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Abstract. The purpose of this paper is to solve some of the trouble spots of the clas-
sical SPH method by proposing an alternative approach. First, we focus on the prob-
lem of the stability for two different SPH schemes, one is based on the approach of
Vila [25] and another is proposed in this article which mimics the classical 1D Lax-
Wendroff scheme. In both approaches the classical SPH artificial viscosity term is re-
moved preserving nevertheless the linear stability of the methods, demonstrated via
the von Neumann stability analysis. Moreover, the issue of the consistency for the
equations of gas dynamics is analyzed. An alternative approach is proposed that con-
sists of using Godunov-type SPH schemes in Lagrangian coordinates. This not only
provides an improvement in accuracy of the numerical solutions, but also assures that
the consistency condition on the gradient of the kernel function is satisfied using an
equidistant distribution of particles in Lagrangian mass coordinates. Three different
Riemann solvers are implemented for the first-order Godunov type SPH schemes in
Lagrangian coordinates, namely the Godunov flux based on the exact Riemann solver,
the Rusanov flux and a new modified Roe flux, following the work of Munz [17]. Some
well-known numerical 1D shock tube test cases [22] are solved, comparing the numer-
ical solutions of the Godunov-type SPH schemes in Lagrangian coordinates with the
first-order Godunov finite volume method in Eulerian coordinates and the standard
SPH scheme with Monaghan’s viscosity term.

AMS subject classifications: 52B10, 65D18, 68U05, 68U07

Key words: SPH, meshfree particle methods, Riemann solvers, gas dynamics in Lagrangian co-
ordinates, Godunov type schemes.

1 Introduction

The Smoothed Particle Hydrodynamics (SPH) method was originally introduced by Lucy
[11], Gingold and Monaghan [5]. It is one of the earliest particle methods in compu-
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tational mechanics and it was devised to simulate a wide variety of problems in astro-
physics. Like many meshfree methods, the SPH scheme is based on the Lagrangian ap-
proach and it is able to handle problems characterized by large deformations, moving
discontinuities and critical mesh distortions.

In the SPH scheme, the generic continuum, such as a fluid, is discretized by a finite
set of discrete values defined at observation points, the so-called particles. Each point is
not fixed on a mesh, but it moves with the velocity of the fluid and the interactions of
each other are determined by a local function, the smoothing kernel. This function is the
essential feature of the SPH scheme and it assigns the weights of each particles based on
the reciprocal positions of the interpolating points.

Different smoothing functions have been used in the SPH method as seen in the liter-
ature [9]. The most widely used kernel functions in the SPH simulations are the Gaussian
and the cubic B−spline of Monaghan and Lattanzio [15]. In spite of the interesting math-
ematical properties of the Gaussian function, most practical work relies on the mono-
tone splines [1]. In fact, using the splines and consequently a smaller support, one can
obtain more accurate numerical solutions and more efficiency, from the computational
point of view. Unfortunately, even the choice of a spline function can not assure us that
the consistency conditions on the kernel are always satisfied [9], because the accuracy of
the numerical solution depends also on the distribution of the observation points inside
the compact support. This effect is emphasized near the boundaries, when the kernel
support leaves the numerical domain and thus the distribution of the particles is unbal-
anced, but it can be also significant within the computational domain, when the particles
are placed irregularly. To solve this issue, a new approach is proposed, which is based on
an uniform distribution of the particles in the Lagrangian mass coordinates.

Moreover, the classical SPH method suffers from several well-known numerical prob-
lems, such as particle interpenetration in high Mach number flows [13] or the so-called
tensile instability [14]. Generally one deals with these issues using various artificial pres-
sure and viscosity terms as introduced by Monaghan [12] in the motion and thermal
energy equations, but it does not solve all the issues. In fact, a von Neumann analysis
was carried out by Balsara [1] on the SPH method with Monaghan’s artificial viscosity
term. Unfortunately, only a small range of ratios of smoothing length to particle distance
for a specified choice of kernel function leads to stable continuum behavior. Based on
that finding we deduce that none of the currently used SPH kernels represents a particu-
larly good choice using Monaghan’s viscosity term [1]. In spite of that, up to this day the
viscosity term proposed by Monaghan has been mostly used.

An alternative approach has been recently proposed by Vila [25] and by Moussa and
Vila [16], who studied the convergence of SPH using approximate Riemann solvers in-
stead of the artificial viscosity. Moreover, Parshikov et al. [18], according to Godunov
schemes in the Finite Volume method, use the result of the Riemann problem in the cal-
culation of the numerical flux. Good results have been also obtained by Cha and Whit-
worth [3], who have applied the Riemann solver of van Leer [23, 24] to isothermal hy-
drodynamics. A recent improvement of the order of accuracy of SPH comes from Inut-



380 A. Ferrari, M. Dumbser, E. F. Toro and A. Armanini / Commun. Comput. Phys., 4 (2008), pp. 378-404

suka [7] used a rather complex framework in order to obtain second-order of accuracy in
one space dimension.

In this work, we start in Section 2.1 with the linear stability and monotonicity analy-
sis of two different SPH methods applied to the linear advection equation. The methods
are the first-order Godunov type SPH scheme, following Vila [25], and a new second-
order approximation for the SPH method that mimics the classical Lax-Wendroff scheme.
The results identify the stability region and amplitude error contours for each numerical
scheme. In Section 2.2 we show some numerical results for two computational test prob-
lems with periodic boundary conditions, implemented in order to assess the accuracy of
the numerical schemes. In Section 3 we propose an alternative SPH approach to solve the
equations of gas dynamics. The idea consists of using Godunov type SPH schemes in La-
grangian coordinates based on the work of Munz [17] and Vila [25]. Different Riemann
solvers are implemented (in Section 3.2) and are compared against each other solving
some well-known test problems (in Section 3.3) in order to verify the accuracy, robust-
ness and performance of the methods.

2 Linear advection equation

In this section we consider the linear one-dimensional advection equation







∂u

∂t
+

∂ f

∂ξ
=0,

f (u)= au,
(2.1)

where t and ξ denote the time and the spatial variables, u(t,ξ) is the unknown function,
f (u) is the flux and a is the advection speed in positive ξ direction, hence we assume a>0.
We analyze two different formulations of the SPH scheme: a first-order approximation
with the exact Riemann solver to evaluate the numerical flux, following Vila [25], and a
new second-order approximation that mimics the classical 1D Lax-Wendroff scheme.

2.1 Stability and accuracy analysis

We consider a finite set of N particles, each of constant mass mj and density ρj (with
j = 1,··· ,N) in the one-dimensional case. Using the SPH scheme, the value of a certain
function f (ξ) and its gradient ∇ f (ξ) at the location ξi of the ith observation point is
estimated as follows

f (ξi)= fi =
N

∑
j=1

Vj f jWij, (2.2)

∇ f (ξi)=
∂ f

∂ξ

∣

∣

∣

∣

i

=
N

∑
j=1

Vj f j

∂Wij

∂ξ j
, (2.3)
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where Vj is the volume associated with the jth particle and Wij is the smoothing kernel

function, centered in the ith point and defined such that:

Wij =Wji, ∇Wij =−∇Wji. (2.4)

It depends on the dimensionless variable q=
∣

∣ξ j−ξi

∣

∣/l, the ratio of the distance between
the particles to the smoothing length l, and converges to the Dirac function δ

(

ξ j−ξi

)

as
l→0. It determines the weight of each point and a symmetrical compact support. Only
the particles inside the support are actually interpolation points with no null weight in
(2.2) and (2.3). Applying the expressions (2.2) and (2.3) to a constant function f (ξ), we
obtain the consistency conditions to be satisfied by the smoothing kernel function

N

∑
j=1

VjWij =1,
N

∑
j=1

Vj

∂Wij

∂ξ j
=0, ∀i=1,··· ,N. (2.5)

In particular, for a uniform distribution of points in one-dimension we have Vj = ∆ξ for
j = 1,··· ,N. In this case the consistency condition on the gradient of the kernel in (2.5)
becomes

N

∑
j=1

∂Wij

∂ξ j
=0, (2.6)

and due to the symmetry of the smoothing kernel (2.4) it is satisfied so that no spurious
contributions in the evaluation of the flux are added in (2.1) for a constant state u(t,ξ). In
general, when the points are moving irregularly, the consistency condition is no longer
satisfied exactly. One of the approaches to solve this discrepancy in SPH is the introduc-
tion of an adjusting factor in the kernel function and its gradient [10], to give a corrected
kernel [20].

Different smoothing functions can be used in the SPH method. In this section, two
types of kernel are used:

• the cubic B−spline function

Wc(q,l)=
1

l







2/3−q2+q3/2 if 0≤q<1,

(2−q)3/6 if 1≤q≤2,
0 if q>2.

(2.7)

• the truncated Gaussian function

Wg (q,l)=
1

l
√

π

{

e−q2
if 0≤q≤3,

0 if q>3.
(2.8)

Applying the standard SPH approximation as in (2.3) at point ξi together with explicit
forward Euler time stepping to Eq. (2.1) gives

un+1
i =un

i −a ∆t
N

∑
j=1

Vju
n
j

∂Wij

∂ξ
, (2.9)



382 A. Ferrari, M. Dumbser, E. F. Toro and A. Armanini / Commun. Comput. Phys., 4 (2008), pp. 378-404

where un+1
i and un

i indicate the values of the unknown function u at time steps n+1 and
n, respectively.

From (2.9), the standard SPH method can be interpreted as an explicit centered fi-
nite difference scheme that is unconditionally unstable using explicit Euler time stepping.
In order to demonstrate this, we consider the von Neumann method that is based on
harmonic analysis assuming the following trial solution

u=u(tn,ξ)=un
0 ·eI(K ξ), K =

φ

∆ξ
, (2.10)

where K is the wave number, φ is the phase angle, un
0 is the amplitude of the harmonic at

time tn and I denotes the imaginary unit with I2 =−1.
The purpose of the analysis is to study the evolution of the amplitude of the harmonic

in the time, focusing on the estimate of the modulus of the amplification factor defined
as

∥

∥Â f

∥

∥=

∥

∥

∥

∥

∥

un+1
0

un
0

∥

∥

∥

∥

∥

, Â f = Â f

(

Cc f l,φ
)

, (2.11)

where Cc f l is the Courant number, defined as Cc f l = a∆t/∆ξ. The linear stability region
of each scheme is identified by the following condition

∥

∥Â f

∥

∥≤1 ∀Cc f l,∀φ∈ [0;π]. (2.12)

Applying the von Neumann analysis to (2.9) one obtain

∥

∥

∥

∥

∥

un+1
0

un
0

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

1−a ∆t
N

∑
j=1

Vje
IK(ξ j−ξi) ∂Wij

∂ξ

∥

∥

∥

∥

∥

. (2.13)

From the smoothed particle approximation (2.3) of the SPH method, we can write

N

∑
j=1

Vje
IK(ξ j−ξi) ∂Wij

∂ξ
∼=α

∂eIKξ

∂ξ

∣

∣

∣

∣

i

1

eIKξi
+O

(

∆ξ2
)

, (2.14)

that is, neglecting the higher order term O
(

∆ξ2
)

αIK =αI
φ

∆ξ
, (2.15)

where α denotes the error in the approximation (2.3), that is α=1 for the cubic B−spline
and α∼= 1 for the truncated Gaussian function, choosing the smoothing length l = 2ξ. It
follows that the stability condition (2.12) is never satisfied because

∣

∣

∣

∣

1−αIφ
a ∆t

∆ξ

∣

∣

∣

∣

=
√

1+α2C2
c f lφ

2, ∀φ,Cc f l. (2.16)
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Therefore, it is necessary to stabilize the original version of the SPH method (2.9). In
general, Monaghan’s viscosity term is used. Otherwise we produce a new version of the
standard SPH method by introducing higher-order space and time derivatives in (2.9).
The resulting new SPH scheme mimics the stable one-dimensional Lax-Wendroff finite
difference scheme. It results by applying the Cauchy-Kowalewsky procedure to the linear
advection equation (2.1), replacing time derivatives by space derivatives in the Taylor
series expansion in time

un+1
i =un

i −a ∆t
N

∑
j=1

Vju
n
j

∂Wij

∂ξ j
+

1

2
(a ∆t)2

N

∑
j=1

Vju
n
j

∂2Wij

∂ξ2
j

. (2.17)

With this approach, one could also construct higher-order Lax-Wendroff type schemes by
considering the higher-order derivatives in time and space.

An alternative upwind version of the SPH scheme has been proposed by Vila [25],
Moussa and Vila [16], who introduced the use of Riemann solvers in order to evaluate
numerical fluxes between two interacting particles, ith and jth. Their scheme reads as

un+1
i =un

i −∆t
N

∑
j=1

Vj2 fij

∂Wi,j

∂ξ j
, (2.18)

where a numerical flux fij = fij(ui,uj) is introduced. Using the exact Riemann solver for
(2.1), the flux fij is defined as:

fij = a

{

un
i if a·(ξ j−ξi)<0,

un
j if a·(ξ j−ξi)>0.

(2.19)

We analyze the stability of the SPH formulations (2.17)-(2.18) by using the von Neumann
method (2.10) and (2.12). Since each numerical scheme can be written as:

un+1
i =

αR

∑
ii=−αL

c∗∗ii un
i+ii, (2.20)

where the coefficients c∗∗ii and the integers αL and αR depend on the scheme, the stability
condition for (2.20) reads as:

∥

∥Â f (K)
∥

∥=

∥

∥

∥

∥

∥

αR

∑
ii=−αL

c∗∗ii eI(K∆ξ·ii)
∥

∥

∥

∥

∥

≤1 ∀φ∈ [0;π]. (2.21)

Because of the rather complex analytical expressions arising in (2.21), the modulus of the
amplification factor has been evaluated numerically

∥

∥A f

∥

∥= max
φ∈[0;π]

(∥

∥Â f (φ)
∥

∥

)

, (2.22)

varying:
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• the smoothing length l that determines the kernel support and the integers αL, αR;

• the phase angle φ in the range 0≤φ≤π;

• the Courant number Cc f l = a∆t/∆ξ in the range 0≤Cc f l ≤10.

The numerical results have identified a stable region for both formulations: the new
second-order Lax-Wendroff type SPH scheme and the first-order scheme with the exact
Riemann solver. Fig. 1 represents the stable region related to the choice of the kernel
and of the numerical scheme. The top frame shows the results using the cubic B−spline
for the new Lax-Wendroff type SPH scheme (on the left) and the Godunov SPH method
with the exact Riemann solver (on the right). Similarly, the bottom frame shows the stable
region obtained with the Gaussian kernel function for both numerical schemes.
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Figure 1: The stability results for two schemes: the Lax-Wendroff type SPH scheme (left) and the SPH scheme
with the exact Riemann solver (right). Top: cubic B-spline kernel; Bottom: the Gaussian kernel.

The stable region is very similar in form and area for each graph in Fig. 1, but not
the amplitude error contours on the

(

l/∆ξ,Cc f l

)

plane. The Godunov SPH method with
the exact Riemann solver provides regular amplitude error contours using both the cubic
B−spline and the Gaussian function. Using the Gaussian kernel, the new Lax-Wendroff
type SPH approach shows its dispersive nature (i.e.,

∥

∥A f

∥

∥ is very close to one) and, espe-
cially with the cubic B−spline, it is very sensitive to small variations of the ratio between
the smoothing length l and the mesh size ∆ξ or of the Courant number Cc f l.
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With the Gaussian kernel function, both numerical schemes give more stable results,
but unfortunately it has a larger support than that of the cubic B−spline (2.7) so it is less
accurate.

Moreover, for both numerical schemes the limit which assures the stability of the
discrete solutions has the form

(

Cc f l

)

stability
≤β

l

∆ξ
. (2.23)

where β depends on the numerical scheme and on the kernel function, as we can note
from the stability results in Fig. 1.

At this point, the monotonicity of both SPH schemes is analyzed. Using the expres-
sion (2.20), a sufficient condition for the scheme to remain monotone is that all coefficients
c∗∗ii are positive or zero:

c∗∗ii ≥0, ∀ii∈ [−αL;αR], (2.24)

according to Toro [22]. From the analysis of the monotonicity, the Lax-Wendroff type
SPH scheme is not monotone, similar to the second-order Lax-Wendroff finite difference
method. For the Godunov type SPH scheme (2.18) the monotonicity condition results

−∂Wi,i+ii

∂ξi+ii
≥0, for−αL ≤ ii<0. (2.25)

According to the definition of the kernel (2.4), the expression (2.25) is always satisfied for
the cubic B−spline (2.7) and the Gaussian function (2.8). Special care is required for the
analysis of the sign for the c∗∗0 coefficient

c∗∗0 =1−∆t(2a)
αR

∑
ii=1

Vi+ii
∂Wi,i+ii

∂ξi+ii
≥0. (2.26)

Regarding a uniform distribution of particles and using a constant smoothing length l =
m∆ξ, the expression (2.26) leads to

c∗∗0 =1−Cc f l (∆ξ)22
mq̃

∑
ii=1

∂Wi,i+ii

∂ξi+ii
≥0, (2.27)

where the integer q̃ depends on the type of the kernel. It can be verified that q̃=3 for the
Gaussian function, q̃=2 for the cubic B−spline, according to (2.8) and (2.7).

When the conditions (2.21) and (2.27) are satisfied, both the stability and the mono-
tonicity of the Godunov SPH scheme are assured. In Table 1 the maximum admissible
values of the Courant number Cc f l are reported, related to the ratio l/∆ξ. Note that the
monotonicity condition (2.27) is more restrictive than the stability condition.
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Table 1: Stability and monotonicity conditions for the Courant number.

Stability limit

l/∆ξ 1. 2. 3. 4. 5. 10.
Gaussian kernel Cc f l 1.20 2.30 3.40 4.55 5.70 11.50

Cubic B−spline Cc f l 1.00 1.90 2.85 3.75 4.70 9.45

Monotonicity limit

l/∆ξ 1. 2. 3. 4. 5. 10.
Gaussian kernel Cc f l 1.09 1.85 2.70 3.58 4.46 8.87
Cubic B−spline Cc f l 1.00 1.60 2.31 3.05 3.79 7.51

2.2 Computational tests

Two computational test cases are proposed for the linear advection equation (2.1) on the
computational domain Ω=[0,1] with periodic boundary conditions. We use 200 particles
to discretize the computational domain. In the first case, data consists of two constant
states, separated by a discontinuity at a position ξ =0.5

u0(ξ)=

{

1.0 if ξ≤0.5,
0.25 if ξ >0.5.

(2.28)

A second discontinuity is on the boundaries due to the periodic boundary conditions.

In the second test the initial condition corresponds to a smooth Gaussian distribution

u0(ξ)=
1

4
+e−8[4(ξ− 1

2 )]
2

. (2.29)

The numerical solutions have been obtained using the Godunov SPH scheme with the
exact Riemann solver and the Lax-Wendroff type SPH scheme. Fig. 2 shows the numer-
ical results obtained with both schemes after one and after five periods of advection,
compared to the exact solution. The exact solution in both cases consists of a mere trans-
lation of the initial condition with constant velocity a=1 in (2.1). The numerical solution
of the Godunov SPH scheme with the exact Riemann solver is monotone, as demon-
strated above, but very diffusive. This effect increases in time, especially in the second
test case with a smooth initial condition where the amplitude of the Gaussian distribution
decreases considerably after five periods. On the other hand, the numerical solution ob-
tained by the new SPH scheme with the Lax-Wendroff-type approach shows a dispersive
and non-monotone nature of the scheme, although at least stable. In the first test large
oscillations have been produced in the vicinity of the discontinuities. In the second case
the scheme is less diffusive than the Godunov type SPH scheme, but it yields a phase
error, more evident after five periods.
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Figure 2: The Godunov SPH scheme (circle) and the Lax-Wendroff type SPH scheme (square) applied to tests
(2.28) on the top and (2.29) on the bottom. Numerical (symbol) and exact (line) solutions are compared at
output time 1 period (on the left) and 5 periods (on the right).

3 Euler equations in Lagrangian coordinates

After the stability analysis, we consider the problem of the consistency conditions. As
seen in the literature [9] and [20], the accuracy of the SPH method depends on the num-
ber and on the distribution of the observation points inside the kernel support. In partic-
ular, the consistency condition on the gradient of the kernel is always satisfied when the
particles are uniformly placed, as deduced in Section 2.1.

Following these remarks, we propose a new approach, which is able to reproduce
exactly linear data through an SPH interpolation and provides also an improvement in
the accuracy. The new idea consists of using Godunov-type SPH schemes in Lagrangian
coordinates. In this way, it is possible to distinguish the computational space (ξ,t) in
Lagrangian coordinates, from the physical domain (x,t) in Eulerian coordinates. The
points are fixed and uniformly spaced during the whole time evolution in the numerical
domain (ξ,t) and only in the physical domain (x,t) the particles are moving. Therefore,
all the numerical estimations are computed over the uniformly distributed points in La-
grangian coordinates. This provides some advantages. First, the consistency condition on
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the gradient of the kernel is always satisfied during the whole time evolution. Moreover,
following the truncation error analysis developed by Quinlan et al. [19] for the approxi-
mation of spatial derivatives in SPH, for uniformly spaced particles the total error is the
sum of a second-order error in l (smoothing error) and an order (β+2) error in ∆x/l (due
to discretization of the smoothing integral), with β=2 for the cubic B-spline kernel.

In the following, we focus on the equations of gas dynamics in Section 3.1, explaining
the SPH schemes in Section 3.2 and presenting the numerical results in Section 3.3.

3.1 Governing equations

We consider the Euler equations for an ideal gas in Cartesian coordinates (x,t) in one
dimension:

∂Ũ

∂t
+

∂F̃

∂x
=0, (3.1)

where Ũ is the vector of the conserved variables and F̃ is the flux:

Ũ=
(

ρ ρv ρE
)

, F̃=





ρv
ρv2+p

v(ρE+p)



. (3.2)

Here v is the velocity, p denotes the pressure, ρ is the density and E the specific total
energy, defined as:

E=
1

2
v2+

1

γ−1

p

ρ
, (3.3)

where γ is the ratio of specific heats. The system of equations (3.1) is hyperbolic and in
conservation form. According to Courant and Friedrichs [4], it is possible to transform
the system (3.1) to Lagrangian coordinates (ξ,t) so that the changing position of each
point is given by a function x(ξ,t) . A natural choice for ξ is based on the law of the
conservation of mass:

ξ =
∫ x(ξ,t)

x(0,t)
ρ(s,t)ds. (3.4)

Differentiating with respect to ξ one obtains

dx=v dt+
1

ρ
dξ. (3.5)

Then, the conservation laws (3.1) take the form:

∂U

∂t
+

∂F

∂ξ
=0, (3.6)

where U is the vector of the conserved variables and F is the flux, both in Lagrangian
coordinates:

U=





Ṽ
v
E



, F=





−v
p

vp



. (3.7)
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Here Ṽ denotes the specific volume

Ṽ =
1

ρ
. (3.8)

The system (3.7) is in conservation form. Solutions of (3.1) are equivalent to solutions
of (3.7), see Wagner [26]. Note that using the transformation (3.5) it is possible to pass
from Eulerian coordinates (x,t) to mass coordinates (ξ,t), understanding the Lagrangian
space as computational domain, where the position of the interpolating elements is fixed.
Then, the new approach in Lagrangian coordinates allows us to distribute uniformly the
points in mass coordinates (ξ,t) and subsequently to assign the properties W = [ρ,v,p]
to each particle, taking care to reproduce the physical domain. In this way, the consis-
tency condition on the gradient of the kernel (2.5) is satisfied (see Section 2.1) without an
adaptive kernel estimation, very expensive from the computational point of view.

3.2 Numerical schemes

After this brief summary on the Euler equations in Lagrangian coordinates, we now con-
sider the discretization of system (3.7) by the Godunov-type SPH scheme. According to
the approximation implemented for the linear advection equation (2.18), the discretiza-
tion consists of

Un+1
i =Un

i −2∆t
N

∑
j

VjF
n
ij

∂Wij

∂ξ j
, (3.9)

where Fn
ij is the vector of numerical fluxes evaluated using the solution of the Riemann

problem between the states Un
i , Un

j and Vj =∆ξ in Lagrangian coordinates.

Many different Riemann solvers are available. For an overview see [22]. In this paper,
we use the following fluxes:

• the Godunov flux based on the solution of the exact Riemann solver in Lagrangian
coordinates;

• the Rusanov flux in Lagrangian coordinates, corresponding to







Fn
ij =

1
2

(

Fn
i +Fn

j

)

− 1
2 Cij

(

Un
j −Un

i

)

,

Cij =max
(

Cn
i ,Cn

j

)

,
(3.10)

where Cn
i denotes the sound speed in Lagrangian coordinates defined at the loca-

tion ith and time tn

(Cn
i )2 =γρn

i pn
i . (3.11)

• a modified Roe flux in Lagrangian coordinates, defined as follows

Fn
ij =

1

2

(

Fn
i +Fn

j

)

− 1

2
R̃ij

∣

∣Λ̃ij

∣

∣ R̃−1
ij

(

Un
j −Un

i

)

, (3.12)
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where Λ̃ij = diag(λ̃
(1)
ij ,λ̃

(2)
ij ,λ̃

(3)
ij ) is the diagonal matrix of the eigenvalues and R̃ is

the corresponding matrix of right eigenvectors of the Roe matrix. The flux (3.12)
consists of a modification of the scheme proposed by Munz [17], where the eigen-
values of the Roe matrix are:

λ̃
(1)
ij =−C̃ij, λ̃

(2)
ij =0, λ̃

(3)
ij =+C̃ij. (3.13)

Here C̃ij is the mean value of the Lagrangian sound velocity

C̃2
ij =γρ̃ij p̃ij, ρ̃ij =

ρn
i +ρn

j

2
, p̃ij =

pn
i +pn

j

2
. (3.14)

Note that due to (3.13) there is no numerical viscosity in the Roe flux for the com-
putation of the contact wave. This produces well-known spurious oscillations in
the contact wave when solving the Euler equations in Lagrangian coordinates [17].
The phenomenon is not present in Eulerian coordinates. To avoid this, we therefore
add a small amount of numerical viscosity for the contact wave by modifying the
second eigenvalue λ̃2

λ̃2 = α̃ ·max
(

|vn
i |,

∣

∣vn
j

∣

∣

)

, (3.15)

where α̃ is a parameter in the range 0≤ α̃≤1. Note that α̃=0 reproduces the original
Roe flux of Munz and α̃=1 leads to a numerical viscosity, equivalent to the amount
of numerical viscosity introduced by the Roe scheme in Eulerian coordinates.

In the following section, the results of some numerical test cases are presented in compar-
ison with each other and a classical SPH method, reported in the literature by Sigalotti et
al. [21].

3.3 Numerical results

We have selected four test problems according to [22] for the one-dimensional, time de-
pendent Euler equations for ideal gases with a ratio of specific heats equal to γ = 1.4.
The initial conditions are summarized in Table 2. They consist of two constant states

WL =[ρL,vL,pL]
T on the left and WR =[ρR,vR,pR]T on the right, separated by a discontinu-

ity at a position x=x0. The spatial domain Ω=[0,1] is discretized by N=100 observation
points for all test problems. Transmissive boundary conditions have been implemented.
The Courant number coefficient depends on the numerical scheme used. Five differ-
ent schemes have been applied and compared to the exact solution. To have numerical
reference solutions, we have implemented the first-order Godunov finite volume (FV)
method in conjunction with the exact Riemann solver in Eulerian coordinates (x,t) and
the standard SPH method following the work of Sigalotti et al. [21], who used the clas-
sical approach of the SPH scheme with Monaghan’s viscosity term and in addition, an
adaptive kernel estimation. Moreover, the Godunov-type SPH schemes in Lagrangian
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Table 2: Initial conditions for the numerical test problems.

test ρL vL pL ρR vR pR x0 Tend

1 1.0 0.75 1.0 0.125 0.0 0.1 0.3 0.2
2 1.0 -2.0 0.4 1.0 2.0 0.4 0.5 0.15
3 1.0 0.0 1000.0 1.0 0.0 0.01 0.5 0.012
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.095 0.4 0.035

coordinates (ξ,t) have been implemented with l/∆ξ = 2. Subsequently the numerical
results have been translated into physical coordinates (x,t) according to (3.5), as follows

xn+1
i = xn

i +vn
i ∆t+a

n+ 1
2

i

∆t2

2
, a

n+ 1
2

i =
1

∆t

(

vn+1
i −vn

i

)

. (3.16)

Three numerical fluxes have been applied, namely the Godunov flux based on the exact
Riemann solver in Lagrangian coordinates, the Rusanov flux and the modified Roe flux,
see Section 3.2.

Test 1 [22] is a modification of the well-known Sod test problem and it consists of a left
rarefaction with a sonic point, an intermediate contact and a right moving shock. The re-
sults for test 1 are shown in Figs. 3-7. Unlike the standard SPH scheme, the Godunov-type
SPH methods in Lagrangian coordinates approximate the rarefaction wave reasonably
well. They produce no discontinuity, the so-called entropy glitch, within the rarefaction,
typical error of the first-order finite volume (FV) method. The contact discontinuity, seen
in the density and internal energy plots, is in general much more difficult to resolve ac-
curately in Eulerian coordinates than shock waves [22] and this is evident in the results
of the first-order FV scheme. The numerical resolution of the contact wave is instead
reconstructed more accurately than the shock applying the Godunov-type SPH scheme,
which is due to the use of Lagrangian coordinates. In particular, the SPH scheme with the
Godunov flux computes very well the position of the contact wave, but well-known spu-
rious oscillations near the discontinuity appear. A better resolution for the contact wave
is obtained using the modified Roe flux, see Section 3.2. The classical SPH method seems
to be not perfectly conservative and large oscillations are visible at the contact wave in
the solution profiles for velocity and pressure. The numerical results of a similar test case
have been published in the paper of Sigalotti et al. [21] and have been computed using
3000 particles in a computational domain [0,1.2], while in this paper the number of points
is only 100 in a computational domain [0,1].

Test 2 is useful for assessing the performance of numerical methods for low density
flow [22] and its solution corresponds to two strong rarefactions and a stationary contact
discontinuity. Figs. 8-12 shows the profiles of the numerical solutions. All the numerical
schemes based on the Lagrangian Godunov-type SPH approach compute a quite satisfac-
tory profile for the density, pressure and velocity, but the resolution for internal energy is
really inaccurate. The lack of precision may be due to two issues. First, the interpolation
points, moving in physical space for the SPH approach, leave the domain because of the
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Figure 3: First-order Godunov finite volume scheme applied to test 1. Numerical (symbol) and exact (line)
solutions are compared at the output time 0.2 units.
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Figure 4: The standard SPH scheme with the adaptive kernel estimation [21] applied to test 1. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.2 units.
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Figure 5: The Godunov-type SPH scheme with the exact Riemann solver applied to test 1. Numerical (symbol)
and exact (line) solutions are compared at the output time 0.2 units.
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Figure 6: The Godunov-type SPH scheme with the Rusanov flux applied to test 1. Numerical (symbol) and
exact (line) solutions are compared at the output time 0.2 units.
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Figure 7: The Godunov-type SPH scheme with the modified Roe flux applied to test 1. Numerical (symbol)
and exact (line) solutions are compared at the output time 0.2 units.
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Figure 8: First-order Godunov finite volume scheme applied to test 2. Numerical (symbol) and exact (line)
solutions are compared at the output time 0.15 units.
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Figure 9: The standard SPH scheme with the adaptive kernel estimation [21] applied to test 2. Numerical
(symbol) and exact (line) solutions are plotted at the output time 0.15 units.
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Figure 10: The Godunov-type SPH scheme with the exact Riemann solver applied to test 2. Numerical (symbol)
and exact (line) solutions are compared at the time 0.15 units.
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Figure 11: The Godunov-type SPH scheme with the Rusanov flux applied to test 2. Numerical (symbol) and
exact (line) solutions are compared at the time 0.15 units.
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Figure 12: The Godunov-type SPH scheme with the modified Roe flux applied to test 2. Numerical (symbol)
and exact (line) solutions are compared at the output time 0.15 units.



A. Ferrari, M. Dumbser, E. F. Toro and A. Armanini / Commun. Comput. Phys., 4 (2008), pp. 378-404 397

velocity field. In this way, the solution profiles in the star region is resolved only with
very few points. Moreover, the specific internal energy is computed from the density and
the pressure (3.3). In test 2 both density and pressure are close to zero and thus small
errors will be exaggerated by their ratio [22].

Test 3 is a very severe problem, the solution of which consists of a left rarefaction, a
contact and a rigid shock [22]. The results are plotted in Figs. 13-16. Unfortunately, for
test 3, the standard SPH scheme fails using 100 interpolation points. The first-order FV
method and the Godunov-type SPH scheme approximate satisfactory well the rarefac-
tion wave for the density, but both produce an overshoot near the tail for the velocity
profile. However, this error is smaller for the Godunov-type SPH method. The contact
discontinuity and the shock are more accurately solved by the Lagrangian Godunov-type
SPH method than by the first-order FV method. In fact, the solution profiles computed
by the first-order FV method show a large amount of numerical diffusion. Some differ-
ences in correspondence of the contact wave are evident using the three numerical fluxes
in the Godunov-type SPH scheme. The Rusanov flux produces a very diffusive solution,
the Godunov flux with exact Riemann solver determines spurious oscillations and the
modified Roe flux follows accurately the exact solution.
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Figure 13: First-order Godunov finite volume scheme applied to test 3. Numerical (symbol) and exact (line)
solutions are compared at the output time 0.012 units.

Test case 4 contains three strong discontinuities traveling to the right [22]. The numer-
ical solutions are plotted in Figs. 17-21. As for test 1, the shock waves are more accurate
using the first-order FV method, while the contact discontinuity is smeared. The SPH
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Figure 14: The Godunov-type SPH scheme with the exact Riemann solver applied to test 3. Numerical (symbol)
and exact (line) solutions are compared at the time 0.012 units.
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Figure 15: The Godunov-type SPH scheme with the Rusanov flux applied to test 3. Numerical (symbol) and
exact (line) solutions are compared at the time 0.012 units.
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Figure 16: The Godunov-type SPH scheme with the modified Roe flux applied to test 3. Numerical (symbol)
and exact (line) solutions are compared at the output time 0.012 units.
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Figure 17: First-order Godunov finite volume scheme applied to test 4. Numerical (symbol) and exact (line)
solutions are compared at the output time 0.035 units.
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Figure 18: The standard SPH scheme with the adaptive kernel estimation [21] applied to test 4. Numerical
(symbol) and exact (line) solutions are plotted at the output time 0.035 units.
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Figure 19: The Godunov-type SPH scheme with the exact Riemann solver applied to test 4. Numerical (symbol)
and exact (line) solutions are compared at the time 0.035 units.
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Figure 20: The Godunov-type SPH scheme with the Rusanov flux applied to test 4. Numerical (symbol) and
exact (line) solutions are compared at the time 0.035 units.
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Figure 21: The Godunov-type SPH scheme with the modified Roe flux applied to test 4. Numerical (symbol)
and exact (line) solutions are compared at the time 0.035 units.



402 A. Ferrari, M. Dumbser, E. F. Toro and A. Armanini / Commun. Comput. Phys., 4 (2008), pp. 378-404

method of Sigalotti et al. [21] produces spurious oscillations and it seems to be not con-
servative, because it computes wrong solution profiles in the star region. In fact, keeping
a variable smoothing length is believed to be incompatible with the global conservation of
the SPH method [2] and moreover it is not clear whether the variable smoothing length
guarantees good consistency with the PDE [25]. The Godunov-type SPH scheme pro-
duces a jump within the contact wave, more evident using the Rusanov flux. Note that
this is present only in the physical space (x,t) and not in the computational domain (ξ,t),
because only in this domain the particles are moving. This phenomenon derives from an
error in the numerical estimation of the integral (3.4), necessary to translate the solution
profiles into the physical space (x,t). The algorithm based on (3.5) is of the second-order
(Euler time integration). In future developments, a more accurate formulation of higher
order can be chosen, so that the inter-penetration resulting in this test case can be solved.
Nevertheless, the modified Roe flux produces once more the most accurate numerical
results in comparison with the Rusanov flux and the Godunov flux.

4 Conclusion

In this paper, we have proposed alternative SPH approaches, stable without the Mon-
aghan artificial viscosity term. They consist of the second-order SPH scheme, that mim-
ics the classical Lax-Wendroff finite difference scheme, and the first-order Godunov type
SPH scheme following Vila [25].

Both are linearly stable, as seen in Section 2. A von Neumann stability analysis has
been carried out for the Lax-Wendroff type SPH scheme and the Godunov-type SPH
scheme applied to the linear one-dimensional advection equation. For both we have
obtained a range of Courant numbers, related to the ratio of mesh size and smoothing
length, which assures linear stability.

The second-order Lax-Wendroff type SPH method is a linearly stable and less dif-
fusive numerical scheme. Unfortunately it is not monotone. The Godunov-type SPH
scheme is linearly stable and monotone, but it exhibits a large amount of numerical diffu-
sion, especially for long-time evolution problems. In both methods, the classical artificial
viscosity term of Monaghan, which usually needs the careful calibration of several pa-
rameters, has been completely removed and has been replaced by an intrinsic numerical
viscosity that needs no (or at most one) parameter to be fixed.

Subsequently, the problem of the consistency conditions has been regarded. It is
well-known that the classical SPH scheme does not always satisfy the consistency con-
ditions. In this paper, a new approach for the Euler equations of compressible gas dy-
namics is proposed. It is always consistent for an initially uniform distribution of the
elements. It consists of using Godunov-type SPH schemes in Lagrangian coordinates.
In this approach, the positions of interpolation points are fixed during time evolution in
Lagrangian coordinates (computational space) while they are moving in Eulerian coordi-
nates (physical space). The scheme has been applied to some well-known test cases [22].
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The numerical results are compared with the exact and numerical reference solutions.
We can assert that the Godunov-type SPH scheme in Lagrangian coordinates provides
an improvement in the accuracy. The scheme is still able to handle large deformations of
the computational domain without requiring any specific algorithm to rezone the mesh.

Future developments of the proposed Godunov-type SPH schemes in Lagrangian co-
ordinates may concern the extension to multiple space dimensions and to free-surface
flows as well as interactions between fluids and solids.
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