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Abstract. We numerically simulate a photonics phenomenon of what we call intensity
inversion between red and green fluorescence in oxyfluoride nanophase vitroceram-
ics Er(1%)Yb(8%):FOV through the integration of whole fluorescence’s theories. We
found that it is essential to introduce a coefficient presenting the difference between
the Stokes energy transfer and anti-Stokes energy transfer processes in nano-material
when calculating the energy transfer rate. Under this consideration, and with the to-
tal crystallized volume ratio set to be 17.6%, the simulation results of the population
probabilities values of all energy levels of Er3+ ion are coincident with the experimen-
tal result perfectly.
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1 Introduction

Energy transfer is one of the most important processes in the fluorescence of rare earth
ion doped material [1]. Many phenomena that attract much interest, especially for hot
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frontier nano-material, are directly related to energy transfer processes. So the determina-
tion of energy transfer rate is critical to reveal various fluorescence processes. Generally
there are two methods to obtain the energy transfer rate. One is the experimental method
to determine the rate using a set of materials doped with rare earth ions with different
concentrations [2]. The other is the theoretical method to be discussed in the present pa-
per. The study by Kushida in 1973 [3] has laid the foundation for this theoretical method,
which led us to obtain the energy transfer rate through Judd-Oflet intensity parameters.
After introducing the phonon theory by Dexter and Miyakawa [4], this method became
even more practical as it allows us to solve the questions of phonon-assisted energy trans-
fer involving energy mismatch. In fact, there are two cases of energy mismatch [5]. When
the energy transferred by the donor is larger than the energy accepted by the acceptor,
it is a Stokes process. On the contrary, if the transferred energy is less than the accepted
energy, it is an anti-Stokes process. Usually we pay much attention on the magnitude of
the energy mismatch and ignore the difference between the Stokes and anti-Stokes pro-
cesses. However, in the numerical simulation on the intensity inversion phenomenon in
Er(1%)Yb(8%):FOV nanophase oxyfluoride vitroceramics, we found that it is essential to
consider the effects of this difference, particularly for the nano-materials where energy
transfer plays a key role in the whole processes, because in the nano-scale the energy
transfer rate increases greatly with the reduction in the distance between ions.

2 Experiment

The composition of Er(1%)Yb(8%):FOV is 8%YbF3, 1%ErF3, 30%PbF2, 16%ZnF2, and
45%SiO2. The pure raw materials were put in a platinum crucible for heating at about
900◦C for 100 minutes and then cooled fast at an iron plate to form oxyfluoride glass. The
transparent oxyfluoride vitroceramics were obtained by annealing at the glass transition
temperature for 7 hours.

The absorption spectrum was measured by using UV-365 spectrophotometer, which is
shown as Fig. 1. And the fluorescence spectra were measured by using JY-ISA Fluorolog-
Tau-3 fluorescence spectrophotometer. In the Stokes excitation spectra, two relatively
strong excitation peaks at 378.5nm and 522.3nm, corresponding to 4G11/2 and 2H11/2 of
Er3+ ion respectively, were observed. Then the Stokes emission spectra of the sample
under the 0.3mw excitation at these two wavelengths were studied, as shown in Fig. 2.
It can be seen that the fluorescence of 4S3/2 −→ 4I15/2 is stronger than that of 4F9/2 −→
4I15/2 when the Er(1%)Yb(8%):FOV is excited by 522.3nm light, but the proportional rela-
tionship between the green and red fluorescence intensities is reversed when the sample
is excited by 378.5nm light. This is the fluorescence intensity inversion phenomenon [6].
We can define the common intensity ratio α which equals to the ratio of the green fluores-
cence intensity I(4S3/2) to the red one I(4F9/2) when 2H11/2 is excited, while the unusual
intensity inversion ratio γ is equal to the ratio of I(4F9/2) to I(4S3/2) when 4G11/2 is ex-
cited directly. Thus the range of intensity inversion is Σ = α×γ. The experimental value
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Figure 1: The absorption spectra of Er(1%)Yb(8%):FOV.
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Figure 2: Emission spectra of Er(1%)Yb(8%):FOV.

of Σ for Er(1%)Yb(8%):FOV is 2701.2 due to the obvious fluorescence intensity inversion
phenomenon. α is 27.39, and γ is 98.62.

The schematic of the Er3+ and Yb3+ ions’ energy levels is shown in Fig. 3. The arrows
represent the dominant processes in the intensity inversion phenomenon. Especially the
solid lines between the Er3+ and Yb3+ ions represent the key energy transfer in this phe-
nomenon.
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Figure 3: The schematic of the Er3+ and Yb3+ ions’ energy levels.

3 The rate equations and related parameters

In this paper we focus on the numerical dynamical simulation of the intensity inversion
phenomenon by solving the rate equation:

dni

dt
=∑

s,p

{

∑
j,m,n,k

[
W

(j→i)
s ·nj+W

(m→n,k→i)
p ·nmnk

]
− ∑

j,m,n,k

[
W

(i→j)
s ·ni+W

(m→n,i→k)
p ·nmni

]}
,

(3.1)
where ni is the population probability of level i.

W
(j→i)
s denotes the transition rates of induced emission, absorption, spontaneous

emission and multi-phonon relaxation, from level j to i, which can be calculated through
the absorption spectra and lifetime by using Judd-Ofelt theory [7].

In the rare earth ion doped materials, the electric-dipole transition is allowed because
the odd terms of the Hamiltonian of the weak crystal field make the excited configuration
4 f n−1n′l′ of rare earth ion mix into the 4 f n to form the mixture of two configurations.
So the transitions between energy states in the 4 f n configuration of the Er3+ are mostly
composed of the electric-dipole transition, the magnetic-dipole transition and the electric-
quadruple transition. The electric-quadruple oscillator strength is much smaller than the
total oscillator strength, so we neglect its contribution. Thus the total oscillator strength
equals to the sum of the electric-dipole and the magnetic-dipole oscillator strength, which
can be written as f = fed+ fmd. The total absorption oscillator strength from the ground
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state to each excited states can be calculated from the absorption spectrum which are
shown in Fig. 1.

In the J-O theory, the electric-dipole oscillator strength is expressed as a sum of the
products of the optical intensity parameters Ωt and the square of the matrix elements
of the unit tensor operators U(t). According to J-O theory, the values of U(t) have little
change with the ion environment, so it is usually to adopt the values reported in [8] to
calculate all rare earth ion’s spectroscopy.

The magnetic-dipole oscillator strength fmd can be computed from the magnetic dipole,
by using the Winger-Eckart theory and the intermediate coupling wave functions [7]. Be-
cause the spin-orbit coupling interaction of rare earth ions is strong, we should take it
together with the coulomb interaction into account when calculating the wave function
of ions. The wave function should include those states which have the same value of J,
but different values of L and S, that is to say, the wave function of the Er3+ ion in the
material, which we call the intermediate coupling function, can be expressed as the lin-
ear combination of some RS states. Although ions in different environments can lead to
different intermediate coupling functions, the physical quantities are not sensitive to the
wave functions. So we usually use the known intermediate coupling constants to discuss
the questions in different materials. The values of these constants, adopted in this paper,
can be found in [9].

According to expression of total oscillator strength, the electric-dipole oscillator
strength can be calculated by subtracting the magnetic-dipole oscillator strength from
the total oscillator strength of the ground state absorption. Then from the measured
twelve electric-dipole oscillator strengths we can fit three intensity parameters Ωt in
Er(1%)Yb(8%):FOV by using the least square method and obtain Ω2 =2.1527×10−20cm2,
Ω4 =1.0978×10−20cm2, Ω6 =1.7334×10−20cm2.

After obtaining the values of intensity parameter Ωt, we can calculate the oscillator
strength f J J′ between two excited states using the J-O theory. Further according to the
relation

A=
8π2e2υ̃2n2

mc
f ,

we can achieve the spontaneous emission rates. The main results are shown in Table 1.

When the pumping light is incident at the material, there are absorption transitions
and induced emission transitions to be generated in the rare earth ion. The rates of these
induced transitions can be expressed by absorption cross section and emission cross sec-
tion. When the line broadening of the pumping light is much smaller than the spec-
tra line broadening of the activator ion, this relationship is R = σ(υ)I/hυ, where R is
the transition rate, I is the light intensity that equals to P/s, P is the light power and
s is the area of light spot, σ(υ) is the absorption cross section or emission cross section
at the wavelength of pumping. In the sample Er(1%)Yb(8%):FOV under 0.3mw exci-
tation, the absorption rate and the induced emission rate of 4I15/2-4G11/2, when 4G11/2

state is excited, are 1.5338×10−4s−1 and 1.9475×10−6s−1. The absorption rate and the
induced emission rate of 4I15/2-2H11/2, when 2H11/2 state is excited, are 1.2026×10−4s−1
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Table 1: The spontaneous emission rates of Er3+ ion in Er(1%)Yb(8%):FOV.

Initial level Final level Energy (cm−1) A(s−1)
4I13/2

4I15/2 6410.3 190.99
4I11/2

4I15/2 9970.1 181.87
4I9/2

4I15/2 12165 99.634
4F9/2

4I15/2 14925 1401.6
4S3/2

4I13/2 11602 685.84
4S3/2

4I15/2 18182 1717.8
4F7/2

4I15/2 20202 3812.4
4F5/2

4I13/2 15384 1420.1
4F5/2

4I15/2 21964 2015.1
4F3/2

4I11/2 12212 1265.3
4F3/2

4I15/2 22450 1824
(2G4F2H)9/2

4I13/2 17769 1422.3
(2G4F2H)9/2

4I15/2 24349 1706.5
4G11/2

4I13/2 19578 1812.3
4G11/2

4I15/2 26157 12162
4G9/2

4I13/2 20626 7298.8
4G9/2

4I15/2 27206 2946.5

and 1.3267×10−5s−1. Other induced transition rates are much smaller because the large
energy mismatch apart from the energy of pumping light.

Multi-phonon relaxation rate is related with the temperature and energy gap of the
transition. Under certain temperature, the relationship between the rate and the energy
gap can be expressed by exponential form as follow:

Wmpr =W0exp(−α∆E), (3.2)

where W0 is relaxation rate extrapolated to zero gap. If nonradiative processes are domi-
nated by multi-phonon relaxation, the relationship among the relaxation rate, lifetime of
energy level and spontaneous emission rate can be expressed as follow:

∑Wmpr =
1

τ
−∑A. (3.3)

The summation is over all of the terminal level. We measured the lifetime of Er3+ in
the Er(0.5%):FOV, which reflect the environment of the host FOV and will be adopted in
the calculation of Er(1%)Yb(8%):FOV. Thus considering the spontaneous emission rates
obtained above, we can fit the two parameters W0 and α. After that we can obtain the
multi-phonon relaxation rates of every two levels according to Eq. (3.2). The main results
are shown in Table 2.

In the rate equation (3.1), W
(m→n,k→i)
p is the probability of energy transfer and back

energy transfer processes, m and k denote the initial levels of two ions, and n and i stand
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Table 2: The multi-phonon relaxation rates of Er3+ ion in Er(1%)Yb(8%):FOV.

Initial level Final level Energy (cm−1) Wmpr(s−1)
4I13/2

4I15/2 6410.3 0.14261
4I11/2

4I13/2 3390.3 495.88
4I9/2

4I11/2 1926.9 25783
4F9/2

4I9/2 2441 6434.5
4S3/2

4F9/2 2882.9 1951.4
2H11/2

4S3/2 576.98 9.87e+05
4F7/2

2H11/2 1007.8 3.08e+05
4F5/2

4F7/2 1429.7 98716
4F3/2

4F5/2 225.03 2.55e+06
(2G4F2H)9/2

4F3/2 1698.6 47754
4G11/2 (2G4F2H)9/2 1499 81864
4G9/2

4G11/2 698.08 7.12e+05
4K15/2

4G9/2 358.69 1.78e+06

for the final levels. The energy transfer rate can be obtained by using the theories of
Kushida, Dexter and Miyakawa [11, 12].

Kushida has expressed the expansion of electrostatic interaction Hamiltonian as ten-
sor operator form. Using the Judd-Ofelt theory of rare earth electric dipole transition, he
obtained the transfer rate expressions of dipole-dipole, dipole-quadrupole, quadrupole-
dipole and quadrupole-quadrupole interaction [3]. Thus we can obtain the energy
transfer rates without energy mismatch by the intensity parameters we have calculated
above. But phonon-assisted energy transfer usually plays a much more general action.
Miyakawa and Dexter proposed that the relationship between the energy transfer proba-
bility and the energy mismatch compensated by phonons is similar to the relationship of
multi-phonon relaxation, which can be expressed as:

WPET(∆E)=WPET(0)exp(−β∆E), (3.4)

where ∆E is the energy mismatch, β is a parameter determined by electron-phonon
coupling strength and properties of phonons that participate in the energy transfer:
β = α−(1/h̄ω)·ln(1+gD/gA), where g is electron-phonon coupling constant and h̄ω is
the energy of phonons which play a major role in the energy transfer. Since the value of
g does not change much, we assume that gD = gA = g during the calculation [10]. The
value of α has been fit when we calculated the multi-phonon relaxation rate. Thus all of
the parameters in the rate equation (3.1) are achieved. Some rates of key energy transfer
processes are listed in Table 3.

During the calculation, 15 coupled differential equations, of which the forms are same
as Eq. (3.1) are solved by numerical iterative method. Two of them describe Yb3+ ions,
and the others of them describe Er3+ ions (from the ground level 4I15/2 to the excited
level 2K15/2). If dt is small enough, n(t+∆t)=n(t)+∆t·dn/dt is tenable, where we set it
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Table 3: The key energy transfer rates between Er3+ ion and Yb3+ ion in Er(1%)Yb(8%): FOV.

WPET WPET-im
Er3+ ×NEr ×NEr-im

Initial Final Energy WPET WPET-im ×NYb ×NYb-im

level level (cm−1) (s−1) (s−1) NEr NEr-im (s−1) (s−1)
4G11/2

4F9/2 478.5 7.15e+06 7.15e+06 2.12e-11 2.12e-11 1.52e-04 1.52e-04
4I15/2

4I11/2 -297.6 5.29e+05 1.27e+05 1 1 3.99e-01 1.83e-02
4F7/2

4G9/2 2637.2 9.83e+04 9.83e+04 8.98e-13 2.98e-12 6.66e-14 4.22e-14
4I11/2

4S3/2 716.9 2.24e+05 2.24e+05 5.96e-07 1.95e-07 1.01e-07 6.29e-09
4I9/2

4F5/2 -118.7 4.90e+05 2.77e+05 6.15e-09 4.48e-09 2.28e-09 1.79e-10
4F9/2 (2G4F2H)9/2 207.9 2.76e+05 2.76e+05 1.12e-08 1.87e-08 2.33e-09 7.43e-10
4S3/2

4G9/2 617 3.52e+04 3.52e+04 2.17e-10 2.86e-11 5.77e-12 1.45e-13
4S3/2

2K15/2 -41.3 5.05e+03 4.14e+03 2.17e-10 2.86e-11 8.27e-13 1.71e-14
4I15/2

2K15/2 -18223 2.14e-05 2.37e-43 1 1 1.62e-11 3.41e-50
4I15/2

4G9/2 -17565 6.74e-06 1.75e-42 1 1 5.09e-12 2.52e-49
4I15/2

4G11/2 -16567 5.00e-03 1.54e-37 1 1 3.78e-09 2.22e-44

The column of WPET lists the phonon-assisted energy transfer rates calculated by the original theory. The

column of WPET-im lists the phonon-assisted energy transfer rates calculated by our improved theory which

is introduced exp(hcυ̃k/kT) factor. The real transfer rates are the products of WPET(-im) and the population

probabilities of two ions’ initial levels. The columns of NEr and NEr-im, which correspond to the results

calculated by original theory and improved theory respectively, list the population probabilities of corre-

sponding Er ions’ initial levels when the sample is excited by 378nm-0.3mw light and fluorescence system

gets stable. Relatively, the population probabilities of Yb ions’ excited level 2F5/2 are 7.55e-07 (NYb) and

1.44e-07 (NYb-im), which correspond to the results calculated by original theory and improved theory re-

spectively and when the sample is excited by 378nm-0.3mw light. Under weak excitation, the population

probabilities of Er and Yb ions’ ground levels are always nearly equal to 1. And the last two columns are the

results of real transfer rates whether we consider the introduced factor or not. The first energy transfer in

line 1 is a forward energy transfer from Er3+ to Yb3+, the Yb3+ ion is excited from the ground state 2F7/2 to

the excited state 2F5/2. The other transfers are back energy transfers from Yb3+ to Er3+ and the initial level

of Yb3+ ion is the excited state 2F5/2.

to 5×10−10s in the calculation. Considering that the initial conditions of the population
probabilities are 1 for the ground level and 0 for the excited levels, as well as the real
transition rates are the products of the rates listed in Table 3 and the population probabil-
ities of transition initial levels at the previous moment, we will obtain the curves of each
level’s population probabilities vs time, and after being stabilized the data will finally be
taken as the solution of the equations.

4 Discussion on Stokes and anti-Stokes energy transfer

Following the classification of Bron and Wagner [11], triply ionized rare earth ions in
usual matrices for laser or summation of photon action by energy transfer appear to fall
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in the class that small change in mass and spring constants and weak election-lattice cou-
pling. Using the Kubo-Toyozawa-Lax generating function method, adiabatic approxima-
tion and linear coupling, in the case of small-g coupling constant (low temperature with
respect to maximum phonon energy of the lattice), Miyakawa and Dexter have obtain
expression of energy transfer probability [4]

Wab =(2π/h̄)|Hab|
2
∑
N

e−(ga+gb)(ga+gb)
N/N!σabδ(ε0−Nh̄ω), (4.1)

where ga and gb are the electron-phonon coupling functions of energy donor and accepter
related to S0, the Pekar-Huang-Rhys coupling constant by g = S0(2n)+1, n being the
occupation number for the effective phonons of energy h̄ω where ω is assumed to be
maximum lattice frequency. σab is the overlap integral between ions a and b for zero-order
process. Considering the N-phonon process taken as N=∆E/h̄ω, if we set ga+gb =r, the
Eq. (4.1) can be written as:

Wab =(2π/h̄)|Hab|
2σab ·e

−rrN/N!. (4.2)

Note that the form of the part e−rrN/N! is the same as the form of “Pekarian” lineshape
at 0◦K which resembles a double Gaussian [12]. According to the [12], at finite temper-
ature in the phonon-assisted energy transfer processes in which phonons are emitted,
e−rrN/N! can be replaced by e−rrN/N!FN(T,r) with

FN(T,r)= e−2rn
∞

∑
l=0

N!

l!(l+N)!
(1+n)l+N(nr2)l. (4.3)

For small n, r and large N, Eq. (4.3) reduces to (n+1)N . We suppose g = S0 [13, 14]
and associate with , ga+gb = r as a result, for phonon-assisted energy transfer processes,
assuming that phonons are mainly emitted, the expression of probability can be written
as:

WStokes−ab(N)=(2π/h̄)|Hab|
2
σab

e−(S0a+S0b)(S0a+S0b)
N

N!
(1+n)N. (4.4)

For anti-Stokes phonon-assisted energy transfer, where the transferred energy is less than
the accepted energy and phonons are mainly absorbed, we have equivalently

Wanti−Stokes−ab(N)=(2π/h̄)|Hab|
2
σab

e−(S0a+S0b)(S0a+S0b)
N

N!
(n)N (4.5)

with n=(eh̄ω/kT−1)−1. By using the Stirling’s approximation for N!≈(N/e)N and energy
mismatch ∆E= Nh̄ω, Eqs. (4.4) and (4.5) are written as

WStokes−ab(N)=(2π/h̄)|Hab|
2σabe−(S0a+S0b)e−β∆E, (4.6)

Wanti−Stokes−ab(N)=(2π/h̄)|Hab|
2
σabe−(S0a+S0b)e−(β+1/kT)∆E, (4.7)
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with β defined as

β=(h̄ω)−1

(
ln

( N

S0a(n+1)

)
−ln

(
1+

S0b

S0a

)
−1

)
.

Consider the definition of α in the multi-phonon relaxation processes,

β=α−(h̄ω)−1ln
(

1+
S0b

S0a

)

which is the same as the expression in [4], but with g=S0.
Note that the expressions of phonon-assisted energy transfer for Stokes process and

anti-Stokes process are nearly same, but different with a factor exp{∆E/kT} which is
the ratio between the WStokes−ab and Wanti−Stokes−ab. As we know, it is the first time by
us to express this difference between the Stokes process and anti-Stokes process in the
energy transfer theory apparently like Eqs. (4.6) and (4.7). Obviously, we should pay
much attention to this difference just like similar phenomenon in the Raman scattering
theory.

In classical Raman theory the intensity ratio between the Stokes process and anti-
Stokes process can be expressed as (ωL−ωq)4/(ωL+ωq)4. However, this classical Raman
theory can not well explain the experimental intensity ratio between the Stokes and anti-
Stokes Raman signal. As we known, the intensity of Raman scattering in quantum theory
[15] can be expressed by:

IStokes = const·
(

ωL−ωq

)4 h̄

2ωq
α2

βϕ,q

(
1+nq

)
, (4.8)

Ianti−Stokes = const·
(

ωL+ωq

)4 h̄

2ωq
α2

βϕ,qnq, (4.9)

where nq is the average population probability of a certain elementary excitation which
is phonon here and satisfies the Bose-Einstein distribution

nq =[exp(h̄ωq/kBT)−1]−1.

Substituting this into Eqs. (4.8) and (4.9), there is an additional coefficient

(1+nq)/nq =exp(h̄ωq/kBT)

for the ratio of IStokes and Ianti−Stokes in quantum Raman theory compared with classical
Raman theory. Thus, the experimental phenomenon of Raman spectroscopy is well ex-
plained by quantum Raman theory quantitatively. It is this very coefficient that makes the
trouble in the relationship between the Stokes and anti-Stokes process intensities in the
classical Raman theory solvable. Note that this coefficient is same as what we obtained
in the energy transfer theory. And it comes from the differences among the transitions of
vibrational levels. In general, most of the molecules are in the ground vibrational state,
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with very few situated at high vibrational states. Therefore the vibrational transitions
that start from the ground vibrational level have much larger probabilities, which corre-
spond to the Stokes processes where the electronic system loses energy to the vibrational
system. These discussions are suitable as well to the phonon-assisted energy transfer pro-
cesses involving energy exchange between the electronic system and vibrational system.
Therefore the difference between energy absorption and energy radiation in the vibra-
tional system must be reflected in the phonon-assisted energy transfer like Eqs. (4.6) and
(4.7).

Similar result was also achieved by Auzel in discussing the Stokes and anti-Stokes
phonon sideband excitation fluorescence [12]. Take g= S0 and with “Pekarian” forms at
0◦K (e−S0 SN

0 /n!) in the processes, and consider small n, S0 and large N, the order of the
multiphonon process involved, the probability for multiphonon Stokes and anti-Stokes
excitation can be expressed as follows by using Stirling’s developments:

WStokes(∆E)=
I

c

8π3

3h2
|M|2 e−S0 e−αS∆E, (4.10)

Wanti−Stokes(∆E)=
I

c

8π3

3h2
|M|2 e−S0 e−(αS+1/kT)∆E, (4.11)

where αS=(h̄ωm)−1{ln[N/S0(n+1)]−1} and h̄ωm is the effective phonon energy. We can
find that there is a factor exp{∆E/kT} either between Stokes process and anti-Stokes pro-
cess, where ∆E is the energy gap between the excitation and the electronic level. These
results are coincident with what we have supposed that the difference between the Stokes
process and anti-Stokes process should possess the same form in the system which in-
volves energy exchange between the electronic system and vibrational system.

Using tensor operator to expend electronic coulomb interaction between the donor
and accepter and following the statements of Judd-Ofelt theory, Kushida have obtained
the rates of resonance energy transfer as follows [3]:

W
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S, (4.12)
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where d−d, d−q and q−q represent the dipole-dipole, dipole-quadrupole and
quadrupole-quadrupole interaction between the ions, Ωλ (λ = 2,4,6) is the Judd-Ofelt
intensity parameters, R is the ions’ distance between the energy donor and acceptor, S
is the overlap integral of the donor’s emission spectrum and acceptor’s absorption spec-
trum. And 〈Ja‖U(λ)‖J′a〉 is the reduced matrix element of the unit tensor operator U
between the two states of the ion. When energy mismatch exists between the donor and
acceptor ions, the energy transfer can occur accompanied by the emission or absorption
of phonons. For the rate of such a phonon-assisted energy transfer, Eq. (3.4) by Miyakawa
and Dexter was theoretically proposed with WPET(0) denotes the transfer rate for the en-
ergy matched case. But these formulas which we use in the calculation do not involve the
difference between the Stokes process and anti-Stokes process. In present paper we pro-
cess the energy transfer theory on this point further. Thus the coefficient exp(hcυ̃k/kT)
was introduced to improve the calculation of energy transfer rate described by the orig-
inal theory [3, 4]. The original Kushida theory is tenable and unchanged. The original
phonon-assistant Miyakawa and Dexter theory (Eq. (3.4)) is considered reasonable only
for discussing Stokes processes, whereas the rate of anti-Stokes energy transfer should be
divided by the introduced coefficient exp(hcυ̃k/kT), where υ̃k is the mismatch of energy
transfer. Table 3 lists some improved rates of energy transfer. After this introduction,
some anti-Stokes energy transfer rates, which involve the ground level of Er3+ ion as
initial level such as

{2F5/2(Yb3+) −→ 2F7/2(Yb3+), 4I15/2(Er3+) −→ 4G11/2(Er3+)},

{2F5/2(Yb3+) −→ 2F7/2(Yb3+), 4I15/2(Er3+) −→ 4G9/2(Er3+)},

{2F5/2(Yb3+) −→ 2F7/2(Yb3+), 4I15/2(Er3+) −→ 2K15/2(Er3+)},

reduce obviously as shown in Table 3. Note that the original energy transfer rates WPET

of these three channels, which are listed in 4th column of Table 3, are indeed smaller than
other channels which possess much smaller energy mismatch. But during the simula-
tion, the real energy transfer rates is WPET×NEr×NYb, which includes the product with
population probabilities of ions’ initial levels. Through the 8th column of Table 3 we find
that these real transfer rates of above three transfer channels, which origin from one ion’s
ground state and possess very large energy mismatch, are too fast compared with other
channels. It seems impossible for an anti-Stokes energy transfer channel whose mismatch
is more than 15000cm−1 to absorb enough energy through the phonons to compensate the
big gap. Thus the improved rates WPET-im are more reasonable. These anti-Stokes energy
transfer channels should have much lower transfer rates as shown in the last column in
Table 3.

5 Simulation results

In order to discuss the importance of exp(hcυ̃k/kT), let’s take the range of intensity in-
version Σ as example. Fig. 4 shows the simulation results with and without consider-
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Figure 4: The range of intensity reversion Σ changes with the total crystallized volume ratio.

ing this coefficient using the logarithm of the Σ as the ordinate. In the simulation of
Er(1%)Yb(8%): FOV, we suppose that all of the rare earth ions are incorporated into a
nanocrystalline phase. If the total ion number of rare earth ion is fixed value, the small
crystallized volume ratio of the FOV means the small distance between the rare earth
ions. During the calculation, we change the total crystallized volume ratio from 10% to
100% with other parameter unchanged by setting different volumes of each rare earth
ion in proportion. That is to say we simulate the system in different ions distance which
changes from small to large.

The circles are the results considering the coefficient, while the triangles are those
without taking the coefficient into account. The significant difference between the two
lines lies in the range less than 25%, which is just in the range of most reported crys-
tallized volume ratios in glass ceramics [16]. Note that the circle line is monotonically
decreasing, whereas the triangle line is increasing firstly prior to decline. Obviously, the
result without considering the coefficient deviates from the experiments and common
sense. The values of Σ in samples doped with erbium at the same concentration and with
ytterbium at different concentrations were studied experimentally [6]. The results imply
that the Σ will decrease with the increase in the distance between ions and the concentra-
tion of ytterbium, which are in contradiction to the results shown by the triangle line but
coincident with the circle line. In addition, as for the values of ordinates, the variation
range in the circle line is larger, a result coincident with the experiment. But we can not
even find a proper crystallized volume ratio for the triangle line to reflect the significant
intensity inversion phenomenon because of its such a small value of Σ.

Consequently, for this phenomenon with energy transfer playing an important role,
it is critical to introduce the coefficient to describe the difference between the Stokes and
anti-Stokes energy transfer. Through the numerical simulation we found that when the



C. Wang et al. / Commun. Comput. Phys., 7 (2010), pp. 580-596 593

time (ms)
0 2 4

lo
g

 N

-22

-20

-18

-12

-11

-10

-9

-8

-7

-6

time (ms)
0 2 4

lo
g

 N

-22

-20

-18

-16

-10

-9

-8

-7

-6
a b4

I
13/2

4
I
11/2

4
I
9/2

4
F

9/2

4
S

3/2

2
H

11/2

4
F

7/2

4
F

5/2

4
F

3/2

(
2
G

4
F

2
H)

9/2

4
I
13/2

4
I
11/2

4
I
9/2

4
F

9/2

4
S

3/2

2
H

11/2

4
G

11/2

Figure 5: The simulation results of Er3+ level’s population probabilities changing with time when
Er(1%)Yb(8%):FOV is excited by 378.5nm light(a) and 522.3nm light(b). The total crystallized volume ratio
in the glass ceramics is 16.9%.

total crystallized volume ratio is 16.9% the theoretical result of Σ is coincident with the
experimental result perfectly. Considering the equation I/Ni = ni Aijhv in general laser
theory, when the simulated system has been stabilized, we can get that α is 6.16, γ is
437.73 and Σ is 2696.48. The calculation results of Er3+ level’s population probabilities
as a function of time are shown in Fig. 5, with the time as abscissa and the logarithm of
the level’s population probabilities as ordinate. Figs. 5a and 5b are the results when the
material is excited by 378.5nm and 522.3nm light respectively. The numbers at the right
of the curves represent the ordinal numbers of the excited levels from 4I13/2 to 2K15/2 of
Er3+ ion. The curves of 4F9/2 and 4S3/2 are thick solid lines. The levels corresponding to
the excitation energy, 4G11/2 in Fig. 5a and 2H11/2 in Fig. 5b, are showed by the dashed
lines.

In Fig. 5a the population probability of 4F9/2 is much higher than that of 4S3/2. Con-
sidering the I/Ni =ni Aijhv, the red fluorescence is stronger than the green one, which is

coincident with the experiment. When 4G11/2 is excited directly, 4F9/2 can be populated
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rapidly through the energy transfer channel

{4G11/2(Er3+) −→ 4F9/2(Er3+), 2F7/2(Yb3+) −→ 2F5/2(Yb3+)}

because the fast transfer probability W
(m→n,k→i)
p of this channel is up to 7.147×106. But

there is not high speed transfer channel to 4S3/2 whose population mainly comes from
2H11/2 through multi-phonon relaxation. That is the reason why the population proba-
bility of 4S3/2 is relatively lower than that of 4F9/2. At the same time, the energy transfers
from Er3+ to Yb3+ ions excite the Yb3+ ions from 2F7/2 to 2F5/2. The 2F5/2 of Yb3+ is res-
onant with the 4I11/2 of Er3+. Consequently, another channel to populate 4I11/2 of Er3+,
i.e.,

{2F5/2(Yb3+) −→ 2F7/2(Yb3+), 4I15/2(Er3+) −→ 4I11/2(Er3+)},

can be created with the rate of 1.269×105. Therefore, compared with Fig. 5b the curve of
4I11/2 in Fig. 5a is raised much more quickly than the curve of 4I13/2. The levels 4G9/2 and
2K15/2 are higher than 4G11/2. Their population mainly come from the cooperative effects
of back energy transfer channels such as

{2F5/2(Yb3+) −→ 2F7/2(Yb3+), 4I11/2(Er3+) −→ 4S3/2(Er3+)},

{2F5/2(Yb3+) −→ 2F7/2(Yb3+), 4I9/2(Er3+) −→ 4F5/2(Er3+)},

{2F5/2(Yb3+) −→ 2F7/2(Yb3+), 4F9/2(Er3+) −→ (2G4F2H)9/2(Er3+)},

{2F5/2(Yb3+) −→ 2F7/2(Yb3+), 4F7/2(Er3+) −→ 4G9/2(Er3+)},

{2F5/2(Yb3+) −→ 2F7/2(Yb3+), 4S3/2(Er3+) −→ 4G9/2(Er3+)},

{2F5/2(Yb3+) −→ 2F7/2(Yb3+), 4S3/2(Er3+) −→ 2K15/2(Er3+)}.

Because the population probability products of the excited Yb3+ and Er3+ initial levels
in these energy transfers are much lower, the higher levels 4G9/2 and 2K15/2 have little
population probability. The same situations for 4F7/2 to 4G9/2 occur in Fig. 5b too, where
it is obvious that there is no intensity inversion phenomenon. Because 2H11/2 is excited
directly, the population probability of 4G11/2 is very low and the channel

{4G11/2(Er3+) −→ 4F9/2(Er3+), 2F7/2(Yb3+) −→ 2F5/2(Yb3+)}

has no effect. The population probabilities of 4S3/2 and 4F9/2 mainly come from the multi-
phonon relaxation. That’s why in Fig. 5b from the curve of 2H11/2 to 4I13/2, we see that
the higher levels become stabilized a little more quickly than the next lower levels.

6 Conclusion

In the present study we integrate every theory about the fluorescence process includ-
ing induced emission, absorption, spontaneous emission, multi-phonon relaxation, and
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energy transfer to numerically simulate an interesting photonic phenomenon the fluo-
rescence intensity inversion between red and green fluorescence of Er(1%)Yb(8%):FOV
nanophase oxyfluoride vitroceramics. Especially we place stress on the introduction of
an extra coefficient exp(hcυ̃k/kT) to original energy transfer theory based on Auzel’s dis-
cussion. The coefficient reflects the difference between the Stokes process and anti-Stokes
process. By using the improved theory we obtain the simulation results which are coin-
cident with the experiment results perfectly. And through comparing the results with
and without considering this coefficient, we found that it is essential to take the coeffi-
cient into calculation particularly for the nano-materials where energy transfer plays a
key role.
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