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Abstract. By performing a particular spatial discretization to the nonlinear
Schrödinger equation (NLSE), we obtain a non-integrable Hamiltonian system which
can be decomposed into three integrable parts (L-L-N splitting). We integrate each part
by calculating its phase flow, and develop explicit symplectic integrators of different
orders for the original Hamiltonian by composing the phase flows. A 2nd-order re-
versible constructed symplectic scheme is employed to simulate solitons motion and
invariants behavior of the NLSE. The simulation results are compared with a 3rd-order
non-symplectic implicit Runge-Kutta method, and the convergence of the formal en-
ergy of this symplectic integrator is also verified. The numerical results indicate that
the explicit symplectic scheme obtained via L-L-N splitting is an effective numerical
tool for solving the NLSE.
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1 Introduction

The nonlinear Schrödinger equation (NLSE) has been central to a variety of areas in math-
ematical physics for almost four decades. It is an equation for a complex field W(x,t) of
the following form along with initial condition:

{
iWt+Wxx+a|W|2W =0,
W(x,0)=W0(x),

(1.1)
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where x ∈ R and a is a constant parameter. The initial condition W0(x) conducts the
motion, for instance, some W0(x)’s with W0(±∞)=0 induce bright solitons motion; some
with |W0(±∞)| 6= 0 lead to dark solitons motion; and periodic W0(x)’s may result in
periodic motion [9,22,23]. The NLSE (1.1) has an infinite number of conserved quantities
[44] such as the charge, the moment, the energy, etc. We present the first six as follows:

F1 =
∫ +∞

−∞
|W|2dx, F2 =

∫ +∞

−∞

{
W

dW̃

dx
−W̃

dW

dx

}
dx, (1.2a)

F3 =
∫ +∞

−∞

{
2

∣∣∣∣
dW

dx

∣∣∣∣
2

−a|W|4
}

dx, (1.2b)

F4 =
∫ +∞

−∞

{
2

dW̃

dx

d2W

dx2
−3a|W|2W̃

dW

dx

}
dx, (1.2c)

F5 =
∫ +∞

−∞

{
2

∣∣∣∣
d2W

dx2

∣∣∣∣
2

−6a|W|2
∣∣∣∣
dW

dx

∣∣∣∣
2

−a(
d|W|2

dx
)2+a2|W|6

}
dx, (1.2d)

F6 =
∫ +∞

−∞

{
2

d3W

dx3

d2W̃

dx2
−5a

∣∣∣∣
dW

dx

∣∣∣∣
2 d|W|2

dx
−10a|W|2 dW̃

dx

d2W

dx2
+5a2|W|4W̃

dW

dx

}
dx, (1.2e)

where W̃ represents the complex conjugation of W.
The NLSE above is an envelop wave equation [36] which appears in a variety of di-

verse physical systems, with successful applications to nonlinear optics, plasma physics
and mechanics, depicting processes such as propagation of the electromagnetic field in
optical fibers [16, 26], the self-focusing and collapse of Langmuir waves [43], and the be-
havior of deep water waves in the ocean [6, 28]. In the optical context, one can easily
arrive at the NLSE from the Maxwell equations with nonlinear polarization when adopt-
ing envelop wave approximation by using multiscale techniques, which governs the time
evolution of the slow amplitude of the wave packets [3, 36]. Many research works have
been done on the study of the NLSE in both the physical and the mathematical aspects
of the equation. Some recent interests have been devoted to its external potentials, e.g.,
applications in Bose-Einstein condensates (BECs) [4, 31]. The fast theoretical and experi-
mental developments in nonlinear optics and condensed matter physics have drawn new
attentions to the NLSE. An important emerging research topic is studying the discrete
NLSE model (or spatial discretization version), e.g., an integrable type of discretization
of the NLSE proposed by Ablowitz and Ladik [1, 2] and accordingly referred to as the
Ablowitz-Ladik (A-L) model:

i
dWl

dt
+

Wl+1−2Wl +Wl−1

h2
+

a

2
|Wl |2(Wl−1+Wl+1)=0, (1.3)

and the most direct discrete NLSE is of the form

i
dWl

dt
+

Wl+1−2Wl +Wl−1

h2
+a|Wl |2Wl =0, (1.4)
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where h is the spatial step size and Wl(t)=W(lh,t), l = ··· ,−1,0,1,··· . It has been proved
[40, 41] that the solutions of (1.3) and (1.4) converge to the solutions to the original con-
tinuous NLSE (1.1) when h→0.

The integrability of model (1.3) makes it a fertile starting point for developing rele-
vant perturbation theory from this well-understood limit for the existence and stability
of the solitary waves [21]. A symplectic integration scheme for that is established in [39]
to compute time evolution of the soliton motion, requiring a little extra work on Darboux
transformation converting the generalized Hamiltonian into a standard one in order to
use symplectic integrators. However, the Hamiltonian for model (1.4) is not integrable,
and hence less amendable to analysis and computations. It is usually considered diffi-
cult to solve the original NLSE or the discrete NLSE, although many numerical methods
and techniques have been proposed and widely used in solving the problem with much
success, see, e.g., [7, 8, 13, 17–20, 24, 25, 29, 32, 33, 39, 41, 45]. The main disadvantage of
these methods is that the implementation process are usually time-consuming due to the
implicity of the schemes. In this paper, we propose an L-L-N splitting technique to de-
compose the original model into three integrable models and compute the phase flow of
each part individually. Then compose the phase flows to build the completely explicit
symplectic integrator for the original model (1.4). It should be noted that symplectic in-
tegrators take advantage over non-symplectic ones (even though implicit) in long term
simulations, which preserve structure and physical conservation laws.

Hereafter we take the case of bright solitons motion with
∫ +∞

−∞
|W|2dx<+∞ as special

interest, and assume the boundary condition

W (−(n+1)h,t)=W ((n+1)h,t)=0

for convenience. Setting Wl = pl +iql , l = ··· ,−1,0,1,··· , Eq. (1.4) can be rewritten as the
following Hamiltonian system

dZ

dt
= J−1∇H(Z), (1.5)

with Hamiltonian

H(Z)= H(p,q)=
1

2h2
[p⊤Bp+q⊤Bq]+

a

4

n

∑
k=−n

[p2
k +q2

k ]
2, (1.6)

where Z=[z1,··· ,z4n+2]
⊤=[p⊤,q⊤]⊤, p=[p−n,··· ,pn]⊤, q=[q−n,··· ,qn]⊤, and ∇ stands for

the gradient operator,

J =

[
O2n+1 I2n+1

−I2n+1 O2n+1

]
, B=




−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2



∈R

(2n+1)×(2n+1),



642 H. Guan et al. / Commun. Comput. Phys., 6 (2009), pp. 639-654

with O2n+1 and I2n+1 denoting the (2n+1)×(2n+1) null matrix and identity matrix re-
spectively.

It is pointed out that for some sensitive situations of NLSE (1.1) with periodic and
symmetric initial value taken near a homoclinic orbit, McLachlan [30] studied the be-
haviors of L-N splitting symplectic schemes, for the solutions and conservation of some
integrals, up to the fifth F5. Moreover, Tang et al. [41] successfully simulated the mo-
tion of bright solitons and tested the behavior of invariants F1-F4 by using some implicit
symplectic methods.

This paper is organized as follows: in Section 2, we describe the L-L-N splitting of
the Hamiltonian, give a 2nd-order explicit symplectic scheme and its formal energy up
to O(t6), and display discrete approximations of the continuous invariants of F1-F6. In
Section 3, we carry out numerical experiments to test the tracking ability of the explicit
symplectic scheme for solitons motion, its conservative property for the invariants of the
NLSE, and the convergence of its formal energy. The numerical results are compared
with those obtained by a 3rd-order non-symplectic implicit Runge-Kutta method. Some
concluding remarks will be given in the final section.

2 Symplectic methods via L-L-N splitting

Scovel [35] observed that the Hamiltonian H(p,q) in (1.6) can be decomposed into three
parts:

H(p,q)=
1

2h2
p⊤Bp+

1

2h2
q⊤Bq+

a

4

n

∑
k=−n

[p2
k +q2

k ]
2

=H(1)(p,q)+H(2)(p,q)+H(3)(p,q), (2.1)

and each part is explicitly integrable. The solution of the Hamiltonian system (1.5) is

p(t)= p(0), (2.2a)

q(t)=q(0)+
t

h2
Bp(0), (2.2b)

for

H = H(1)(p,q)=
1

2h2
[p⊤Bp];

and

p(t)= p(0)− t

h2
Bq(0), (2.3a)

q(t)=q(0), (2.3b)

for

H = H(2)(p,q)=
1

2h2
[q⊤Bq],
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and

pk(t)= pk(0)cos(ar2
k t)−qk(0)sin(ar2

k t), (2.4a)

qk(t)=qk(0)cos(ar2
k t)+pk(0)sin(ar2

k t), (2.4b)

for

H = H(3)(p,q)=
a

4

n

∑
k=−n

[p2
k +q2

k ]
2,

where

r2
k = pk(0)2+qk(0)2, k=−n,··· ,n.

Let φt
1, φt

2, φt
3 denote the phase flows corresponding to Hamiltonians H(1)(p,q), H(2)(p,q)

and H(3)(p,q) respectively. Then for system (1.5) with Hamiltonian

H(p,q)= H(1)(p,q)+H(2)(p,q)+H(3)(p,q),

the following methods S1 and S2 are 1st-order and 2nd-order explicit symplectic schemes
[12, 37, 42]:

1st-order Symplectic Scheme (S1) :

Z̃ =Φt(Z)=φt
3◦φt

2◦φt
1(Z), (2.5)

2nd-order Symplectic Scheme (S2) :

Z̃=Ψt(Z)=φ
t
2
1 ◦φ

t
2
2 ◦φt

3◦φ
t
2
2 ◦φ

t
2
1 (Z). (2.6)

Moreover, it is easy to check that Scheme S2 is reversible, i.e.,

(
Ψt

)−1
=Ψ−t,

see [10, 15, 34] for an introduction to symplectic and reversible numerical methods for
Hamiltonian dynamics.

We also apply the following 3rd-order non-symplectic R-K scheme S3 to numerical
tests for comparison.

3-order R-K scheme S3:





Z̃=Z+ t
2 [ f (K1)+ f (K2)]

K1 =Z+ t
6

[
3 f (K1)−

√
3 f (K2)

]

K2 =Z+ t
6

[√
3 f (K1)+3 f (K2)

]
.
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We calculate the formal energy of S2 up to O(t6) (see [5, 14, 38] for an introduction on
calculation of formal energies of symplectic schemes):

H̃ =H+
t2

12
H

(1)
zz [J−1∇H(2)]2+

t2

12
H

(1)
zz [J−1∇H(3)]2− t2

24
H

(2)
zz [J−1∇H(1)]2

+
t2

12
H

(2)
zz [J−1∇H(3)]2− t2

24
H

(3)
zz [J−1∇H(1)]2− t2

24
H

(3)
zz [J−1∇H(2)]2

+
t2

24
H

(1)
zz [J−1∇H(1)][J−1∇H(2)]+

t2

24
H

(1)
zz [J−1∇H(1)][J−1∇H(3)]

+
t2

6
H

(1)
zz [J−1∇H(2)][J−1∇H(3)]− t2

12
H

(2)
zz [J−1∇H(1)][J−1∇H(2)]

− t2

12
H

(2)
zz [J−1∇H(1)][J−1∇H(3)]+

t2

24
H

(2)
zz [J−1∇H(2)][J−1∇H(3)]

− t2

12
H

(3)
zz [J−1∇H(1)][J−1∇H(2)]− t2

12
H

(3)
zz [J−1∇H(1)][J−1∇H(3)]

− t2

12
H

(3)
zz [J−1∇H(2)][J−1∇H(3)]+O(t4)

=H+H̃2t2+H̃4t4+O(t6)

=H2+O(t4)= H4+O(t6), (2.7)

where

H2 = H+H̃2t2, H4 = H+H̃2t2+H̃4t4

are the 2nd-order and 4th-order approximations of H̃, respectively. We write out the
expansion for H̃4, which contains 333 terms in [11]. We use the notation

Azz(V1)(V2)=
4n+2

∑
j1 ,j2=1

∂2 A

∂zj1 ∂zj2

[V1](j1)
[V2](j2)

,

where A is one of H(i), i = 1,2,3, Vr (r = 1,2) is one of J−1∇H(i),i = 1,2,3, zju is the ju-
th component of (4n+2)-dim vector Z, and [Vu](ju) stands for the ju-th component of

(4n+2)-dim vector Vu, u=1,2.

Time evolution of H2 and H4 will be tested for the numerical simulations in Section 3.
Utilizing centered differences

Wx(lh,t)=
Wl+1−Wl−1

2h
,

Wxx(lh,t)=
Wl+1−2Wl +Wl−1

h2
,

Wxxx(lh,t)=
Wl+2−2Wl+1+2Wl−1−Wl−2

2h3
,
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the conserved quantities F1, ··· , F6 of the original NLSE (1.1) are approximated as follows:

F̂1 =h∑
l

WlW̃l , F̂2 =∑
l

{
WlW̃l+1−Wl+1W̃l

}
,

F̂3 =
1

2h ∑
l

{
2|Wl |2−Wl+1W̃l−1−Wl−1W̃l+1

}
−ah∑

l

|Wl |4,

F̂4 =
1

h2 ∑
l

{
2Wl+1W̃l−2WlW̃l+1−Wl+1W̃l−1+Wl−1W̃l+1

}

− 3a

2 ∑
l

|Wl |2W̃l{Wl+1−Wl−1},

F̂5 =
2

h3 ∑
l

{
6|Wl |2−4Wl+1W̃l−4WlW̃l+1+Wl+1W̃l−1+Wl−1W̃l+1

}

− 3a

2h ∑
l

|Wl |2
{

2|Wl+1|2−Wl+1W̃l−1−Wl−1W̃l+1

}

−a2h∑
l

{
|Wl |4−|Wl+1|2|Wl−1|2

}
+a2h∑

l

|Wl |6,

F̂6 =
1

h4 ∑
l

{
5Wl+1W̃l−5WlW̃l+1−4Wl+1W̃l−1+4Wl−1W̃l+1+Wl+2W̃l−1−Wl−1W̃l+2

}

+
5a

8h2 ∑
l

{
|Wl+1|2−|Wl−1|2

}{
Wl+1W̃l−1+Wl−1W̃l+1

}

+
5a

h2 ∑
l

|Wl |2
{

2WlW̃l+1−2WlW̃l−1+Wl+1W̃l−1−Wl−1W̃l+1

}

+
5a2

2 ∑
l

|Wl |4W̃l {Wl+1−Wl−1}.

It can be verified that F1, F3, F5 are real, so are F̂1, F̂3, F̂5; F2 is pure imaginary, so is F̂2.
Thus one can write

F̂1 = R1, F̂3 = R3, F̂5 = R5,

F̂2 = i· I2, F̂4 = R4+i· I4, F̂6 = R6+i· I6.

Moreover, it is easy to check that R1 is an invariant of the Hamiltonian system (1.5). The
evolution of R1, ··· , I6 will be also tested in Section 3.

3 Numerical experiments

In this section, we present the numerical simulation results to test the tracking ability of
the symplectic scheme S2 for one-soliton, two-soliton and three-soliton motion, and its
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Figure 1: 1-bright-soliton evolution computed by S2.
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Figure 2: 1-bright-soliton evolution computed by S3.

conservative property for the discrete approximations F̂1-F̂6 of the continuous invariants
F1-F6 of the NLSE, and also the convergence of its formal energy.

We define Err(A(t))= A(t)−A(0) for any variable A for this section. For the bright
solitons, the following initial conditions are introduced:

B1. One-soliton solution

W(x,0)=2η

√
2

a
e2χxisech[2η(x−x1)]. (3.1)

B2. Two-soliton solution

W(x,0)=2η1

√
2

a
e2χ1xisech[2η1(x−xa)]+2η2

√
2

a
e2χ2xisech[2η2(x−xb)]. (3.2)

B3. Three-soliton solution

W(x,0)=sech(x−x3). (3.3)
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Figure 3: 2-bright-soliton evolution computed by S2.
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Figure 4: 2-bright-soliton evolution computed by S3.

Unless the contrary is stated the standard value for the nonlinear constant is a = 2.0,
and the spatial step size h and temporal step sizes dt are given as follows:

h=0.3 or h=0.15, dt=0.02 or dt=0.01. (3.4)

Initial data B1 produces the usual 1-bright-soliton solution. We present here the result
of an integration with η=0.5, χ=0.5, x1=−30 over the spatial interval x∈[−750,750] and
temporal interval t∈ [0,64].

The expression in B2 is an initial data for a pair of solitons with different amplitudes
and velocities, which is appropriate for the simulation of solitons collision. We have
studied the following set of parameters η1 =η2 =0.5, χ1 =0.25, χ2 =0.025, xa =−30, xb =0
over the spatial interval x∈ [−750,750] and temporal interval t∈ [0,64].

From Figs. 1 and 3 with dt=0.02 and h=0.3, we can see that the symplectic scheme S2

simulates the 1-bright-soliton and 2-bright-soliton motion accurately, while Figs. 2 and 4
show that the non-symplectic scheme S3 declines clearly.

Figs. 5-8 show that in the simulation by using the scheme S2, the formal energy and
the discrete approximations behave very well. In Fig. 5 with h = 0.3, one finds that the
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Figure 5: Evolution of formal energy obtained by S2.

amplitudes of Err(H), Err(H2) and Err(H4) with dt=0.01 are less than 2−2, 2−4 and 2−6

times those with dt=0.02 respectively.

Figs. 6-8 show the conservative property of S2, and non-conservative property of S3

for the invariants F1-F6 of the NLSE (1.1). Since the evolution of other approximations is
very similar, we plotted only Err(R1), Err(I2) and Err(I6) in Figs. 6-8 respectively.

Comparing the plots in the first columns of Figs. 6-8, one easily finds that like the case
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Figure 6: Evolution of R1 obtained by S2 and S3.

in Fig. 5,
Err(R1)|dt=0.01≈2−2Err(R1)|dt=0.02.

Moreover,

Err(I2)|dt=0.01≈Err(I2)|dt=0.02, Err(I6)|dt=0.01≈Err(I6)|dt=0.02,

which is different from that of Fig. 5. Our explanation is that R1, I2 and R6+i· I6 are
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Figure 7: Evolution of I2 obtained by S2 and S3.

approximations of the continuous invariants F1, F2 and F6 respectively, but only R1 is
still an invariant of the Hamiltonian system (1.5). Err(I2) and Err(I6) obtained by using
scheme S2 depend not only on the temporal step size dt but also on the spatial step size
h; when dt is small enough, the errors depend mainly on h.

Finally, we simulate the three-soliton-bounded-state motion with initial data given by
B3, which is usually considered to be a more difficult “quality” test for numerical schemes
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Figure 8: Evolution of I6 obtained by S2 and S3.

because of the appearance of large spatial and temporal gradients in the solution. It has
been shown that for a = 2N2(N = 2,3,···) (2.10) corresponds to a bounded state of N
solitons [27]. For a=18 and x3=0.0, we choose step sizes h=1/15 over the spatial interval
x ∈ [−20,20] and temporal interval t ∈ [0,2.8]. Fig. 9 shows that scheme S2 simulates
the three-soliton motion much better than S3. To compare, we change the step size to
h = 1/30. Fig. 10 shows clearly that scheme S2 provides much more reasonable results
for the three-soliton motion than those obtained by using S3.
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Figure 9: 3-bright-soliton evolution computed by S2 (left) and S3 (right), h= 1
15 .
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Figure 10: 3-bright-soliton evolution computed by S2 (left) and S3 (right), h= 1
30 .

4 Conclusions

In conclusion, we have demonstrated that via splitting technique, some completely ex-
plicit symplectic methods can be naturally applied to integrate the nonlinear Schrödinger
equation. In particular, a reversible 2nd-order symplectic scheme has been used to simu-
late the one-soliton, two-soliton and three-soliton motion. Numerical results have shown
the strong tracking ability of the scheme for solitons motion, in particular the perfor-
mance of its conservative property for the invariants of the NLSE, and also the conver-
gence of its formal energy.
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