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Abstract. A combined lattice Boltzmann and discrete element approach is proposed
for numerical modelling of magnetorheological fluids. In its formulation, the particle
dynamics is simulated by the discrete element method, while the fluid field is resolved
with the lattice Boltzmann method. The coupling between the fluid and the particles
are realized through the hydrodynamic interactions. Procedures for computing mag-
netic, contact and hydrodynamic forces are discussed in detail. The applicability of
the proposed solution procedure is illustrated via a two-stage simulation of a MR fluid
problem with four different particle volume fractions. At the first stage, simulations
are performed for the particle chain formation upon application of an external mag-
netic field; and at the second stage, the rheological properties of the MR fluid under
different shear loading conditions are investigated with the particle chains established
at the first stage as the initial configuration.
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1 Introduction

Since the discovery of magnetorheological fluids (MR fluids) by American inventor Jacob
Rabinow [23] in the 1940s, the MR technology has found many control-based applications
such as dampers, shock absorbers, brakes and clutches in automotive, aerospace and
some other industries. A structure based on MR fluids might be the next generation in
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design for products where power density, accuracy and dynamic performance are the
key features [21].

A MR fluid is a type of smart fluid. It consists of micron-sized magnetizable parti-
cles dispersed in a non-magnetic carrier fluid. In the absence of a magnetic field, the
rheological behaviour of a MR fluid is basically that of the carrier fluid, except that the
suspended magnetizable particles makes the fluid ’thicker’. When subjected to an exter-
nal magnetic field, the particles become magnetized and acquire a dipole moment. Due
to magnetic dipolar interactions, the particles line up and form chainlike structures in the
direction of the applied field. This change in the suspension microstructure significantly
alters the rheological properties of the fluid. The viscosity of the fluid is increased as the
fluid motion is largely restricted by the particle chains. Also the yield stress of the fluid
increases with the applied magnetic field strength and can be controlled very accurately.
Besides, the response of the MR fluid to the applied magnetic field is usually rapid (in
milliseconds). The MR effect is also reversible. When the magnetic field is removed, the
original condition of the fluid is re-established [21].

Experimental and theoretical studies have been reported to better understand and
predict the behaviour of MR fluids. Particularly from the design prospective it is im-
portant to establish the quantitative relationship between the rheological properties (vis-
cosity, yield stress etc) and the volume concentration fraction of the particles and their
magnetic properties as well as the intensity of the applied magnetic field. Due to the lim-
itations in the experiments and over-simplifications in the theoretical analysis, numerical
modelling has become increasingly important in recent years as a powerful prediction
tool for modelling the rheological behavior of MR fluids.

For instance, Ly et al. [19] performed two-dimensional particle dynamics simula-
tions of MR fluids, where the motion of the particles was governed by magnetic, hy-
drodynamic, and repulsive interactions; fluid-particle interactions were accounted for
via Stokes’ drag while inter-particle repulsions were modelled through approximate
hard-sphere rejections; magnetostatic forces were derived from the solution of (steady)
Maxwell’s equations by employing a fast multipole method on a boundary integral for-
mulation. Kang et al. [14] recently developed a direct numerical simulation method
based on the Maxwell stress tensor and a fictitious domain method. Particles were as-
sumed to be non-Brownian with negligible inertia. Rigid body motions of particles in
two-dimensions were described by a rigid-ring description implemented by Lagrange
multipliers. The magnetic force was represented by the divergence of the Maxwell stress
tensor, which acted as a body force added to the momentum balance equation. Keaveny
et al. [15] developed a new model to accelerate the calculation of many-body dipole in-
teractions, where each particle’s magnetization was represented as a finite distribution
of current density. The exact solution to the two-body problem was also presented and a
technique was introduced to blend this result with a many-body dipole calculation.

Numerical simulations of MR fluids require an accurate and computationally efficient
approach to fully account for magnetic, hydrodynamic and contact interactions. Firstly,
the scheme to be employed should be able to effectively model contact phenomena be-
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tween the magnetizable particles during the evolution of the magnetic microstructure.
It is obviously impractical using a continuum representation (such as finite element) of
a large number of individual particles. The discrete element method, among other dis-
continuous methodologies such as discontinuous deformation analysis and the manifold
method, has been successfully employed for modelling problems of a discrete or dis-
continuous nature. Originated in geotechnical and granular flow applications [6] in the
late 70s, the discrete element method is based on the concept that individual material
elements are considered to be separate and are connected only along their boundaries
by appropriate physically based interaction laws. The motion of the discrete elements is
governed by the contact forces and the entire system is evolved by employing an explicit
time integration scheme.

Secondly, fluid-particle interaction problems are computationally challenging. With
traditional computational fluid dynamics methods, the fluid domain around the particles
need to be continuously re-meshed as the particles move across the computational grids.
Also sufficient resolution of the particle domain is required. A relatively new numerical
technique, the lattice Boltzmann method, overcomes the limitations of the conventional
methods by using a fixed, non-adaptive (Eulerian) mesh to represent the flow field. In
particular, the moving boundary conditions can be relatively easily implemented in its
framework. Since Ladd’s pioneer work [18], the lattice Boltzmann method has been ex-
tensively employed in modelling fluid-particle interaction problems. A rich publication
in recent years (see for instance, [1,5,7,8,11,13,22] and the references therein) has proved
the effectiveness of the method.

This work proposes a combined lattice Boltzmann and discrete element approach for
modelling MR fluids, in which the particle dynamics is simulated by the discrete element
method, while the fluid field is resolved with the lattice Boltzmann method. The coupling
between the fluid and the particles are realized through the hydrodynamic interactions.
The applicability of the proposed solution procedure is illustrated via a two-stage simu-
lation of a MR fluid with four different particle volume fractions. At the first stage, sim-
ulations are performed for the particle chain formation upon application of an external
magnetic field; and at the second stage, the rheological properties of the MR fluid under
different shear loading conditions are investigated with the particle chains established at
the first stage as the initial configuration.

It should be pointed out that the primary objective of the present work is to establish
a computational framework for investigating MR fluids at the microscopic level rather
than the macroscopic (application) level. Thus a representative volume element (RVE),
taken from a large volume MR fluid, is modelled with appropriate boundary conditions
imposed. It is also assumed that mono-sized spherical particles are suspended in a New-
tonian fluid, and both Brownian and gravitational forces are ignored. To illustrate the
solution procedure to be presented, only a monolayer of the fluid is taken which makes
it possible to employ a two-dimensional lattice Boltzmann formulation for the fluid field.
Because of this simplification, the results obtained from the numerical experiments do
not represent the true physical values of a realistic MR fluid, but should give some rea-
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sonable indications of the major physical features of the fluid.
In what follows, the discrete element procedure for modelling particle dynamics and

the lattice Boltzmann formulation for simulating the fluid field will be discussed in the
next two sections with special attention given to the evaluations of the contact, magnetic
and hydrodynamic forces. Then the coupling of the governing equations for particles
and fluid, as well as the solution algorithm will be presented, followed by numerical
examples and conclusion.

2 Particle dynamics: The discrete element approach

During the microstructure evolution of a MR fluid subjected to an applied magnetic field,
the motion of the magnetized particles is collectively driven by the magnetic, hydrody-
namic and contact forces. The classical discrete element method is extended to include
all these forces.

In the discrete element formulation, each particle in a MR fluid is treated as a discrete
element that interacts with other particles (discrete element) through boundary contact.
The particles are assumed rigid, but a small overlap between contacting particles is al-
lowed to generate mechanical contact forces that prevent them from penetrating each
other. At each time step, particles in contact are identified with a contact search algo-
rithm; then their interaction forces are evaluated based on appropriate interaction laws.
The motion of particles is governed by Newton’s second law. A set of governing equa-
tions is built up and integrated with respect to time, to update each particle’s position,
velocity and acceleration. The main building blocks of the discrete element procedure are
described as follows.

2.1 Governing equations

The motion of the particles is governed by Newton’s second law of motion as

Mü+Cdu̇=Fm+F f +Fc, (2.1)

where M and Cd are respectively the mass and damping matrices of the system; and u,u̇
and ü are respectively the displacement, velocity and acceleration vectors; Fm, F f and Fc

denote the magnetic, hydrodynamic and contact forces, respectively.
Note that the computation of the hydrodynamic forces will be discussed in the next

section with the lattice Boltzmann method, while the evaluations of the contact and mag-
netic forces are given in this section.

2.2 Time integration

Eq. (2.1) is integrated by employing an explicit time integration scheme. With this
scheme, no global stiffness matrix needs to be formed and inverted, which makes the
operations at each time step far less computationally intensive.
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Figure 1: Central difference integration scheme.

Among the explicit schemes, the central difference method is very popular for dy-
namics and impact since it is a single step scheme and offers a second order accuracy.
The procedure is outlined as follows.

A combination of previous and current midpoint velocities, u̇n− 1
2

and u̇n+ 1
2
, as illus-

trated in Fig. 1, forms the second order difference equation that defines the acceleration
at time tn as

ün = ü(tn)=
u̇n+ 1

2
−u̇n− 1

2

∆tn+ 1
2

. (2.2)

Through the direct integration of the acceleration term with respect to the time increment,
the velocity at time tn can be approximated as

u̇n = u̇(tn)=
un+ 1

2
−un− 1

2

∆tn+ 1
2

=
un+1−un−1

2∆tn+ 1
2

=
∆tn+1u̇n+ 1

2
+∆tnu̇n− 1

2

2∆tn+ 1
2

, (2.3)

where the midpoint velocities are defined as

u̇n− 1
2
= u̇(tn− 1

2
)=

un−un−1

∆tn
, u̇n+ 1

2
= u̇(tn+ 1

2
)=

un+1−un

∆tn+1
(2.4)

and the time increments are calculated as

∆tn = tn−tn−1, ∆tn+1 = tn+1−tn, ∆tn+ 1
2
=

1

2
(∆tn +∆tn+1). (2.5)

By substituting Eqs. (2.2) and (2.3) into (2.1) the velocity at time tn+ 1
2

is determined in

terms of known (previous) velocity, displacement and force quantities,

u̇n+ 1
2
= u̇(tn+ 1

2
)=
[

2M+Cd∆tn+1

]−1[

(2M−Cd∆tn)u̇n− 1
2
+2∆tn+ 1

2
F
]

, (2.6)

where F denotes the force terms on the right hand side of Eq. (2.1). Thus the displacement
at time tn+1 can be calculated as

un+1 =u(tn+1)=un+u̇n+ 1
2
∆tn+1 (2.7)
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and the force vector is updated by

Fn+1 =F(tn+1). (2.8)

Since displacements and velocities are computed at different time instances in the central
difference algorithm, a starting scheme is required to provide an initial value for velocity
at t= 1

2 ∆t1. The following procedure is used to compute u̇ 1
2

in this work:

u̇ 1
2
=u0+M−1(F−Cdu̇0)

∆t1

2
, (2.9)

where u0 and u̇0 are the initial displacements and velocities respectively.
However, any explicit time integration scheme is only conditionally stable. If the time

increment is too large, the errors are magnified, resulting an unstable solution. In order
to maintain a stable solution, the time step has to be smaller than a critical value, which
is related to the maximum eigenvalue of the governing equations. For a linear system the
critical time step can be evaluated as [2]

∆tcr =
2

ωmax
, (2.10)

where ωmax is the maximum eigenvalue of the system. The above result may not be valid
for an impact system as it is generally nonlinear, which has been demonstrated in [10].
To ensure a stable and reasonably accurate solution, the critical time step should be no
larger than 0.1 times the value given by Eq. (2.10).

2.3 Contact search

As the system configuration keeps changing during the course of evolutions, a contact
search needs to be performed constantly to build a list of all possible contacts. Since
a significant percentage of the total computational effort of a discrete element solution
may be associated with this task, a robust and efficient contact detection algorithm is
essentially required.

Some search algorithms used in general computing technology and computer graph-
ics have been employed for this purpose. For the detection of potential contact between a
large number of discrete elements, a spatial search algorithm based on space-cell subdivi-
sion and incorporating a tree data storage structure possesses significant computational
advantages. For instance, the augmented spatial digital tree [9], which will be adopted
in this work, is a spatial binary tree based contact detection algorithm. It uses the lower
corner vertex to represent a rectangle in a binary spatial tree, with the upper corner ver-
tex serving as the augmented information. Numerical experiments in [9] indicate that
the augmented spatial digital tree algorithm can reduce the CPU requirement of contact
detection from an originally demanding level down to a more acceptable proportion of
the computing time.
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2.4 Contact forces

The contact forces between the contacting particles provide a barrier for inter-particle
penetrations, which are evaluated from a physically based interaction law that describes
the relationship between the contact overlap or penetration, δ, and the corresponding
repulsive force, Fc,

Fc = F(δ). (2.11)

Different assumptions regarding the contact force will result in different contact models.
A comprehensive study of the contact interaction laws can be found in [12]. In this work,
a penalty method based on Hertzian contact theory is adopted, in which the contact dis-
placement constraints are only approximately satisfied for finite values of the penalty
coefficients, allowing a small amount of overlap to occur in the contact zone. The normal
contact force, Fc, is assumed to act along the direction connecting the particles’ centres
and its magnitude can be computed in terms of the relative approach of two particles as

Fc = knδ
3
2 (2.12)

with the penalty coefficient

kn =
4E∗√R∗

3
, (2.13)

where R∗ is the relative radius defined by

1

R∗ =
1

R1
+

1

R2

with R1 and R2 being the radii of the two particles; and E∗ is the relative Young’s mod-
ulus related to the elastic properties E1,E2, and ν1,ν2 of the two particles, given by the
following expression

1

E∗ =
1−ν2

1

E1
+

1−ν2
2

E2
.

2.5 Magnetic forces

The magnetic interaction in a MR fluid can be treated as a magnetostatic problem, which
is described by Laplace’s equation subject to appropriate boundary conditions. The mag-
netic forces are resolved by formulating the Maxwell stress tensor from the resultant field.
The solution procedure is outlined below, based on [15].

Let H and B denote the magnetic field intensity and flux density, respectively. For a
linear isotropic medium with the magnetic permeability µ, H and B are related by the
constitutive equation

B=µH. (2.14)

Assume that the external magnetic field H0 is applied along the z direction with a mag-
nitude H0, i.e. H0 = H0z, where z denotes the unit vector of the z-axis. If µp and µ

f
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represent, respectively, the magnetic permeability of the particles and fluid, then the rel-
ative susceptibility, χ, and effective susceptibility, χe, of the particles are defined as

χ=
µp

µ f
, χe =

3(χ−1)

χ+2
.

2.5.1 Fixed dipole model

When an external magnetic field is applied, each particle in a MR fluid is magnetized and
acquires a magnetic dipole moment m which, when ignoring the presence of the other
particles, is

m=
4πR3

3

3(χ−1)

χ+2
H0 =CpH0; m= |m|=CpH0, (2.15)

where Cp =Vpχe; Vp =4πR3/3 is the volume of the particle.
Consider one particle with dipole moment m1 = m. The magnetic field produced by

this dipole at any point (with a relative position vector r to the dipole) in space can be
expressed as [24]

H1(m1,r)=
1

4π

3(m1 · r̂)r̂−m1

r3
, (2.16)

where r = |r| and r̂ = r/r is the unit vector of r. The corresponding flux density B is
calculated as

B1(r)=µH1(r). (2.17)

If a second particle of magnetic moment m2 =m is placed in the magnetic field of m1

as illustrated in Fig. 2, the magnetic force, Fm, acting on the second dipole due to the first
one can be determined by

Fm(r)=∇(m2 ·B1(r)) (2.18)

with r=x2−x1. This force can be expressed more conveniently in a spherical coordinate
system (r,θ,ϕ) with θ and ϕ being the zenith and azimuth angles, respectively. Partic-
ularly, the component of the force in the azimuth angle ϕ is zero, and the radial and
transversal components, Fn and Fτ, can be computed as

Fn(r,θ)=− 3µ

4π

m1m2

r4

[

3cos2θ−1
]

=− 3µ

4π

m1m2

r4

1

2

[

3cos2θ+1
]

(2.19)

and

Fτ(r,θ)=− 3µ

4π

m1m2

r4
sin2θ. (2.20)

Depending on the angle θ, the normal component Fn can be attractive (when θ < θc) or
repulsive (when θ > θc), where the critical angle θc =54.47◦.

Eqs. (2.19) and (2.20) define the magnetic interaction between any two magnetized
particles, which is basically the classic magnetic dipole model, or the fixed dipole model.
Owing to its simplicity, this model has been commonly used in modelling MR-fluids,



K. Han, Y. T. Feng and D. R. J. Owen / Commun. Comput. Phys., 7 (2010), pp. 1095-1117 1103

Figure 2: Magnetic forces on dipole moment m2 from dipole moment m1.

especially when a large number of particles are involved. The pairwise nature of the
model also makes it suitable for use within the discrete element modelling framework.

This fixed dipole model is accurate if the separation distance (gap) of two magnetized
particles is larger than their diameter 2R [15], which suggests a cut-off distance to be used
in the later magnetic interaction computation,

rc =4R. (2.21)

However, a large error will be introduced when the separation distance between two par-
ticles is less than their radius, r < R. This error arises mainly from the strong interaction
between the two magnetized fields of the particles, and will reach maximum when the
particles touch each other. The numerical investigation performed in [15] shows that for
χ = 5, the fixed dipole model underestimates the maximum attraction force by around
35%, while overestimates the maximum repulsive force by 50% or more. The error will
become more pronounced for larger susceptibility values.

2.5.2 Mutual dipole model

The fixed dipole model discussed above assumes no interactions between the particles’
magnetized fields. In fact, the presence of other magnetized particles will increase the
magnetization of a particle, thereby enhancing its dipole strength and its interactions
with other particles.

If the mutual magnetization between the particles are taken into account, the accuracy
of the fixed dipole model may be improved. More specifically, each particle is still viewed
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as a point dipole but is subjected to an additional secondary magnetization from the
other particles’ magnetized fields. Note that the magnetization due to the external field is
termed the primary magnetization and the magnetization by other particles’ magnetized
fields is termed the secondary magnetization.

The mutually magnetized moment of particle i, mi, can be evaluated as

mi =Cp[H0+H(xi)] (i=1,··· ,N), (2.22)

where N is the total number of particles in the system, and H(xi) is the total secondary
magnetic field generated by all the other magnetized particles at the centre of particle i,

H(xi)=
N

∑
j=1,j 6=i

Hj(mj,rij)=
N

∑
j=1,j 6=i

1

4π

3r̂ij(mj · r̂ij)−mj

r3
ij

(2.23)

with rij =xi−xj; rij = |rij|; r̂ij = rij/rij.
Eqs. (2.22) and (2.23) define a 3N×3N linear system of equations with mi unknown

variables. After all the magnetic moments are solved, the magnetic forces between the
particles can be determined by the fixed dipole model using these total magnetization
moments. This is the idea behind the so-called mutual dipole model [15].

Nevertheless, the computational cost associated with the solution of the linear system
of equation (2.23) for systems involving a large number of particles can be substantial,
and in particular, the solution needs to be performed at every time step of the simulation.
In the present work, the classic Gauss-Seidel algorithm is employed to iteratively solve
the equations.

Let mk
i be the approximate values at the kth iteration, and m0

i be a given initial values.
Then at the k+1 iteration mi is computed as

mk+1
i =Cp

[

H0+
i−1

∑
j=1

Hj(mk+1
j ,rij)+

N

∑
j=i+1

Hj(mk
j ,rij)

]

; k=0,1,2,··· , (2.24)

where mi at the previous step serves as the initial value for the current step. As the time
step is usually very small, it is a very good initial value and thus the convergence of
the iterative scheme is rapid. The numerical tests conducted have shown that the above
scheme is very effective, and a solution accuracy of 10−5 can be generally achieved in no
more than three iterations.

Our numerical investigations show that using this mutual dipole model for two par-
ticles in contact, the upper limit of the maximum increased magnetic moment is 33.33%
for a perfectly magnetized material (χ=∞), which gives a 77.78% increase of the attrac-
tion force; while the upper limit of the maximum decreased magnetic moment is 11.11%
which results in a 20.99% decrease of the repulsive force. The effect is even more signifi-
cant for a longer chain of particles.

However, as shown in [15], the exact maximum force between two particles in contact
is larger than that predicted by the mutual dipole model. Particularly, it is infinite when
χ=∞.
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Further improvement to the mutual dipole model has been undertaken in [15], in
which after the total magnetized moments are obtained, the force between any two par-
ticles is calculated by using the two-body exact solution, a special case of the general
solution to multiple particle problems [4]. Although some improvement is achieved, the
exact solution is still not obtained since the two-body solution is not exact in general
multiple particle cases. More importantly, from a computational point of view, this ver-
sion of the mutual dipole model loses its original simplicity as a result of the substantial
computational cost involved in the incorporation of the two-body exact solution.

In view of the difficulties discussed above, a better approach, as proposed in [17], for
improving the accuracy but retaining the computational simplicity of the fixed or mutual
dipole model is to use some empirical formulae to describe the magnetic interaction when
the particles are close to each other. However, the procedure involves substantial pre-
computations for different susceptibility values and different relative positions between
two particles.

3 Hydrodynamics: The lattice Boltzmann approach

The fluid field and the hydrodynamic forces of a MR fluid will be fully resolved with the
lattice Boltzmann method.

3.1 Lattice Boltzmann formulation for incompressible fluid flow

Originated from the lattice gas automata method, the lattice Boltzmann method is a
’micro-particle’ based numerical time-stepping procedure for the solution of incompress-
ible fluid flows. Instead of solving the Navier-Stokes equations numerically as do the
traditional computational fluid dynamics methods, the lattice Boltzmann method simu-
lates fluid flows by tracking the evolution of fluid particle density distributions. Once the
density distribution function is solved, the macroscopic variables of the fluid field can be
conveniently calculated from its first two hydrodynamic moments.

In the lattice Boltzmann method, space is divided into square lattice nodes. The fluid
is modeled as a group of fluid particles that are allowed to move between lattice nodes
or stay at rest. During each discrete time step of the simulation, fluid particles move to
the nearest lattice node along their directions of motion, where they ’collide’ with other
fluid particles that arrive at the same node. The outcome of the collision is determined by
solving the kinetic (Boltzmann) equation for the new distribution function at that node
and the fluid particle distribution function is updated [3].

The evolution of the density distribution functions at each time step is given by the
following lattice Boltzmann equation

fi(x+ei∆t,t+∆t)− fi(x,t)=− 1

τ

[

fi(x,t)− f
eq
i (x,t)

]

, (3.1)
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where for any grid node x, x+ei∆t is its nearest node along direction i; fi denotes the
fluid particle density distribution function, each relating the probable amount of fluid
particles moving with the velocity ei along the i-th direction at each node. In the widely
used two-dimensional nine-speed (D2Q9) model, ei is defined as



























e0 =(0,0),

ei = c

[

cos
π(i−1)

2
,sin

π(i−1)

2

]

(i=1,··· ,4),

ei = c

[

cos
π(2i−9)

4
,sin

π(2i−9)

4

]

(i=5,··· ,8),

(3.2)

in which c is termed the lattice speed and given by

c=h/∆t

with h the lattice spacing and ∆t the discrete time step.
The collision operator on the right-hand side of Eq. (3.1) is used to redistribute the

fluid particle density fi towards its local equilibrium f
eq
i ; and the rate of approach to

equilibrium is controlled by the relaxation time parameter τ. The equilibrium distribu-
tion function f

eq
i is given in the D2Q9 model as















f
eq
0 = ρ

[

1− 3

2c2
v·v

]

,

f
eq
i =wi ρ

[

1+
3

c2
ei ·v+

9

2c4
(ei ·v)2− 3

2c2
v·v

]

(i=1,··· ,8),

(3.3)

with

w0 =
4

9
; w

1−4
=

1

9
; w5−8 =

1

36
. (3.4)

The lattice Boltzmann equation (3.1) is explicitly solved in the following two steps: 1)
collision towards local equilibrium through relaxation:

f +
i (x,t)= fi(x,t)− 1

τ

[

fi(x,t)− f
eq
i (x,t)

]

(3.5)

and 2) propagation to the nearest lattice node:

fi(x+ei∆t,t+∆t)= f +
i (x,t). (3.6)

The macroscopic density ρ and velocity v of the flow field are computed from

ρ=
8

∑
i=0

fi, ρv=
8

∑
i=1

fi ei. (3.7)

The pressure field p can be obtained through a simple equation of state

p= c2
s ρ, (3.8)
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where cs denotes the fluid speed of sound and is related to the lattice speed c by

cs = c/
√

3. (3.9)

The kinematic viscosity of the fluid is related to other model parameters as

ν f =
1

3

(

τ− 1

2

)

h2

∆t
=

1

3

(

τ− 1

2

)

ch. (3.10)

It is worth pointing out that the Chapman-Enskog expansion for the density distribu-
tion function can recover the continuity and Navier-Stokes equations in the incompress-
ible limit. Therefore the computational Mach number should be sufficiently small to
ensure a reasonably accurate solution. Other computational issues can be found in [11].

3.2 Hydrodynamic forces

To compute the hydrodynamic forces acting on a moving particle in the fluid, the colli-
sion operator in the lattice Boltzmann equation (3.1) needs to be modified so that it shifts
smoothly between hydrodynamics at nodes occupied solely by fluid and rigid body mo-
tion at nodes occupied solely by particles.

Ladd [18] proposes a modification to the bounce-back rule so that the movement of
a solid particle can be accommodated. This approach provides a relationship of the ex-
change of momentum between the fluid and the solid boundary nodes. It also assumes
that the fluid fills the entire volume of the solid particle, or in other words, the particle is
modeled as a ’shell’ filled with fluid. As a result, both solid and fluid nodes on either side
of the boundary surface are treated in an identical fashion. It has been observed, how-
ever, that the computed hydrodynamic forces may suffer from severe fluctuations when
the particle moves across the grid with a large velocity. This is mainly caused by the step-
wise representation of the solid particle boundary and the constant changing boundary
configurations.

To circumvent the fluctuation of the computed hydrodynamic forces with the modi-
fied bounce-back rule, Noble and Torczynski [20] proposed an immersed moving bound-
ary technique. In this approach, the fluid and solid volume fractions are used to weigh
the corresponding portions of the collision term for nodes with both phases present. By
introducing additional collision terms that account for the interactions with each solid
obstacle within the computational cell, the evolution equation then becomes

fi(x+ei∆t,t+∆t)= fi(x,t)− 1

τ
(1−β)

[

fi(x,t)− f
eq
i

]

+β f m
i , (3.11)

where β is a weighting function depending on the local fluid/solid ratio γ; and f m
i is an

additional term computed by






β=
γ(τ−0.5)

(1−γ)+(τ−0.5)
,

f m
i = f−i(x,t)− fi(x,t)+ f

eq
i (ρ,vb)− f

eq
−i(ρ,v),

(3.12)
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where vb is the velocity of the particle. Then the hydrodynamic forces exerted on a solid
particle over n particle-covered nodes are summed up as

F f =2Rch

[

∑
n

(

βn∑
i

f m
i ei

)]

, (3.13)

where xn is the coordinate of the lattice node n.
With this approach, the computed hydrodynamic forces are sufficiently smooth,

which is also confirmed by our previous numerical tests [11, 13].
Note that a spherical particle can only be treated as a cylinder in the above computa-

tion and the factor 2R on the right hand side takes into account the third dimension of the
particle. Clearly the computed hydrodynamic force is for a cylinder rather than a sphere
and some discrepancy will arise. This is the main source of error in the current quasi-3D
model.

4 Coupling between particle dynamics and hydrodynamics

The fluid field is governed by the lattice Boltzmann equation (3.1) and evolves in an
explicit manner. The dynamic equations of the particles are governed by Eq. (2.1) and
solved by the central difference algorithm. The coupling between the fluid and the parti-
cles are realized through the hydrodynamic interactions.

There are two time steps used in the combined lattice Boltzmann and discrete element
procedure, ∆t for the fluid flow and ∆tD for the particles. Since ∆tD is generally smaller
than ∆t, it has to be reduced to ∆ts so that the ratio between ∆t and ∆ts is an integer ns,

∆ts =
∆t

ns
(ns =⌈∆t/∆tD ⌉+1), (4.1)

where ⌈·⌉ denotes an integer round-off operator. This gives rise to a so-called subcycling
time integration for the discrete element part; in one step of the fluid computation, ns

sub-steps of integration are performed for Eq. (2.1) using the time step ∆ts, whilst the
hydrodynamic forces F f are kept unchanged during the subcycling.

Since the lattice Boltzmann equation is implemented in the lattice coordinate system
in this work, the dynamic equation Eq. (2.1) for the particles should be implemented in
the same way. It can be derived that in the lattice coordinate system Eq. (2.1) takes the
form of

M̄ ¯̈u+C̄d ¯̇u= F̄m+F̄ f +F̄c, (4.2)

where














M̄=M/h3; ¯̇u= u̇/c,
¯̈u= ü∆t/c; C̄d =Cdch,
F̄m =Fm/c2; F̄ f =F f /(c2h),

F̄c =Fc/c2.
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Figure 3: A RVE and computational domain; particles with their counterparts in image cells.

5 Representative volume element and periodic boundary

conditions

As mentioned earlier, the present work aims at investigating the general behaviour of
MR fluids without considering specific operational/application conditions. Therefore a
representative volume element (RVE) of a MR fluid is modelled, whose behaviour should
provide a general indication of the problem concerned.

The RVE is a region taken from a MR fluid parallel to the three coordinate axes. Ap-
propriate periodic conditions must be imposed on all the boundaries, which is an equiv-
alent condition that each particle has counterparts in the neighbouring image cells, 8 in
two-dimensional cases and 26 in three-dimensional cases.

The periodic conditions require the modification to the computations of contact and
magnetic interaction of the particles. In principle, the contact search algorithm and the
subsequent force calculations should include all the images of the particles. The calcu-
lation of short-ranged mechanical contact forces may include only the particle images
very close to the boundaries, while the resolution of long-ranged magnetic interaction
requires more particle images, but a relatively small cut-off value, rc = 4R, given in Sec-
tion 2.5.1, results in a small number of images. The actual computational domain is thus
the RVE extended by the cut-off distance. Fig. 3 illustrates a two-dimensional RVE and
the corresponding computational domain as well as particles with their neighbouring
images.
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6 Numerical examples

In this section, a two-stage numerical experiment will be performed to assess the appli-
cability of the proposed approach. The simulation involves, at the first stage, the mi-
crostructure evolution of a MR fluid with four different particle concentration fractions
under the action of an applied magnetic field; and at the second stage, the application of
the particle chains established at the first stage as the initial configuration to investigate
the rheological properties of the MR fluid under different shear loading conditions.

The MR fluid system to be considered is taken from the two-dimensional problem
investigated by Ly et al [19]. A rectangular domain, 0.237×0.1mm, which is used as the
RVE, is filled with magnetizable particles dispersed in a Newtonian fluid. The physical
properties are chosen as: for the fluid, density ρ f = 1000kg/m3 , dynamic viscosity η =

0.1Pa.s, magnetic permeability µ f = 4π×10−7N/A2; whereas for the particles, radius
R=1.5µm, density ρp =7ρ f , permeability µp=2000µ f (as a super-magnetic material). The

applied magnetic field, H0 =1.33×104 A/m, is uniform and directed upwards.

The combined lattice Boltzmann and discrete element approach proposed in previ-
ous sections is employed, in which the magnetic forces are described by the mutual
dipole model; the hydrodynamic forces are computed from the modified lattice Boltz-
mann equation; and the contact forces are evaluated with the Hertzian model.

6.1 Particle chain formation

Simulations are performed for four samples of the MR fluid with 170, 341, 682 and 1024
particles which correspond to 5, 10, 20 and 30% particle volume fractions (calculated
in a 2D sense), respectively. The periodic boundary conditions are imposed on all the
boundaries. The procedure is terminated when a steady-state is achieved.

The microstructure evolution of the MR fluid for the four samples are depicted in
Figs. 4-7. It can be seen that under the action of the applied magnetic field, the particles
aggregate and form short fragmented chains that align in the direction of the applied
magnetic field. As time progresses further, these short chains merge together and form
longer chains. At the same time, the spacing between these chains increases. Theoreti-
cally, the final chain structure corresponds to a minimum energy (magnetic plus elastic)
state. The number and shape of the chain structure are in good agreement with those
depicted in [19].

The dynamic evolution of the particles can be monitored by the history plot of the
total kinetic energy of the particles. A small (near zero) value of the total kinetic energy
indicates that a steady-state is reached. With this history plot, the response time of the
MR fluid can also be identified.

Fig. 8 is the history plot of the total kinetic energy for the MR fluids with 10% and
30% particle volume fractions. The larger kinetic energy at the initial stage corresponds
to the active motion of the particles. The local spikes represent the merging of the short
chains. Compared with the 10% volume fraction curve, there are far fewer spikes in the
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(a) t=0ms (b) t=38ms

(c) t=79ms (d) t=103ms

Figure 4: Microstructure evolution – total velocity contour: 5% volume fraction.

(a) t=0ms (b) t=18ms

(c) t=59ms (d) t=73ms

Figure 5: Microstructure evolution – total velocity contour: 10% volume fraction.

30% volume fraction case which indicates a slower particle motion since the particles
generally travel shorter distances to form the chains.

The simulations have establish that the times for the systems to approach a steady
state are approximately inversely proportional to the particle volume fractions, which
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(a) t=0ms (b) t=7ms

(c) t=15ms (d) t=36ms

Figure 6: Microstructure evolution – total velocity contour: 20% volume fraction.

(a) t=0ms (b) t=3ms

(c) t=12ms (d) t=27ms

Figure 7: Microstructure evolution – total velocity contour: 30% volume fraction.

are around 103, 73, 36 and 27 milliseconds respectively for volume fractions 5, 10, 20 and
30%. Clearly the steady state is reached faster for a higher volume concentration of the
particles. This observation is again in fairly good agreement with that in [19].

Simulations have also been performed for different intensities of the applied magnetic
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Figure 8: Kinetic energy history for MR fluids with 10% and 30% particle volume fractions.

fields H0 and different viscosities of the fluid η. Except that stronger magnetic field and
lower fluid viscosity result in a shorter response times, the final chain configurations are
not much different, implying that the particle volume fraction plays a dominant role in
the particle dynamic simulation. In particular, the mutual dipole model, though inaccu-
rate when the particles are very close, may be sufficient if only the microstructure of the
particle chains is of interest.

6.2 Rheological property study

In the absence of an externally applied magnetic field, the viscosity of a MR fluid in-
creases with the particle volume fraction. This is obviously due to the fact that the fluid
motion is more restricted with more suspended particles.

As shown in the previous subsection, with the application of an external magnetic
field, columnar particle chains are formed which are perpendicular to the direction of the
fluid flow in the MR fluid. As a result, the fluid motion is largely restricted. This change
in the suspension microstructure greatly alters the rheological properties of the fluid.
To examine the MR effect, the following numerical tests are performed to establish the
relationship between the applied shear loading and the resulting shear stress or viscosity
under different magnetic field strengths.

The formulated steady-state particle chains are applied as the initial configuration of
the MR fluid system. In the following simulations, the MR fluid with 10% particle volume
fraction investigated in the previous subsection is chosen. The fluid domain is divided
into a 475×201 square lattice with lattice spacing h=0.5µm. The relaxation time is chosen
to be τ =0.75 which gives a time step for the fluid as 2.08×10−10s. As the time step with
a time step factor of 0.1 for the discrete element simulation is computed as 1.67×10−10s,
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(a) (b)

(c) (d)

Figure 9: Four snapshots in a shear mode simulation: H0 =1.33×104 A/m, γ̇=750s−1.

no subcycling is required to perform in this case.

A constant horizontal velocity v0 to the right is applied to the top boundary of the
problem domain, and the equivalent shear rate is γ̇ = v0/W, with W = 0.1mm being the
height of the domain. By changing the value of v0, different shear rates can be applied.
The bottom boundary is assumed to be no-slip, and the left and the right boundaries are
periodic. Due to the shear loading conditions, the boundary conditions for the particles
are slightly modified. The particles are restrained between the top and bottom bound-
aries, which is achieved by implementing mechanical contact conditions between the
particles and the boundaries. For the magnetic interaction computation, however, the
same full periodic conditions as those in the previous particle dynamic simulations are
imposed.

During the course of the simulation, the total horizontal shear force, Fs, acting on
the top boundary is recorded. The final converged value, when divided by the total
length L=0.237mm of the top boundary, gives the apparent stress σ=Fs/L. The apparent
viscosity is then calculated as σ/γ̇.

Eight different shear rates, γ̇ = 10,20,50,100,250,500,750,1000s−1 and three different
magnetic intensities H = H0,2H0,0.5H0 which combine into 24 different cases, are simu-
lated.

Fig. 9 depicts four snapshots of a shear mode simulation with a magnetic strength
H0 =1.33×104 A/m and a shear rate γ̇=750s−1. Under the shear operation, the particles
close to the top boundary break from the chains first (Fig. 9a), then the (long) particle
chains soon get deformed (Fig. 9b), detach from the bottom boundary (Fig. 9c), and finally
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Figure 10: Shear force history in a shear mode simulation: H0 =1.33×104 A/m, γ̇=750s−1.

break into shorter chains (Fig. 9d), which corresponds to a sharp decrease in the shear
force at the initial stage and achieves a steady-state afterwards, as shown in Fig. 10.

Fig. 11 depicts the shear stress and viscosity as a function of the applied shear rate
for three different magnetic strengths. It can be seen that the MR fluid behaves like a
Bingham fluid. Fig. 11(b) indicates the shear thinning behaviour of the MR fluid, whereby
the viscosity upon yielding decreases with the increased shear rate. This phenomenon
can be explained by the fact that with increase of the shear rate, the microstructure formed
is destroyed rapidly by the increased shear stresses; longer particle chains are broken into
shorter chains, which improves the fluidity of the fluid and leads to a decrease in fluid
viscosity.

Fig. 11 also shows that both viscosity and shear stress increase with increase of the
magnetic field strength, as expected. The magnetic interaction forces between the sus-
pended particles increase with increase of the magnetic field strength which causes larger
resistance to the fluid flow and therefore the MR fluid gains larger viscosity and shear
stress. Thus, unlike the chain formation, the accuracy of the magnetic force models has a
major effect on the simulated rheological properties of a MR fluid.

7 Concluding remarks

This paper has presented a computational procedure for numerical modelling of MR flu-
ids, in which the particle dynamics is simulated by the discrete element method, while
the fluid field is resolved with the lattice Boltzmann method. The coupling between the
fluid and the particles are realized through the hydrodynamic interactions.

The magnetic force models are central to the MR fluid simulation. The fixed dipole
and mutual dipole models are reviewed. A simple iterative procedure, taking advan-
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(a) Shear stress versus shear rate (b) Viscosity versus shear rate

Figure 11: Correlations between shear stress/viscosity and shear rate under three different magnetic fields.

tage of small time steps used in the time integration scheme, is proposed to improve the
computational efficiency of the total magnetized moments in the mutual dipole model.

A number of numerical tests have been performed to assess the applicability of the
proposed solution procedure. The results show that the simulations conducted can cap-
ture the major physical features of a MR fluid. The results also reveal the fact that the
steady-state particle chain structure is mainly determined by the particle volume concen-
tration, while the rheological behaviour of a MR fluid relies on the accuracy of the mag-
netic force model employed, particularly when the separation distance of two particles is
small. This naturally raises an issue on how the accuracy of the magnetic force models
can be improved while its computational simplicity and efficiency are still retained.
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