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Abstract. We describe an operator splitting technique based on physics rather than
on dimension for the numerical solution of a nonlinear system of partial differential
equations which models three-phase flow through heterogeneous porous media. The
model for three-phase flow considered in this work takes into account capillary forces,
general relations for the relative permeability functions and variable porosity and per-
meability fields. In our numerical procedure a high resolution, nonoscillatory, second
order, conservative central difference scheme is used for the approximation of the non-
linear system of hyperbolic conservation laws modeling the convective transport of the
fluid phases. This scheme is combined with locally conservative mixed finite elements
for the numerical solution of the parabolic and elliptic problems associated with the
diffusive transport of fluid phases and the pressure-velocity problem. This numerical
procedure has been used to investigate the existence and stability of nonclassical shock
waves (called transitional or undercompressive shock waves) in two-dimensional het-
erogeneous flows, thereby extending previous results for one-dimensional flow prob-
lems. Numerical experiments indicate that the operator splitting technique discussed
here leads to computational efficiency and accurate numerical results.

AMS subject classifications: 76S05, 76T30, 78M10, 78M20
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1 Introduction

The study of operator splitting techniques has a long history and has been pursued
with various methods. Since alternating-direction methods were introduced by Douglas,
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Peaceman and Rachford [1–5] and fractional step methods by D’jakonov, Marchuk and
Yanenko [6, 7], these procedures, which reduce the time-stepping of multidimensional
problems to locally one-dimensional computations, have been applied in the numerical
simulation of many physically important problems, including reservoir flow problems,
particularly in the case of single and two-phase flows. Here, the operator splitting is
based on separating the underlying physical processes and treating each such process
appropriately; thus, instead of solving the governing differential equations in the form
which results directly from the basic conservation laws (supplemented by constitutive
relations), the system of equations will be rewritten in such a way as to exhibit clearly
each physical process. Then, distinct, appropriate numerical techniques can be orches-
trated within an operator-splitting formulation to furnish effective and efficient numeri-
cal procedures designed to resolve the sharp gradients and dynamics evolving at vastly
different rates which are the hallmarks of reservoir flow problems.

We present an operator splitting technique for the numerical solution of a highly non-
linear system of differential equations modeling three-phase flow through heterogeneous
porous media. Three-phase flow in porous media is important in a number of scientific
and technological contexts, including enhanced oil recovery [8–14], geological CO2 se-
questration [15], and radionuclide migration from repositories of nuclear waste [16, 17].

We consider the governing system of equations written in terms of the oil pressure
(see, e.g., [18,19]); this formulation allows us to identify a subsystem of nonlinear hyper-
bolic conservation laws (associated with convective transport), a parabolic subsystem of
equations (associated with diffusive transport), and a elliptic subsystem (associated with
the pressure-velocity calculation). Our splitting procedure solves the elliptic, hyperbolic,
and parabolic subsystems sequentially, using numerical methods specifically tailored to
such types of partial differential equations. We remark that it would have been very
difficult, if not impossible, to employ such state-of-the-art numerical schemes had we
attempted to solve the original system by standard implicit procedures. Moreover, any
implicit procedure would require considerably more expensive computations since large
linear and nonlinear problems, which do not appear in the splitting scheme, would have
to be treated. Our splitting technique allows time steps for the pressure-velocity calcula-
tion that are longer than those for the diffusive calculation, which, in turn, can be longer
than those for convection.

For three-phase flow, distinct empirical models have been proposed for the relative
permeability functions [20–22], and more recently [23]. In addition, it is well known that
for some of these models [20–22], which have been used extensively in petroleum engi-
neering, the 2×2 system of conservation laws (the saturation equations) that arises when
capillarity (diffusive) effects are neglected fails to be strictly hyperbolic somewhere in
the interior of the saturation triangle (the phase space). This loss of strict hyperbolic-
ity frequently leads to the occurrence of nonclassical shock waves (called transitional or
undercompressive shock waves) in the solutions of the three-phase flow model. Crucial
to calculating transitional shock waves is the correct modeling of capillarity effects [24].
Thus, their accurate computation constitutes a bona fide test for numerical simulators.
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Different approaches for solving numerically the three-phase flow equations are dis-
cussed in [19, 25–27].

The rest of this paper is organized as follows. In Section 2 we introduce the model for
three-phase flow in heterogeneous porous media that we consider. In Section 3 we dis-
cuss our operator splitting strategy for solving the three-phase flow system. In Section 4
we present computational solutions for the model problem considered here. Conclusions
appear in Section 5.

2 Three-phase flow system

We consider two-dimensional flow of three immiscible, incompressible fluid phases in a
porous medium. The phases will be refereed to as water, gas, and oil and indicated by the
subscripts w, g, and o, respectively. We assume that there are no internal sources or sinks.
Compressibility, mass transfer between phases, and thermal effects are neglected. We as-
sume that the three fluid phases saturate the pores; thus, with Si denoting the saturation
(local volume fraction of the pore space) of phase i,

∑
i=g,o,w

Si =1. (2.1)

Consequently, any pair of saturations inside the triangle

△ :={(Si,Sj) : Si,Sj≥0,Si+Sj≤1, i 6= j}

of saturations can be chosen to describe the state of the fluid.
We refer the reader to [18, 19, 29] for a detailed description of the derivation of the

phase formulation of the governing equations of three-phase flow. In our model we shall
work with the saturations Sw and Sg of water and gas, respectively. Then, the equations
describing conservation of mass of water and gas are

∂

∂t
[φ(x)Sw]+∇·[v fw(Sw,Sg)]=∇·ww, (2.2)

∂

∂t
[φ(x)Sg]+∇·[v fg(Sw,Sg)]=∇·wg. (2.3)

The diffusion terms ww and wg that arise in the saturation equations above, because of
capillary pressure differences, are given by

[ww,wg]
T =K(x)B(Sw,Sg)

[

∇Sw,∇Sg

]T
. (2.4)

In (2.4), [a,b] denotes the 2-by-2 matrix with column vectors a and b, and B(Sw,Sg)=QP′,
where

Q(Sw,Sg)=

[

λw(1− fw) −λw fg

−λg fw λg(1− fg)

]

, P′(Sw,Sg)=









∂pwo

∂Sw

∂pwo

∂Sg

∂pgo

∂Sw

∂pgo

∂Sg









. (2.5)
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Here, K(x) and φ(x) are the absolute permeability and the porosity of the porous medium,
respectively;

λi(Sw,Sg)= ki/µi, i=w,g,

denote the phase mobilities, given in terms of the phase relative permeabilities ki and
phase viscosities µi. The fractional flow function of phase i is given by

fi(Sw,Sg)=λi/λ, λ=λg+λo+λw.

The capillary pressures
pij = pi−pj, i 6= j,

where pi is the pressure in phase i, are assumed to depend solely on the saturations.
The pressure-velocity equations associated with the three-phase flow system are

∇·v=0, (2.6)

v=−K(x)λ(Sw,Sg)∇po +vwo+vgo, (2.7)

where vwo and vgo, the “velocity corrections” due to capillary pressure differences, are
defined by

vio =−K(x)λi(Sw,Sg)∇pio, i=w,g. (2.8)

Boundary and initial conditions for the three-phase flow system of Eqs. (2.2)-(2.8), to
be imposed below, complete the definition of the mathematical model. In particular, Sw

and Sg must be specified at the initial time t=0.

3 Operator splitting for the three-phase flow system

We employ a two-level operator-splitting procedure for the numerical solution of the
three-phase flow system (2.2)-(2.8) in which we first split the pressure-velocity calculation
from the saturation calculation and then split the saturation calculation into convection
and diffusion. The splitting allows time steps for the pressure-velocity calculation that
are longer than those for the diffusive calculation, which are in turn longer than those for
convection. Thus, we introduce three time steps: ∆tc for the solution of the hyperbolic
problem for the convection, ∆td for the parabolic problem for the diffusive calculation
and ∆tp for the elliptic problem for the pressure-velocity calculation:

∆tp = i1∆td = i1 i2∆tc, (3.1)

where i1 and i2 are positive integers, so that ∆tp ≥∆td ≥∆tc. Let

tm =m∆tp, tn =n∆td and tn,κ = tn+κ∆tc , 0≤κ≤ i2, (3.2)

so that tn,i2 = tn+1. Then, given a generic function z, denote its values at times tm, tn, and
tn,κ by zm, zn, and zn,κ , respectively.
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In practice, variable time steps are always useful, especially for the convection mi-
crosteps subject dynamically to a Courant-Friedrichs-Lewy (CFL) restriction. To simplify
the description of the operator splitting, assume each time step to have a single value.

The oil pressure (and Darcy velocity) will be approximated at times tm, m=0,1,2,··· .
The saturations, Sw and Sg, will be approximated at times tn, n =1,2,··· ; recall that they
need to be specified at t=0. In addition, there will be values for the saturation computed
at intermediate times tn,κ for tn<tn,κ≤tn+1 that take into account the convective transport
of the water and gas but not the diffusive effects. The algorithm will be detailed below.

The initial conditions Sw and Sg at t=0 allow the calculation of {p0
o ,v0}. The following

is the fractional step algorithm associated with the differential form of three-phase model
that is to be followed until the final simulation time is reached.

Algorithm 3.1: First level

1) Given Sm
w (x) and Sm

g (x), m≥0, determine {pm
o ,vm} by (2.6)-(2.8), subject to the boundary condi-

tions
v·n=−q, for (x,y)∈{0}×[0,Y],
v·n=q, for (x,y)∈{X}×[0,Y],
v·n=0, for (x,y)∈ [0,X]×({0}∪{Y}),

(3.3)

where n is the unit outer normal vector to ∂Ω. (More general domains and initial and boundary
conditions could be treated by our numerical method, but the computational examples are based on
the data given above.)

2) For tm
< t ≤ tm+1, solve the convection-diffusion system (2.2)-(2.5) with the initial conditions

Sw(x,tm) = Sm
w(x) and Sg(x,tm) = Sm

g (x); Sm
w (x) and Sm

g (x) are evaluated as the final values of the

calculation in [tm−1,tm] for m>0 or the initial saturations for m=0.

Algorithm 3.2: Second level

1) Let tn1 = tm and assume that {po,v,Sw,Sg} are known for t≤ tn1 .

2) For n=n1,··· ,n2 =n1+(i1−1):

a) For κ = 0,··· ,(i2−1) and t∈ [tn,κ,tn,κ+1], solve the convection system given by (for notational
convenience, sn,κ

i is replaced by sκ
i below):

∂

∂t
(φ(x)sκ

i )+∇·[E(tn,κ,v) fi(sκ
w,sκ

g)]=0, i=w,g, (3.4)

with initial and boundary conditions given by

sκ
i (x,tn,κ)=

{

Si(x,tn), κ =0,

sκ−1
i (x,tn,κ), κ =1,··· ,i2−1,

i=w,g, (3.5)

and
[E(tn,κ,v) fi(sκ

w,sκ
g)]·n=−q fi(SL

w,SL
g ), i=w,g, (x,y)∈{0}×[0,Y], (3.6)

where SL
w, SL

g are the water and gas saturations of the injected mixture. We remark that E(tn,κ,v)

indicates a linear extrapolation operator; it extrapolates to time tn,κ the velocity fields vm−1 and
vm.
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b) Set S̄i(x,tn)= si2−1
i (x,tn,i2), i=w,g.

c) Compute the diffusive effects on [tn,tn+1] by solving the system

∂

∂t
(φ(x)Si)−∇·wi =0, i=w,g, (3.7)

with boundary conditions
wi ·n=0, i=w,g, x∈∂Ω, (3.8)

and initial conditions
Si(x,tn)= S̄i(x,tn), i=w,g. (3.9)

3) Set Sm+1
i (x) = Si(x,tn2+1), i=w,g.

Remark 3.1. In Step 2)c) of Algorithm 3.2, the division of the interval [tn,tn+1] into mi-
crosteps of length ∆tc is artificial in the differential case described above, but the division
is desirable and often necessary after the full discretization of the convection equations is
introduced.

3.1 Numerical procedures

We refer the reader to [29, 34] for a detailed description of the discretization of the gov-
erning equations (2.6)-(3.9). Below, we provide the key ideas.

The oil pressure and the Darcy velocity defined by (2.6)-(2.8) are approximated by
locally conservative mixed finite elements (see [28, 29]). The linear system of algebraic
equations that arises from the discretization of (2.6)-(2.8) is solved by a preconditioned
conjugate gradient procedure (PCG) [28, 29].

Locally conservative mixed finite elements are used to discretize the spatial operators
in the diffusion system (3.7)-(3.9). The time discretization of the latter is performed by
means of the implicit backward Euler method (see for details [29]).

To solve the nonlinear hyperbolic conservation laws (3.4)-(3.5) we use a nonoscilla-
tory, second order, conservative central difference scheme [31] (see also [29, 32]).

4 Numerical simulations

The goal of the numerical experiments reported in this section is to verify the efficiency
and accuracy of the proposed operator splitting scheme. We work with the system of
Eqs. (2.2)-(2.8) in dimensionless form.

We adopt the model by Corey-Pope [20, 22] for phase relative permeabilities:

kw =S2
w, ko =S2

o and kg =S2
g. (4.1)

We also adopt the Leverett model [35] for capillary pressures given by

pwo =5ǫ(2−Sw)(1−Sw) and pgo =ǫ(2−Sg)(1−Sg), (4.2)



78 E. Abreu, J. Douglas, F. Furtado and F. Pereira / Commun. Comput. Phys., 6 (2009), pp. 72-84

where the dimensionless coefficient ǫ controls the relative importance of capillary/diffusive
and convective forces. In our numerical experiments we take ǫ=10−3.

4.1 One-dimensional experiments

In order to verify the efficiency, and mainly, the accuracy of the proposed operator split-
ting scheme in our one-dimensional experiments, lets consider the following set of data.
The viscosities of the fluids are µo =1.0, µw =0.5, and µg =0.3 and we consider the follow-
ing Riemann initial data with (constant) left and right states given by

SL
w =0.721, SR

w =0.05 and SL
g =0.279, SR

g =0.15. (4.3)

We remark that for the choice of parameters and initial data described above, a non-
classical transitional shock wave appears in the one-dimensional solution of (2.2)-(2.8);
(see [36]).

Figs. 1 and 2 show the one-dimensional solution of (2.2)-(2.8) (with Riemann data
(4.3)). They display, from top to bottom, saturation values for the oil, gas and water
phases, respectively. The computed saturation profiles in these figures were obtained on
grids having 512 cells, and are shown at two different dimensionless times.

The left column of Fig. 1 refers to a reference numerical solution, which is in excellent
agreement with the semi-analytic results reported in [36]. In this reference solution, the
same time step was used in the calculation of convection and diffusion transports, as well
as in the pressure-velocity calculation (i.e., ∆tc =∆td =∆tp). In the legends of Figs. 1 and
2 the reference solution is denoted by 1:1:1.

The right frames in Fig. 1 compare the numerical solution obtained with the time-step
relations ∆tp = ∆td =50∆tc and the reference solution. The left and the right columns of
Fig. 2 refer to numerical solutions obtained with the time-step relations ∆tp=∆td=100∆tc

and ∆tp =∆td =200∆tc , respectively.
It is clear from Figs. 1 and 2 that, for the time-step relations considered, the correct

transitional wave has been captured, and the numerical solutions virtually coincide with
the reference solution, which indicates that the splitting introduced herein produces very
accurate results in this test case.

4.2 Two-dimensional experiments

In the next numerical experiment, the fluids flow in a horizontal two-dimensional reser-
voir Ω = [0,X]×[0,Y], with aspect ratio X/Y = 1, discretized in a uniform grid of 512
× 512 cells. A mixture (73.5 % of water and 26.5 % of gas) is injected at constant rate
along the left boundary, (x,y) ∈ {0}×[0,Y], and “no-flow” conditions are imposed on
(x,y)∈ [0,X]×({0}∪{Y}). Initially, the resident fluid in the reservoir is a mixture of 5%
water, 1% gas, and 94% oil; we notice that the initial conditions correspond to the Rie-
mann initial data with (constant) left and right states given by:

SL
w =0.735, SR

w =0.05 and SL
g =0.265, SR

g =0.01. (4.4)
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Figure 1: One-dimensional study of the operator splitting scheme. From top to bottom, oil, gas and water
saturation profiles are shown as functions of dimensionless distance. On the left the reference run and on the
right the time-step relation ∆tp =∆td =50∆tc is used. A transitional shock wave is simulated.
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Figure 2: One-dimensional study of the operator splitting scheme. From top to bottom, oil, gas and water
saturation profiles are shown as functions of dimensionless distance. On the left the time-step relation ∆tp =
∆td = 100∆tc is used and on the right ∆tp = ∆td = 200∆tc is considered. Again, a transitional shock wave is
accurately simulated.
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Figure 3: Gas saturation after 500 days is shown for a two-dimensional simulation study using the operator
splitting scheme. We consider the following time-step relations: ∆tp = ∆td = ∆tc (left) and ∆tp = ∆td = 72∆tc

(right), where ∆tc is determined by a CFL constraint.

Figure 4: Water saturation surface plots corresponding to the simulation reported in Fig. 3.

In the two-dimensional reservoir flooding problem, we consider more realistic values for
the viscosities of the fluids, namely, µo =10.0, µw =1.0 e µg =0.5.

As a model for multiscale rock heterogeneity, we consider scalar, log-normal perme-
ability fields, so that ξ(x)= logK(x) is Gaussian and its distribution is determined by its
mean and covariance function. We consider a distribution which is stationary, isotropic
and fractal (self-similar). Thus, the mean is an absolute constant and the covariance is
given by the power law:

Cov(x,y)= |x−y|−β , 0< β<∞. (4.5)

The fractal statistics (4.5) is singular at short distances; however its realization on a fi-
nite lattice provides a short distance regularization due to the lattice cutoff. The scaling
exponent β controls the nature of multiscale heterogeneity. As it increases, the hetero-
geneities concentrated in the larger length scales are emphasized and the field becomes
locally more regular. A long length scale (β = 0.5) permeability field with the Gaussian
distribution (4.5) was used in the simulations reported in Figs. 3-5.
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Figure 5: Oil saturation surface plots corresponding to the simulation reported in Fig. 3.

We use the same multiscale rock heterogeneity to construct a variable porosity field
φ(x):

φ(x)= φ̄+θξ(x), θ >0, (4.6)

where φ̄=0.2 and the normalizing factor θ is chosen so that 0.05≤ φ(x)≤ 0.35.

The spatially variable permeability and porosity fields are defined on a uniform ge-
ological grid with 512 × 512 cells and have coefficients of variation ((standard devia-
tion)/mean) CVk =1.0, and CVφ =0.25, respectively. The coefficient of variation serves as
a dimensionless measure of the strength of the heterogeneity (permeability and porosity
fields).

In Figs. 3-5, gas, water and oil saturation surface plots are shown as functions of
position, respectively. For the simulations reported in Figs. 3-5 we take the following
time-step relations ∆tp = ∆td = ∆tc (reference solution on the left) and ∆tp = ∆td = 72∆tc

(right), where ∆tc is the same for the two tests. Note that even for the largest time-step
relation (right pictures in Figs. 3-5) both the small and large scale features of the flow are
accurately captured. Obviously, the use of the largest time-step relation translates into
a drastically reduced computational effort to produce numerical results within a given
accuracy requirement; in the simulations displayed in Figs. 3-5, this reduction entails a
time saving of more than 80 %.

5 Conclusions

We have described an accurate and efficient operator splitting technique for the numer-
ical solution of three-phase flow through heterogeneous petroleum reservoirs. The nu-
merical results obtained indicate that the delicate balance between the focusing effects of
nonlinear convection, which lead to the formation of shocks, and the smoothing effect of
diffusion are captured by our method. Currently the authors are using this simulator to
study the scale-up problem for such flows.
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