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Abstract. Several lumped parameter, or zero-dimensional (0-D), models of the micro-
circulation are coupled in the time domain to the nonlinear, one-dimensional (1-D)
equations of blood flow in large arteries. A linear analysis of the coupled system, to-
gether with in vivo observations, shows that: (i) an inflow resistance that matches the
characteristic impedance of the terminal arteries is required to avoid non-physiological
wave reflections; (ii) periodic mean pressures and flow distributions in large arteries
depend on arterial and peripheral resistances, but not on the compliances and iner-
tias of the system, which only affect instantaneous pressure and flow waveforms; (iii)
peripheral inertias have a minor effect on pulse waveforms under normal conditions;
and (iv) the time constant of the diastolic pressure decay is the same in any 1-D model
artery, if viscous dissipation can be neglected in these arteries, and it depends on all
the peripheral compliances and resistances of the system. Following this analysis, we
propose an algorithm to accurately estimate peripheral resistances and compliances
from in vivo data. This algorithm is verified against numerical data simulated using
a 1-D model network of the 55 largest human arteries, in which the parameters of the
peripheral windkessel outflow models are known a priori. Pressure and flow wave-
forms in the aorta and the first generation of bifurcations are reproduced with relative
root-mean-square errors smaller than 3%.
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1 Introduction

Arterial pulse wavelengths are sufficiently long to mathematically justify the use of a
one-dimensional (1-D) rather than a three-dimensional (3-D) approach when a global
assessment of blood flow in the cardiovascular system is required. Several comparisons
against in vivo [19,26] and in vitro [2,16] data have shown the ability of the nonlinear,
1-D equations of blood flow in compliant vessels [11, 14, 21,23, 29] to capture the main
features of pressure and flow waveforms in large arteries. These tests have increased our
confidence in applying the 1-D formulation to clinically relevant problems [3-5,13,25,26,
28] or to provide the boundary conditions for 3-D simulations [10]. However, the clinical
relevance of 1-D modelling is subject to the availability of patient-specific data on the
geometry, local pulse wave speeds, and boundary conditions of the arterial network to
be simulated.

Recent progress in imaging technology has open greater possibilities for the appli-
cation of 1-D modelling. Imaging techniques such as computer tomography, magnetic
resonance and ultrasound are now able to provide patient-specific information on vessel
geometry as well as more limited information on local velocity profiles and pulse wave
speeds. This information permits the use of the 1-D formulation to simulate patient-
specific arterial networks provided that appropriate boundary conditions are prescribed.
Although the inflow waveform at the root of the arterial model (typically at the ascending
aorta) can be accurately measured at salient locations using medical imaging, determina-
tion of outflow boundary conditions based on measured data is more challenging.

Even if such data were available, it is computationally too expensive to model all
vessels in the full systemic circulation using the 1-D formulation because of their large
number, which increases exponentially as more generations of the arterial tree are in-
troduced. Furthermore, the assumptions of the 1-D equations become less appropriate
with the decreasing caliber of the vessels. For instance, blood flow in large arteries is
pulsatile and dominated by inertia, whereas blood flow in smaller vessels is quasi-steady
and dominated by viscosity [7]. Consequently, any 1-D model has to be truncated after
a relatively small number of generations of bifurcations, and the haemodynamic effect
of vessels beyond 1-D model arteries is typically simulated using lumped parameter or
zero-dimensional (0-D) models governed by ordinary differential equations that relate
pressure to the flow at the outflow of each 1-D terminal vessel [3-5,13,25,26,28]. Alterna-
tively, the remainder of the arterial system can be simulated using structured tree models
based on Womersley’s elastic vessel theory under the assumption of periodic flow [18,19].

The aim of this investigation is to provide appropriate outflow 0-D models for patient-
specific simulations and to propose a strategy to estimate their parameters using data
that can be measured in vivo. Several physiologically relevant 0-D models are coupled
to the nonlinear, 1-D formulation using a time-domain algorithm that can accommodate
periodic and transient phenomena. The resulting 1-D/0-D multiscale formulation is lin-
earized to study the main effects of 0-D outflow parameters on pulse wave propagation in
1-D model arteries, and to devise a strategy to select the parameters of the outflow mod-
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els from available in vivo data that capture the main haemodynamic features of vessels
beyond the arteries of the 1-D tree model and reduce artificial wave reflections. Numeri-
cal examples will show the suitability of the algorithms proposed.

2 Methodology

Sections 2.1 and 2.2 introduce the 1-D and 0-D formulations, respectively, and show the
relation between their parameters and variables. Section 2.3 discusses how to couple both
formulations in the time-domain and applies the coupling algorithm to physiologically
relevant 0-D outflow models. Section 2.4 analyzes the effect of the parameters of the
outflow models on waveform patterns using the linearized 1-D/0-D multiscale system.
Section 2.5 suggests a strategy to estimate these parameters using data measurable in
vivo.

2.1 1-D formulation

Conservation of mass and balance of momentum applied to a 1-D impermeable and de-
formable tubular control volume of Newtonian incompressible fluid yields a nonlinear
system of partial differential equations that can be expressed in non-conservative form
as [23]

ou JU
U= |: :|/ H= 1 9P s S= s
u EB_A u %(%—S)

where x is the axial coordinate along the vessel, t is the time, A(x,t) is the cross-sectional
area of the lumen, U(x,t) is the average axial velocity, P(x,t) is the average internal pres-
sure over the cross section, and p=1050 Kg m 2 is the density of blood. The friction force
per unit length f is given by [25,29]

A [ou
f—2]/l7TR |:§:| r:R/

where 1 =4 mPa:-s is the blood viscosity, R(x,t) is the lumen radius, u(x,7,t) is the axial
velocity (r is the radial coordinate). The source term s accounts for additional effects
such as the action of gravity, the tapering of the vessel wall, and the nonlinearity of the
sectional integration in terms of u. A typical profile for axisymmetric flow satisfying the

no-slip condition is
o
1))
Y R
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where v is a constant [25,29], so that f = —2(y+2) urtU. According to [25], y=9 is a good
compromise fit to the experimental data. Notice that v =2 corresponds to a parabolic
profile which leads to Poiseuille’s flow resistance f = —8umU.

Following previous works [2-5,11,13,18,19,23,26], we adopt a pressure-area relation-

ship of the form
— P (va-va),  pe=ivanE 2
0

which assumes a thin, homogeneous, incompressible and elastic arterial wall, in which
each section is independent of the others, with a thickness 11(x), a Young’s modulus E(x),
and a lumen area A (x) at the reference state (P,U)=(0,0). In the presence of elastic and
geometrical tapering of the arterial wall, the source term s in Eq. (2.1) is given by

_9Pdp_ 9P dAy

Under physiological conditions, A >0 and 1 ap 7 > 0. Therefore, H has two real eigen-
values, Af;, =U=+c, where
_ [AdP
“\ oA~ 2pA0

is the pulse wave speed and U < c. The system in (2.1) can be written in diagonal form
as

oW oW
w—FAg =Suw, (2.3)

W [ A 0 B
w_[Wb]' A_[O Ab}' Sw[

where W, =U=+4(c—cp) are the characteristic or Riemann variables of the system, with
co=c(Ap). Eq. (2.3) shows that changes in pressure and velocity are propagated forward
(in the positive direction of x) by Wy and backward (in the negative direction of x) by W,
along the characteristic curves

with

D= D=

NN

BN NI
| |
w0

N—N—

| I |

~

d
dtxfb Afbs

respectively, where £, = %7, (t) represent curves in the (x,t) space. Consequently, one
boundary condition has to be prescribed at each side of the control volume. The source
term S, changes the values of Wy and W), as they propagate.

We have previously solved system (2.1) with the tube law (2.2) in arterial networks
using a discontinuous Galerkin scheme with a Legendre polynomial spectral/hp-spatial
discretization and a second-order Adams-Bashforth time-integration scheme [2,23], and
we have validated this formulation against in vitro data [2,16]. To simplify the analysis
of the coupled 1-D/0-D model, a linear formulation is obtained as follows. Expressing
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Egs. (2.1) and (2.2) in terms of the (A,P,Q) variables, with Q= AU, and linearizing them
about the reference state (Ao,0,0), with f and A constant along x, yields

dp , 9q
Cip=- o + = gy =0,
dq , dp
e R 24
Lip at + Fy Rqu, (2.4)
ClD

where 4, p and g are the perturbation variables for area, pressure and volume flux, re-
spectively, i.e. (A,P,Q)=(Ao+a,p,q), and

2(y+2)mu P A
Ryp= 22 g P _ 2 2.
1D o D= Cip o2 (2.5)

are the viscous resistance to flow, blood inertia and wall compliance, respectively, per
unit of length of vessel. From Eq. (2.2) we have

dp _ dP 1
aa E)A :AO_ClD.

The method of characteristics shows that linear changes in pressure and volume flux are
propagated forward by wy at a speed ¢y and backward by w;, at a speed —cy, given by

1P _ pco
wf'b_qj:z_o’ Zo—A—O. (26)

The flows w¢ and wy, are the linear Riemann variables and Zj is the characteristic impedance
of the vessel.

2.2 0-D formulation

Eq. (2.4) can be further simplified by integration along the length, [, of an arterial domain
in which x€10,1],

d/\
CODd_I: +Jout —qGin= 0,
dg R
LODd_Z +Ropq+pout — Pin=0,

where q;,, (1) =q(0,t), gout (t) =q(1,t), pin(t) =p(0,t) and pou:(t) = p(l,t) are the flows and
pressures at the inlet and outlet of the domain, Rop =Ripl, Lop =L1pl, Cop =Cipl, and

1 /! . 1 /!
_T/Ode' q(t)—T/oqu
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Figure 1: A finite number of 0-D systems (2.7) (right) discretize, at first order in space, a linear continuous
1-D arterial domain of length I governed by the system (2.4) (left).

are the mean pressure and flow over the whole domain. Milisi¢ and Quarteroni [17]
proved that if p=p;, and § =gy, so that

d .
COD % +QOut —qin= O/
2.7)

d
LOD% +RODQOut + Pout — Pin = 0/

then a finite number N of zero-dimensional (0-D) systems (2.7), each with length Ax =
I/ N, discretize, at first- order accuracy in space, a linear continuous 1-D arterial domain
of length / governed by Eq. (2.4). This idea has been previously implemented to simulate
pulse wave propagation in systemic human arteries [6,22,32].

Eq. (2.7) are analogous to the electric transmission line equations, in which the role
of the flow and pressure are played by the electric current and potential, respectively,
Rop corresponds to an electric resistance, Lop to an inductance, and Cyp to a capacitance
(Fig. 1). Integration of Eq. (2.7) over a period of time [t',#' + T|] yields

{ COD [pin(t/+T) —Pin(t/)] +T(qout_ﬁin) =0, (2 8)
Lop [Gout (' +T) —qour (t')] +T (RopTyus +Pout — Pin) =0,

where

B 1 4T _ 1 t+T B 1 4T B 1 rt'+T
qin:?/t/ q:‘ndt/ pin:f/t/ Pindt/ qout:f/t/ QOutdt/ poutzf/t/ poutdt

are the mean values of qiy, Pin, Joutr and pour over the interval [t/ 4T}, respectively. If the
flow is periodic with a period T, Eq. (2.8) reduces to

= = _in _ﬁou
Din = Dout = P Rop - (29)

*The justification for this is that, under physiological conditions, pulse waves are much faster than blood
velocity.
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A 0-D approach is commonly used to simulate the perfusion of the micro-circulation and
can account for other physiological processes such as flow auto-regulation by vasocon-
striction and vasodilatation [3]. In general, a 0-D model can be described as a system of
ordinary differential equations

d

Y — Ay +by), (2.10)
where y € R"™ is a vector of variables, A € R"*™ is a matrix of parameters and b € R”
is a source term that provides external data to the system. In particular, Eq. (2.7) can be

written as (2.10) with
0 b n
1 R ] b:[ P |-

y:|: Pm :|, A:
Gout Lo ~ Lop Lop

2.3 Coupling 1-D and 0-D models

The existence and uniqueness of the solution of a coupled problem involving a 0-D model
expressed in the form of Eq. (2.10) and the hyperbolic 1-D system (2.3), with S, =0, has
been proven in [9] for a sufficiently small time so that the characteristic curve leaving the
1-D/0-D interface does not intersect with incoming characteristic curves. Numerically,
the coupling problem is established through the solution of a Riemann problem at the
1-D/0-D interface (Fig. 2, bottom left). An intermediate state (A*,U*) originates at time
t-+At (At is the time step) from the states (A, Ur) and (Ag,Ug) at time ¢. The state (A, Ur,)
corresponds to the end point of the 1-D domain, and (Ag,Ug) is a virtual state selected so
that (A*,U") satisfies the relation between A* and U* dictated by Eq. (2.10). The 1-D and
0-D variables at the interface are related through

qin :A*U*r Pin= Aﬁo (\/F— \/A—O) ’

and p,yt is prescribed as a constant parameter that represents the pressure at which flow
to the venous system ceases.
If S;, =0, Eq. (2.3) leads to

Wi (A", U") =W, (Ag,Ur). (2.12)
Solving Egs. (2.11) and (2.12) for A* and U* yields

4

We(Ar,Up)—Wy(Ag,U
2pA0 f( .Ur) b(AR R)+A(1)/4 , 2.13)

B 8
= % (W (AL UL) +Wy(Ar,Ug)). (2.14)

A=
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Figure 2: (Bottom left) Notation for the Rie-
mann problem at the interface between a 1-D

arterial domain and a 0-D outflow model.
TopS 0-D outflow models studied depicted us-

ing the electrical analogy: (a) single resistance
model, (b) three-element windkessel model,
(c) two-element inertial model, and (d) four-
element windkessel/inertial model.

(AL, Up) (A, Up)

The 1-D outflow boundary condition is imposed by enforcing that either Ur = U;, which
reduces Eq. (2.13) to

Ar=[2(a"4 (a4, (2.15)
or Ar = A, which reduces Eq. (2.14) to
Ur=2U"-Us. (2.16)
2.3.1 Physiologically relevant 0-D outflow models

The resistance, R, the compliance, C, and the fluid inertia, L, of vessels peripheral to a
1-D domain can be simulated using the four-element (RCLR) windkessel/inertial model
shown in Fig. 2(d), with R=R;+R,. The initial resistance, R, is introduced to absorb the
incoming waves and reduce artificial wave reflections. It satisfies

AU = M, (2.17)
R4
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where (pc)" is the pressure at C at the time step n. This choice of model will be justified in
Section 2.4.1. The CLR; system is governed by Eq. (2.7), with Cop =C, Lop =L, Rop =R,
pin=pc and g;, = A*U". A first-order time discretization of Eq. (2.7) is written as

n__ n—1

ctre) A(tpC) +(Gour)" — A*U* =0, (2.18)
n__ n—

o) = )" L R )4 s () =0, @19)

with (pc)" ' =0 and (gous)" ' =0 for the initial time step, n =1. Combining Eq. (2.18)
and (2.19) yields

R,C

— *7 Tk R —
#pe)" =57 (PO FRAAU + s | Atpos— L{gous) |, (2:20)

where
R>C RoAt

P="ar TTaRoAE
Eq. (2.20) combines with (2.17) to produce

P(A*) — (Pout)RCLR

AU = : 221
Ri+Ra/¢p (2.21)
where
n R2 *
(Pout)rcLr = (pc)" — p —ZA*U*.

Combining (2.21) and (2.11), and expressing P(A*) through the tube law (2.2) yields the
nonlinear equation

F(AY) = (RH—%) ([uL+4c(AL)}A*—4c(A*)A*>
—Aﬁ()(m \/—> (Pout)rcLr =0, (2.22)

that is solved using the Newton’s method with the initial guess A* = Ar. Once A* has
been obtained, U* is calculated from (2.21) and the boundary condition is prescribed
either through (2.15) or (2.16).

Note that if L =0, we obtain the three-element windkessel model shown in Fig. 2(b).
If C=0, we obtain the two-element inertial model shown in Fig. 2(c). Finally, if both C
and L are equal to zero, we recover a single resistance model, Fig. 2(a), in which Eq. (2.21)
reduces to

AU = w. (2.23)
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2.4 Effect of 0-D outflow models on 1-D waveforms

This section studies the effect of the parameters of the 0-D outflow models on the wave-
forms propagated in an arterial network. Pulse wave propagation is simulated using the
linear 1-D formulation, which makes the analysis simpler and its use is justified because
the effect of nonlinearities is small under physiological conditions, as we have shown
in [16]. The study is divided into analysis of the ‘local” effect on a terminal 1-D domain
and of the ‘global” effect involving all the arterial domains of a 1-D network.

2.4.1 Local effect

If the linear 1-D formulation is used, Eq. (2.23) becomes ¢* = (p* —pout)/R. It can be
expressed as a function of the linear Riemann variables (2.6) applying q* = (ws+wy) /2
and p* =Zo(ws—wy)/2,

2pout Rt_R_ZO
o R—i—ZOI

(2.24)

where R; is the terminal reflection coefficient. A perturbation (dp,dq) propagating in the
forward direction of the 1-D domain; i.e., w, =0 and dg=0Jp/ Zy, produces a reflected state
(6p*,0q") that satisfies w¢(p*,09") = ws(dp,dq). Using Eq. (2.24) to relate w(dp*,dq")
to wy(dp*,0q*) and transforming the Riemann variables into pressure and flow volume
leads to

ZoPout x_ Pout

R+ 7o’ 3q"=(1—Ry)dq RiZg" (2.25)
Note that R =1 (R tends to infinity) represents a closed end, in which the incoming
pressure is doubled and the incoming velocity is annihilated (6p*=25p, 65* =0)}, R;=—1
(R=0) corresponds to an open end with an outflow pressure p,,, in which the incoming

pressure is annihilated and the incoming velocity is doubled (6p* = pout, 0g* =209 — pz“g’ ),

and R;=0 (R=Zo) completely absorbs any incoming wave (6p* =6p+ 53, 6q* =g — g“z“o’ )-

Under physiological conditions, R > Z,, so that R; > 0.
If C=0, Eq. (2.21) leads to the following relation between ¢* and p*

* P* - Pout+ ALt (Q(mt)nil

= R+£&

, (2.26)

which shows that the inertial-resistance model produces reflected waves similar to the
pure resistance model, but with a total resistance R+ L/At and a pressure gradient that
depends on the inflow (gou)" ! = (g;,)"!. On the other hand, if L=0 Eq. (2.21) yields

o _ P = Pou+ 5 ((p)" = (pc)" )
q R /

(2.27)

Note that the reflected pressure is 6p* —dp and the reflected flow is g* — dg.
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where we have used (pc)"=p*—R1q*. Eq. (2.27) indicates that the RCR windkessel model
can allow for more or less outflow ¢* than the pure resistance model if the pressure at the
compliance, pc, is increasing or decreasing, respectively. Applying

*w—l—wb .
quz , pr=2o >

. 1s expressed 1n terms of the linear Riemann variables . as

(2.27) i p di f the li Ri iables (2.6)
2[pout + 25 (pc)" 1] S Zo+ %25 (R1— 20)

R+Zo+R2C(R1+Z0) R—i—Zo—i—RZC(Rl—i—Zo)

The relation between a perturbation (dp,dq) propagating in the forward direction of the
1-D domain and the corresponding reflected state (dp*,6q") is

Zo[pout+ “Af ReC <P )nil]

wpy=—Quwr—

(2.28)

op*=(1+Q)op+

R+zo+ e S(R1+2Zo) (229
* p t+ (P )n ! ‘
59" =(1-Q)dg— ———= ﬁﬁc
R+Zo+ (R1 +Zo)
Note that when At tends to zero, () tends to leég, which shows that Qdp* and Qdg*

attain a minimum when R; = Zj. Moreover, if R; =0, () tends to —1 in the limit At =0,
which annihilates the incoming pressure and doubles the incoming flow.

2.4.2 Global effect

Applying Eq. (2.9) for each 1-D domain and 0-D outflow model (the latter with Rop =R
and Pour = pout) of an arterial network with N domains and M outflows (M < N) shows
that mean pressures and flow distributions in 1-D model arteries depend on the arte-
rial, (Rop); (i= N), and terminal, R; (j=1,---,M), resistances of the system once a
periodic state is reached but not on the correspondmg compliances, (Cop); and C;, and
inertias, (Lop); and L;, which affect transient pressures and flows according to Eq (2.8).
Since the greatest fall in mean pressure occurs in the small arteries and arterioles in nor-
mal conditions [7], (Rop); can be neglected compared to Rj, which leads to

= M
— p - pout 1 1
= , — =) —, 2.30
9N Ry T ; R] ( )
for a bifurcating network with M terminal domains, where 7, is the mean inflow over
a period T, p is the mean pressure in the N 1-D arterial domains, and Rr is the total
resistance of the network. Furthermore, if (Lop); (i= N) is also neglected and each
outflow j (j=1,---,M) is simulated using a compliance C and resistance R;, Eq. (2.7) leads
to

d(pin)i
{ (Cop)i (Zt) + (Gout)i = (9in)i=0, (2.31)
(pout)i:(pin)i:p’
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for each arterial domain i (i=1,---,N), where p(t) is the pressure throughout the 1-D
domains. Combination of (2.31) for each 1-D domain i (i=1,---,N) with the peripheral
resistances, R;, and compliances, C; (j=1,---, M), leads to the windkessel model proposed
by Frank [12], which lumps the arterial network into

dP P— Pout o o N M
Cr—+ —qin=0,  Cr=)_(Cop)i+)_.Cj, (2.32)
dt " Ry L py

where gy (f) is the inflow flux volume and Cr is the total compliance calculated by
adding the parallel arterial, (Cop);, and peripheral, C;, compliances. Although Eq. (2.32)
fails to reproduce the wave nature of pulse propagation because pressure changes are
assumed to occur synchronously throughout the arteries, it is still applicable when wave
activity is minimal. According to [1,30] this is the case in approximately the last two
thirds of diastole under normal conditions. During normal diastolic conditions g;n =0 is
a reasonable assumption that reduces Eq. (2.32) to

—t

P—Pout = (po_pout)em/ (2.33)

with pp the pressure at the start of diastole. Eq. (2.33) shows that the time constant RTCr
of the diastolic pressure decay is the same in any 1-D model artery, if viscous dissipation
can be neglected in the 1-D model arteries, and it depends on all the peripheral compli-
ances, C;, and resistances, R; (j=1,---,M), of the system. The outflow pressure p,, affects
both mean arterial pressures and flows and the diastolic part of arterial pulse waveforms.

2.5 Estimation of parameters of the 0-D model

The total resistance, Rt, of an arterial network can be calculated in two ways. It can be
calculated using Eq. (2.30) if the inflow at the root of the network and a pressure measure-
ment in any large artery are known, so that §;y and p can be determined. Alternatively,

1 M1
Rr  HR;

can be used with R;=(p—pout) / (Jout); if the mean outflow at each terminal vessel ({ous);
is available along with a pressure measurement in any large artery. Both techniques are
valid provided that the flow can be assumed to be periodic and p,,¢, which takes a value
of about 20 mmHg in normal conditions [7], is known. This pressure can be estimated
together with the time constant RTCr of the diastolic pressure decay by fitting Eq. (2.33) to
a pressure waveform in any large artery [30]. In this case, flow periodicity is not required
and long heart beats provide a more accurate fitting of p,,; and RrCr, since wave activity
decreases with time in each cardiac cycle. Once Rt is known, the total compliance, Cr,
can be determined from the time constant RrCr.
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The total peripheral compliance of the network can be calculated from Eq. (2.32) as

M N
>Ci=Cr=)_(Con):-
j=1 i=1

According to Eq. (2.5), estimations of the geometry and pulse wave speeds are required
to determine arterial compliances (Cop);. Arterial geometries can be reconstructed from
image segmentation techniques and pulse wave speeds can be estimated using the PU-
loop [15] or sum-of-the-squares [8] techniques. The value of the total peripheral compli-
ance can be distributed in proportion to the flow distribution determined by the periph-
eral resistances R]-, as suggested in [28], or to the outflow cross-sectional areas.

Peripheral inertias can be neglected in normal conditions, as the numerical study in
Section 3.1 will show.

In vivo data suggests that large arteries are well-matched for forward travelling waves
[20, 31], so that peripheral reflected waves get ‘trapped’ as they propagate backwards
toward the left ventricle. Furthermore, it has been shown that pulse waveforms in large
arteries consist mainly of forward travelling waves [1,30]. Therefore, the choice of an
inflow resistance R; that matches the characteristic impedance of each of the terminal 1-D
model arteries in order to minimize the intensity of the waves reflected by the windkessel
models studied, and to avoid the generation of artificially reflected waves, seems to be
justified.

3 Results and discussion

This section describes two simulations that provide supporting numerical evidence to
the analysis presented in the previous sections. Section 3.1 considers the propagation of
a narrow, Gaussian shaped input wave along a single artery connected to a 0-D model at
the outflow and discusses the effect of the parameters of the 0-D model on the generated
waveforms. The suitability of the method described in Section 2.5 for estimating the
parameters of peripheral 0-D models is demonstrated using a 1-D model of the human
arterial tree of known characteristics in Section 3.2.

3.1 Wave propagation in a single 1-D vessel coupled to several 0-D models

Fig. 3 shows the waveforms generated when a narrow, Gaussian shaped wave is prop-
agated from the inlet of a single artery whose outlet is coupled to the 0-D models intro-
duced in Section 2.3.1. A narrow, Gaussian shaped wave is a continuous approximation
to the unit pulse d(t) located at t =0 (i.e. 6(0) =1 and 6(f) =0 for t #0) used in [31] to
track the multiple transmissions and reflections in the arterial system. The 1-D domain
has a length / =40 cm, an initial lumen radius of 1 cm, a wall thickness 1 =1.5 mm and a
Young’s modulus E =0.4 MPa, based on the data published in [32] for the human aorta.
The parameters of the 0-D models are R=189 MPa s m3,C=63m3GPa!,L=1.0 MKg
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Figure 3: Propagation of a Gaussian shaped wave in the middle of a single 1-D arterial domain coupled to the
following 0-D outflow models: single resistance (R), three-element windkessel with Ry =Zy (RCR), Ry =2Zj
(2Zp) and Ry =0 (CR), and two-element inertial (LR) models. Pressure on the left and velocity on the right
non-dimensionalized by their maximum values.

m~* and Pout =0. The values of R and C are based on data from [24], in which the aortic
compliance, calculated as Cip! using (2.5) has been subtracted from the total compliance
provided in [24]. The order of magnitude of L is that reported in [27] for the whole sys-
temic circulation. Each simulation is run with 10 elements, using a polynomial of order 5
and a time step At =100 ps.

The resistance (R) model produces reflected waves with pressure and velocity peaks
of about 80% of their corresponding incident peaks, which is in agreement with the re-
flection coefficient R; = 0.8 obtained from (2.24). Reflected waves maintain the sign of
the incident waves in pressure but change it in velocity, in accordance to the linear re-
flections predicted by Eq. (2.25). Note that the inlet behaves as a closed end (R; =1),
since the inflow is approximately zero by the time of arrival of the first reflected wave
(co=6.2m/s). The LR model produces similar reflected waves to the resistance model,
but with an increase in their peaks of about 5%, which is in agreement with the behavior
predicted by Eq. (2.26). Significant reflected waves are generated by the RCR model un-
less an initial resistance R; = Zy is used to match the propagation of forward travelling
waves. The figure also shows the cases Ry =27y and R; =0 (CR model). Note that the
CR model produces negative reflected pressures and positive reflected velocities similar
to the wave reflections generated by a single resistance model with R; = —0.8. Finally,
the pressure and velocity waves reflected by the matched RCLR model (i.e., R; =Zy) can-
not be distinguished in the scale of the figure from the corresponding waves reflected by
the matched RCR model, which suggests that peripheral inertias have a minor effect on
reflected waves under normal conditions.

Fig. 4 shows the waveforms obtained when a periodic half-sinusoidal inflow is im-
posed and p,,: =1.33 kPa. Once a quasi-steady state is reached, the matched RCR model
is able to capture some features of in vivo aortic measurements [7], such as the pressure di-



J. Alastruey, K. H. Parker, J. Peir6 and S. J. Sherwin / Commun. Comput. Phys., 4 (2008), pp. 317-336 331

U (m/s)

‘ -0.2 o
14.2 14.4 13.6 13.8

1%.6 13.8 » 14_2' » 14.4

& ®

Figure 4: Pressure (left) and velocity (right) waveforms, once a quasi-steady state is reached, in the middle of
a 1-D domain coupled to the 0-D outflow models as indicated in Fig. 3. A periodic half-sinusoidal flow rate
with a mean flow of 3.8 |/min [24] is prescribed at the inlet. Waveforms are also shown at the inlet for the RCR
model with Ry =Z.

crotic notch, the exponential diastolic decay predicted by Eq. (2.33), the increase in pulse
pressure towards the outlet, and some reversal flow at the end of systole. The matched
RCLR model produces very similar results to the matched RCR model that cannot be
distinguished in the scale of Fig. 4. The R, LR, RCR with Ry =27 and CR (R =0) mod-
els produce less physiological waveforms because they generate larger reflected waves
(Fig. 3). These results suggest that peripheral vessels in arterial networks should be simu-
lated using matched RCR models in normal physiological conditions. Resistance models
can be applied if the total compliance Cr is mainly located in the 1-D model arteries, so
that the system does not require any peripheral compliance to capture the correct time
constant, RTCr, of the diastolic decay in Eq. (2.33). Note that mean pressures are the same
in each simulation, which is in agreement with (2.30).

3.2 Wave propagation in a model of the 55 larger systemic arteries in the hu-
man

Fig. 6 shows two aortic pressure and flow waveforms simulated using the 1-D model of
the 55 larger systemic arteries in the human proposed in [28] (Fig. 5). If terminal branches
are coupled to matched RCR lumped parameter models, the system is able to capture the
main features of aortic in vivo measurements discussed in Section 3.1. All the parameters
of this simulation, which is referred to as the ‘control case’, are based on data provided
in [28].

If resistance outflow models are used, pulse pressures increase by about 30% since the
total compliance Cr of the system is reduced according to (2.32), which decreases the time
constant in (2.33) and, as a result, the diastolic decay is steeper. However, mean pressures
and flows remain unchanged once a quasi-steady state is reached, which is in agreement
with (2.30). Single resistance models produce waveforms more similar to matched RCR
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models in the 55 artery model than in the single 1-D model aorta shown in Fig. 4, since
peripheral perfusion becomes more resistance and less compliant as more generations of
bifurcations are simulated.

55|154 48/ 49

Figure 5: Connectivity of the 55 larger systemic arteries in the human, as proposed in [28].

Fig. 6 also shows the effect of lumping arteries beyond the first generation of bifurca-
tions into matched RCR outflow models. If the new peripheral resistances and compli-
ances are calculated by adding the Rop and Cyp of the 1-D arterial segments beyond the
first generation of bifurcations to the corresponding peripheral values, the root-mean-
square errors in pressure and flow waveforms in the middle point of the aortic and first
generation segments, relative to the corresponding maximum control values, are smaller
than 3%. These errors are also smaller than 3% if the new peripheral resistances are es-
timated from the mean pressure in the middle point of segment 27 (thoracic aorta) and
the mean flows in the middle points of the first generation of bifurcations, and the new
peripheral compliances and outflow pressure p,,; are determined by fitting Eq. (2.33) to
the pressure waveform in the middle point of segment 27, as suggested in Section 2.5.
The value of the total peripheral compliance is distributed in proportion to the outflow
cross-sectional areas. These results suggest that matched RCR outflow models with ad-
equately estimated parameters are able to accurately simulate the haemodynamic effect
of peripheral compliant vessels on wave propagation in large arteries.
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Figure 6: Pressure (left) and flow (right) waveforms in the middle of the aortic segments 27 (top) and 41
(bottom) as shown in Fig. 5. Terminal arteries coupled to matched RCR (control) and resistance (R) outflow
models using the peripheral values in [28]. The corresponding waveforms obtained by lumping arteries beyond
the first generation of bifurcations into matched RCR models are also shown, with peripheral resistances and
compliances obtained by (i) adding the Rgp and Cyp of the 1-D arterial segments beyond the first generation
of bifurcations to the corresponding peripheral values (lumped), and (ii) estimating their values as described in
the text (estimated).

4 Conclusions

We have proposed a numerical algorithm to couple, in the time domain, nonlinear 1-D
models for pulsatile blood flow in large arteries to 0-D models of the perfusion of the
micro-circulation. The methodology presented highlights the reciprocal interaction be-
tween 1-D and 0-D models, and possesses good numerical convergence and stability
properties. Different physiologically relevant 0-D outflow models have been imple-
mented and the effect of their parameters on waveform patterns in large arteries has
been studied. The coupling technique proposed permits the simulation of transient phe-
nomena, which is required in some clinical applications, such as the study of the effect of
sudden carotid occlusions on cerebral blood flows [3].

A linear analysis of the 1-D/0-D system in the time domain has allowed us to identify
the effects of the parameters of the outflow 0-D models on arterial pulse waveforms,
and to estimate their values using data that can be measured in vivo. In particular, we
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have shown that mean pressures and flow distributions in large arteries depend on the
resistances of the system once a periodic state is reached, but not on its compliances and
inertias, which affect instantaneous pressure and flow waveforms. Peripheral inertias
have a minor effect on flow waveforms under normal conditions. The time constant of
the diastolic pressure decay is the same in any 1-D model artery, if viscous dissipation
can be neglected in these arteries, and it depends on all the peripheral compliances and
resistances of the system. Moreover, a lumped parameter windkessel model reduces
artificial wave reflections if it contains an inflow resistance equal to the characteristic
impedance of the 1-D domain. Finally, the main haemodynamic effects of peripheral
vessels on pressure and flow wave propagation in the aorta and the first generation of
bifurcations can be efficiently captured using a matched three-element windkessel model
with peripheral resistances and compliances and outflow pressures estimated using the
algorithm proposed in this work.

The results presented emphasize the significant influence of outflow models on 1-D
flow simulations and the need for accurate estimation of their parameters in patient-
specific simulations. Although this investigation is based on the linear 1-D equations and
the results have only been tested using numerical data, it still offers important physio-
logical insights into the haemodynamics of the vascular system, since the 1-D equations
are able to capture the main features of pulse waveforms in large arteries [2, 16,19, 26]
and the effect of nonlinearities is small under physiological conditions [16]. Despite the
growing interest in 3-D simulations in anatomically accurate geometries, the large range
of scales within the human circulation implies that a combination of 3-D and 1-D models
will be required for accurate, patient-specific modelling, as advocated in [10]. Moreover,
the long length scales of pulse waves in large human systemic arteries compared to the
characteristic arterial diameters suggests that the strength of the coupling of 3-D and 1-D
models will be relatively small, thereby supporting an independent study of the 1-D/0-D
reduced system. Future research will focus on showing the applicability of these results
to in vivo data.
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