 , for n≥0, define

u(n) =







u
(n− 1

2 )
1 , Ω1,

u
(n)
2 , Ω2,

where u
(n+ 1

2 )
1 is firstly obtained by solving

−∆u
(n+ 1

2 )
1 =0 in Ω1, (3.1)

λ1
∂u

(n+ 1
2 )

1

∂n1
=−σ

(

(u
(n+ 1

2 )
1 )4−(u

(n)
2 )4

)

on Γ, (3.2)

with the Dirichlet boundary condition (1.2) on Γs and the Neumann boundary condition

(1.4) on ΓN∩Ω2. Then u
(n+1)
2 is updated by

−∆u
(n+1)
2 =0 in Ω2, (3.3)

λ2
∂u

(n+1)
2

∂n2
=−σ

(

(u
(n+1)
2 )4−(u

(n+ 1
2 )

1 )4
)

on Γ, (3.4)

and with the Neumann boundary condition (1.4) on ΓN∩Ω2 and nonlinear Robin bound-
ary condition (1.5) on Γa.

In the additive version, one function b(x) defined on Γ and Γa will be introduced and
be assumed that b(x)>0.

Additive Robin-Robin domain decomposition method: Staring form the initial guesses

u
(0)
1 and u

(0)
2 , for n≥0, define

u(n) =







u
(n)
1 , Ω1,

u
(n)
2 , Ω2,

where u
(n+1)
1 is obtained by solving

−∆u
(n+1)
1 =0 in Ω1, (3.5)

λ1
∂u

(n+1)
1

∂n1
+b(n)u

(n+1)
1 =−σ

(

(u
(n)
1 )4−(u

(n)
2 )4

)

+b(n)u
(n)
1 on Γ, (3.6)

with the Dirichlet boundary condition (1.2) on Γs and the Neumann boundary condition
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(1.4) on ΓN∩Ω2, and u
(n+1)
2 is updated by

−∆u
(n+1)
2 =0 in Ω2, (3.7)

λ2
∂u

(n+1)
2

∂n2
+b(n)u

(n+1)
2 =−σ

(

(u
(n)
2 )4−(u

(n)
1 )4

)

+b(n)u
(n)
2 on Γ, (3.8)

λ2
∂u

(n+1)
2

∂n2
+b(n)u

(n+1)
2 =−σ

(

(u
(n)
2 )4−(ue)

4
)

+b(n)u
(n)
2 on Γe, (3.9)

with the Neumann boundary condition (1.4) on ΓN∩Ω2.
It is important to choose the initial value u(0) in both algorithms. In the multiplicative

version, u(0) is one of the upper solution, while in the additive version, u(0) is chosen
as one big constant. In both algorithms, we can prove that the sequence u(n) decreases
monotonically:

0≤u(n+1)≤u(n)≤u(0). (3.10)

So u(n) converges monotonically to one function u(x), and u(x) can be proven to be the
solution of our model.

In the following results, we will assume that the boundary of Ω is smooth enough
such that Hopf’s lemma (the strong maximum principle, see [5,20]) holds. The smoothness
of the boundary can be weakened by some sophisticated mathematical tools.

Lemma 3.1. Assume that σ(x)>0 and u∈C2(Ω)∩C1(Ω) satisfies

−∆u= f (x) in Ω, (3.11)

∂u

∂n
=−σu4+g(x), on ∂Ω. (3.12)

If u is one upper solution and u is one lower solution, then

u≤u≤u. (3.13)

Proof. Let w=u−u. Then w satisfies:

−∆w≤0 in Ω, (3.14)

∂w

∂n
≤−σ(u4−u4) on ∂Ω. (3.15)

Now if w>0 at some points in Ω, and arrives its maximum values at x0, then by the weak
maximum principle, x0 must be on the boundary ∂Ω. Moreover, at this point, ∂w

∂n (x0)>0
by the strong maximum principle. From the assumption w(x0) > 0 and the inequality
(3.15), we have

∂w

∂n
(x0)≤−σ(u4(x0)−u4(x0))<0.

Consequently, w ≤ 0 by contradiction, that is to say, u≤ u. The other inequality can be
obtained similarly.
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Remark 3.1. By using this lemma, three useful results can be obtained:

• (Positivity) If f ≥0 and g≥0, then u≥0.

• (Boundedness) If f =0 and g(x)=σv4 with non-negative function v, then

min
x∈∂Ω

v≤u≤max
x∈∂Ω

v. (3.16)

• If u,v≥0 and u,v∈C2(Ω)∩C1(Ω) satisfy

−∆(u−v)≥0 in Ω, (3.17)

∂(u−v)

∂n
≥−σ(u4−v4) on ∂Ω, (3.18)

then u≥v on Ω̄.

We note that the lemma still holds for boundary conditions mixed with linear Dirichlet
and Neumann boundary conditions.

Theorem 3.1. If u(0) is one upper solution of (1.1)-(1.6), and u
(− 1

2 )
1 =u

(0)
2 on Γ, then the mono-

tone property (3.10) holds for the multiplicative DDM algorithm.

Proof. Let w(1) =u(0)−u(1). Then w
(1)
1 =u

(− 1
2 )

1 −u
( 1

2 )
1 in Ω1 satisfies

−∆w
(1)
1 ≥0 in Ω1, (3.19)

λ1
∂w

(1)
1

∂n1
≥−σ((u

(− 1
2 )

1 )4−(u
( 1

2 )
1 )4) on Γ, (3.20)

with the constraints

w
(1)
1 ≥0 on Γs and

∂w
(1)
1

∂n1
≥0 on ΓN .

Then we have w
(1)
1 ≥0 by Lemma 3.1, i.e.,

u
(− 1

2 )
1 ≥u

( 1
2 )

1 . (3.21)

Furthermore, w
(1)
2 =u

(0)
2 −u

(1)
2 in Ω2 satisfies

−∆w
(1)
2 ≥0 in Ω2, (3.22a)

λ2
∂w

(1)
2

∂n2
≥−σ

(

(u
(0)
2 )4−(u

(1)
2 )4

)

+σ
(

(u
(− 1

2 )
1 )4−(u

( 1
2 )

1 )4
)

on Γ, (3.22b)
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with the constraints

w
(1)
1 ≥0 on Γs,

∂w
(1)
1

∂n
≥0 on ΓN

and

λ2
∂w

(1)
2

∂n2
≥−σ

(

(u
(0)
2 )4−u

(1)
2 )4

)

on Γe.

It follows from (3.21) that

λ2
∂w

(1)
2

∂n2
≥−σ

(

(u
(0)
2 )4−u

(1)
2 )4

)

on Γ.

Consequently, w
(1)
2 ≥0 by Lemma 3.1 again.

Now we assume the monotone property holds for n ≥ 1. Let w(n+1) = u(n)−u(n+1).

Then −∆w
(n+1)
1 =0 in Ω1, and

λ1
∂w

(n+1)
1

∂n1
≥−σ

(

(u
(n− 1

2 )
1 )4−(u

(n+ 1
2 )

1 )4
)

+σ
(

(u
(n−1)
2 )4−(u

(n)
2 )4

)

≥−σ
(

(u
(n− 1

2 )
1 )4−(u

(n+ 1
2 )

1 )4
)

on Γ. (3.23)

Then we have

u
(n− 1

2 )
1 ≥u

(n+ 1
2 )

1 .

Similarly, −∆w
(n+1)
2 =0 in Ω2 and

λ2
∂w

(n+1)
2

∂n2
≥−σ

(

(u
(n)
2 )4−(u

(n+1)
2 )4

)

+σ
(

(u
(n− 1

2 )
1 )4−(u

(n+ 1
2 )

1 )4
)

≥−σ
(

(u
(n)
2 )4−(u

(n+1)
2 )4

)

on Γ. (3.24)

Similar inequality holds on the nonlinear boundary Γe, and we have

u
(n)
2 ≥u

(n+1)
2 .

Then the monotone property holds for n+1, and the lemma holds by induction.

Theorem 3.2. If u(0) is one upper solution of (1.1)-(1.6), u
(−0)
1 =u

(0)
2 on Γ, and b(n)≥4σ(u(n))3,

then the monotone property (3.10) holds for the additive DDM algorithm.

Proof. Let w(1)=u(0)−u(1). According to the definition of u(0) and u(1), it is easy to verify
that −∆w(1) =0 in Ω1∪Ω2, and

λi
∂w

(1)
i

∂ni
+b(0)w

(1)
i ≥0 on Γ∪Γe. (3.25)
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Then w(1)≥0, i.e.,

u
(1)
i ≤u

(0)
i for i=1,2.

Now we assume the monotone property holds for n ≥ 1, and let w(n+1) = u(n)−u(n+1).

Then −∆w
(n+1)
1 =0 in Ω1, and

λ1
∂w(n+1)1

∂n1
+b(n)w

(n+1)
1 =−σ

(

(u
(n−1)
1 )4−(u

(n)
1 )4

)

+b(n−1)
(

u
(n−1)
1 −u

(n)
1

)

+σ
(

(u
(n−1)
2 )4−(u

(n)
2 )4

)

in Ω. (3.26)

By the assumption of the monotone property for n, we have

u
(n−1)
i ≥u

(n)
i on Γ.

With the condition b(n)≥4σ(u(n))3, we have

λ1
∂w

(n+1)
1

∂n1
+b(n)w

(n+1)
1 ≥0 on Γ. (3.27)

So we have
w

(n+1)
1 ≥0 in Ω1

by Lemma 3.1. In a similar manner, we can prove that

w
(n+1)
2 ≥0 in Ω2.

The lemma is proven by induction.

We add some comments on our Robin-Robin domain decomposition methods: Though

u−1/2
1 in the multiplicative algorithm only appears in the proof, it is hidden in the practi-

cal algorithm. Note that for the multiplicative version, one Picard-FD or Newton-FD al-
gorithm is still needed to solve the nonlinear system in single subdomain Ω1 (or Ω2). So
the initial guess is needed for the Picard-FD algorithm or Newton-FD algorithm, which

is just u−1/2
1 in Ω1 and u(0) in Ω2. Moreover, the nonnegative function b(x) or b(n) are

also needed to guarantee the monotone property. In the multiplicative algorithm, at each
step in one single subdomain, k-steps Picard-FD or Newton-FD iteration can be imple-
mented. Specially, for k = 1, the algorithm becomes one serial version of the additive
DDM algorithm.

4 Numerical experiments

4.1 Numerical experiments for one domain

Here we set Ω =(0,1)×(0,1), λ = σ =1 and g(x,u)=−(u4−u4
e ) in the Stefan-Boltzmann

condition. Two exact solutions are used to check the numerical behaviors in the mono-
tone iterations for the elliptic problems with Stefan-Boltzmann conditions:
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1. one is u=0.1eπ(1−x)cos(πy) and f (x)=0, us=0.1πeπ cos(πy)+2, u4
e =(0.1cos(πy)+

2)4−0.1πcos(πy);

2. another one is u= 5
2− 1

2 x2, and f =1 , us =5/2, ue =
4
√

15.

We note that the finite difference equations are exactly satisfied for the second solution
u=5/2−x2/2. The first exact solution will be used if we do not point out explicitly. The
nonlinear term only appears in the boundary condition, therefore c =0 in the Picard-FD
scheme and Newton-FD scheme.

Convergence behavior of the two schemes. By choosing an upper solution as the

initial function for the iteration process, the sequences u
(k)
h can be obtained by using the

Picard-FD method or Newton-FD method. Fig. 2 shows the convergence behaviors of
the Picard-FD scheme (b = 20) and Newton-FD scheme, for both solutions 1 and 2. The
relative errors for both schemes decrease monotonically with respect to iteration steps
and the errors stagnate at some error level after a certain iterative steps. Moreover, the
relative error of the Newton method reaches more quickly to the error level than the
Picard method.
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Figure 2: Convergence behavior of Picard-FD method and Newton-FD method: Left (solution 1), right figure
(solution 2).

In order to explain the stagnation phenomenon of the relative errors, we used the
second exact solution u = 5/2−x2/2. The relationships of the relative errors with the
iterative steps are plotted in right figure of Fig. 2, which clearly demonstrate the linear
convergence of the Picard-FD method and quadratical convergence of the Newton-FD
method. In this case, the finite difference solution is just the exact solution if we do not
consider the truncation error.

The influence of the meshsize. From the above two experiments, we know that the
relative error will be in “stagnation state” with the increment of the iterative steps k for
one non-quadratic polynomial solutions, for example, for the first exact solution. The
left figure of Fig. 3 implies that the relative errors of the Picard-FD scheme at the finial
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Figure 3: Left (the relative errors of Picard-FD scheme with the meshsize), right (comparison with Newton-FD
methods).

“stagnation state” can be reduced if the smaller mesh-sizes h are used. Same results can
be observed for the Newton-FD method (see the right figure of Fig. 3).

Now the difference mesh-size h is used to compute the relative errors in the final
“stagnation state”, the results are listed in the following table:

Mesh-size h=1/10 h=1/20 h=1/40 h=1/80 h=1/160
Relative error 1.566e-3 3.986e-4 1.003e-4 2.514e-5 6.291e-6

From the table, we conclude that the relative error in the stagnation state converges
like O(h2), which is consistent with the error estimate of the finite difference method.

The numerical experiments for the Laplace equation with the nonlinear Stefan-
Boltzmann conditions confirms our theoretical analysis: the upper-solution sequence un

h

of the Picard-FD method converges linearly to the finite difference solution uh,

|u(k+1)
h −uh|Ω ≤ρ|u(k)

h −uh|Ω, ρ<1; (4.1)

and the upper-solution sequence un
h of Newton-FD method quadratically converge to the

finite difference solution uh,

|u(k+1)
h −uh|Ω ≤C|u(k)

h −uh|2Ω. (4.2)

Both methods have second order accuracy after sufficiently large iteration steps:

|u(k)
h −u|

Ω
=O(h2). (4.3)

Generally, the exact solution is not known, and the following stop criterion often used:
For one given tolerance ε, the iterative process will be stopped if

|u(k)
h −u

(k−1)
h |Ω/|u(k−1)

h |Ω ≥ ε. (4.4)

In practice, ε=O(h2) may be enough to guarantee the convergence.
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The advantage of the Picard-FD method is that the stiffness matrix is the same at
every iterative step, which has to be changed in each step of the Newton-FD method. On
the other hand, the Newton-FD method converges faster. Moreover, the technique of the
upper-lower solutions guarantees the global convergence of the Newton-FD method.

4.2 The Robin-Robin DDMs

In the composite material problems, we set Ω1 =(0,1)×(0,1) and Ω2 =(1,2)×(0,1). The
exact solution are

u1 =0.2(1−x)+(cos(πy)+2.2)1/4 in Ω1,

u2 =0.2(1−x)+(cos(πy)+2)1/4 in Ω2.

Note that u1 and u2 are not harmonic functions, and −∆ui = fi with

f1(x,y)=
3

16
π2(cos(πy)+2.2)−7/4sin(πy)2+

1

4
π2(cos(πy)+2.2)−3/4 cos(πy),

f2(x,y)=
3

16
π2(cos(πy)+2)−7/4sin(πy)2+

1

4
π2(cos(πy)+2)−3/4cos(πy),

ue =
(

(

− 1

5
+(cos(πy)+2)

1
4
)4− 1

5

)
1
4
.

It can be verified that u(0)=− 3
2 x2+3x+1.54 is one upper solution, and u(0)|Γ=2.04 is taken

as the initial guess. b(n)=4σ(u(n))3 is chosen in the additive DDM and in the Newton-FD
method for the multiplicative DDM.

Monotone property. Here we demonstrate the monotone property (3.10). First Fig. 4
shows the difference of u(1)−u(2) in the multiplicative Robin-Robin DDM. The error is
found positive, which means u(2)≤u(1), and the maximum values attains on the interface

Figure 4: The difference of the u(1)−u(2).
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Figure 6: Left: Converge to the exact solution by different mesh-sizes, right: Iterative behaviors of three
methods.

Γ. Let us check the monotone property on the interface Γ. In Fig. 5, the values of u(n) at the
interface Γ decrease monotonically same as the exact solutions. Note that the monotone
property in the whole domain can be guaranteed by Lemma 3.1.

Convergence results. Here we study the error: e
(n)
h =u

(n)
h −u. For different mesh-size

h = 1
20 , 1

40 , 1
80 and 1

160 , the max-norms of the errors |e(n)
h |Ω are plotted in Fig. 6. In the left

figure of Fig. 6, the multiplicative domain decomposition method (MDDM) is used, and
the error tolerance is 10−8. It is observed that the errors stagnate in some error level after
enough iterations, which is explained in the experiments for the single domain. Simi-
lar behaviors can be observed for the additive domain decomposition method (ADDM)
and the MDDM with one inner-iteration (MDDM-1). Moreover, the three methods have
almost the same error level if the same mesh-size h is used.

For fixed h= 1
40 , we compare the iterative behaviors in the right figure of Fig. 6, where

the relative iterative errors |u(n+1)
h −u

(n)
h |Ω

/

|u(n+1)
h |Ω are plotted for ADDM, MDDM and
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MDDM-1. For each method, the relative iterative errors drop fast at beginning, then
slow and finally the asymptotical linear convergence can be observed. The MDDM and
the MDDM-1 are faster than the ADDM, and the MDDM-1 is slightly slower than the
MDDM. The Newton-FD methods will run 2∼4 times for the MDDM and only one time
for the MDDM-1. The advantage of the ADDM is the potential of parallelization.

5 Conclusion

In this paper, the monotone method and the Robin-Robin domain decomposition meth-
ods are combined to solve the elliptic problems with nonlinear Stefan-Boltzmann condi-
tions. In single domain, both the Picard-FD method and Newton-FD method are efficient
to obtain the sequences which converge monotonically to the exact solution. For the
composite materials problems, the Robin-Robin DDMs can be implemented easily, and
the monotone properties still hold in each iterative step. Our methods can be general-
ized to the parabolic case, which will be reported elsewhere. Moreover, the convergence
behaviors of the DDMs will be further studied in future works.
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