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Abstract. In this paper, we study splitting numerical methods for the three-dimensional
Maxwell equations in the time domain. We propose a new kind of splitting finite-
difference time-domain schemes on a staggered grid, which consists of only two stages
for each time step. It is proved by the energy method that the splitting scheme is un-
conditionally stable and convergent for problems with perfectly conducting boundary
conditions. Both numerical dispersion analysis and numerical experiments are also
presented to illustrate the efficiency of the proposed schemes.
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1 Introduction

In this paper we consider splitting finite difference methods for the three-dimensional
Maxwell equations

∂Ex

∂t
=

1

ε

(
∂Hz

∂y
− ∂Hy

∂z
−σEx

)
, (1.1)
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∂Ey

∂t
=

1

ε

(
∂Hx

∂z
− ∂Hz

∂x
−σEy

)
, (1.2)

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y
−σEz

)
, (1.3)

∂Hx

∂t
=

1

µ

(
∂Ey

∂z
− ∂Ez

∂y
−σ∗Hx

)
, (1.4)

∂Hy

∂t
=

1

µ

(
∂Ez

∂x
− ∂Ex

∂z
−σ∗Hy

)
, (1.5)

∂Hz

∂t
=

1

µ

(
∂Ex

∂y
− ∂Ey

∂x
−σ∗Hz

)
(1.6)

in a lossy medium with electric permittivity ε, magnetic permeability µ, electric con-
ductivity σ and the equivalent magnetic loss rate σ∗, where E = (Ex,Ey,Ez) and H =
(Hx,Hy,Hz) denote the electric and magnetic fields. If these fields (multiplied with ε and
µ respectively) start out divergence free, they will remain so during wave propagation.
Physically this is a consequence of the relations div(εE) = ρ (where ρ is the local charge
density), and div(µH)=0. Their invariance in time is also a consequence of the Maxwell
equations (1.1)-(1.6) and need therefore not be imposed separately.

The numerical approximation of Maxwell’s equations has emerged recently as a cru-
cial enabling technology for radio-frequency, microwave, integrated optical circuits, an-
tennas, and wireless engineering [1–3, 13–15, 19, 24]. The finite-difference time-domain
(FDTD) method, first introduced by Yee [26] (also called Yee’s scheme) and extensively
utilized and refined by Taflove and others [24], has been the most widely used numer-
ical algorithm in computational electromagnetics in the time domain over the past few
decades, due to its simplicity, robustness, and low cost per grid point [24]. Yee’s scheme
employs a fully staggered space-time grid and is explicit with a second-order conver-
gence rate in both time and space. The stability and convergence analysis were carried
out for Yee’s scheme in [20, 22] using the energy method.

However, Yee’s scheme is only conditionally stable so that the time step and the spa-
tial step sizes ∆t,∆x,∆y and ∆z must satisfy the Courant-Friedrichs-Lewy (CFL) stability
condition

∆t≤ 1

c

[
1

∆x2
+

1

∆y2
+

1

∆z2

]−1/2

in the three-dimensional case, where c = 1/
√

ǫµ is the wave velocity. If the time step is
not within the bound, the FDTD scheme will become numerically unstable. Thus, the
computation of the three-dimensional Maxwell equations by Yee’s scheme will become
extremely difficult when the spatial discretization step sizes become very small. To over-
come this difficulty, an unconditionally stable alternating direction implicit (ADI) FDTD
scheme was first proposed in [27] and [21] for the three-dimensional Maxwell equations
with an isotropic medium (see also [24]). This ADI-FDTD scheme consists of only two
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stages for each time step, which is different from the traditional ADI technique intro-
duced in [5, 23] for the three-dimensional case (see also [4, 6, 7]). A detailed dispersion
analysis of this ADI-FDTD scheme was conducted in [9,27,28]. A rigorous error estimate
of this ADI-FDTD scheme was derived in [10] in the case of perfectly conducting bound-
ary conditions. It should be remarked that this ADI-FDTD scheme has been studied by
many authors recently (see, e.g., [8, 12, 17]).

Recently, in [11], we proposed a new kind of splitting finite-difference time-domain
methods on a staggered grid for the Maxwell equations in two dimensions, which con-
sists of only two stages for each time step and is very simple in computation. The split-
ting schemes were proved to be unconditionally stable and convergent in [11] for the
problems with perfectly conducting boundary conditions, employing the discrete energy
method. Numerical dispersion analysis and numerical experiments including a scatter-
ing problem with PML boundary conditions were also presented in [11] to show the
efficient performance of the splitting schemes.

In this paper, we extend the effective splitting methods proposed in [11] for the
two-dimensional Maxwell equations to the three-dimensional case. We propose a split-
ting finite-difference time-domain (S-FDTD) scheme on a staggered grid for the three-
dimensional Maxwell equations, which consists of only two stages for each time step.
By the energy method we prove that the S-FDTD scheme is unconditionally stable and
convergent with first-order in time and second-order in space in the case of perfectly con-
ducting boundary conditions. To improve the accuracy in time of the S-FDTD scheme we
propose an improved splitting scheme by reducing the perturbation error of the S-FDTD
scheme, which is called IS-FDTD and is of second-order in both time and space. This
technique was used in [7] to improve the accuracy of ADI methods for parabolic equa-
tions. A detailed numerical dispersion analysis is carried out for the two schemes in the
case of an unbounded homogeneous lossless medium. The analysis shows that the two
schemes are unconditionally stable with S-FDTD being dissipative and IS-FDTD being
non-dissipative and that the dispersion error of IS-FDTD is much smaller than that of
S-FDTD.

In the special case with σ=σ∗ =0, it is proved that the improved splitting scheme IS-
FDTD is equivalent to the ADI-FDTD scheme proposed in [27]. However, the implemen-
tation of the ADI-FDTD scheme and the improved splitting scheme are different, so their
performance is different in practical computation. In fact, the numerical experiments in
Section 5 show that the improved splitting scheme, IS-FDTD, is more accurate than the
ADI-FDTD scheme though IS-FDTD uses about 16.7% more CPU time than ADI-FDTD
does. Further, the numerical results confirm the theoretical results that the convergence
rate in time of the S-FDTD scheme is of first-order and that of the IS-FDTD and ADI-
FDTD schemes is of second-order.

The remaining part of the paper is organized as follows. In Section 2, the splitting
scheme S-FDTD is introduced for the general three-dimensional Maxwell equations. An
improved splitting scheme (IS-FDTD) is also proposed by reducing the perturbation error
in time of the S-FDTD scheme, which is equivalent to a second order perturbation of the
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Crank-Nicolson (CN) scheme for the Maxwell equations. In Section 3, the unconditional
stability and error estimates of the splitting scheme, S-FDTD, are established rigorously
in the case of perfectly conducting boundary conditions. Section 4 is devoted to the nu-
merical dispersion analysis of the two schemes. Numerical experiments are presented in
Section 5.

2 The splitting FDTD Schemes

In this paper we consider the bounded domain problem where the medium occupies the
cubic region Ω = [0,a]×[0,b]×[0,c] surrounded by perfect conductors, so the perfectly
conducting boundary condition is satisfied:

~ν×E=0 on (0,T]×∂Ω, (2.1)

where ∂Ω denotes the boundary of Ω and T >0 is the terminal time. We also assume the
initial conditions

E(0,x,y,z)=E0(x,y,z) and H(0,x,y,z)=H0(x,y,z). (2.2)

It is well known that, for suitably smooth data, the problem (1.1)-(1.6) with (2.1)-(2.2) has
a unique solution for all time [18]. We will assume throughout this paper that the solution
of the Maxwell system has the following regularity property:

E∈C([(0,T];[C3(Ω̄)]3)∩C1([0,T];[C1(Ω̄)]3)∩C2([0,T];[C(Ω̄)]3), (2.3)

H∈C([(0,T];[C3(Ω̄)]3)∩C1([0,T];[C1(Ω̄)]3)∩C2([0,T];[C(Ω̄)]3). (2.4)

For simplicity, we only consider the constant coefficient case. The method presented
here can be easily extended to the case of variable coefficients. Remarks will be made to
indicate the necessary changes for the case of variable coefficients when needed.

Remark 2.1. From the Maxwell equations (1.1)-(1.6) and the boundary condition (2.1) the
boundary values of H can be derived. In fact, from (1.4)-(1.6) and (2.1) it follows that

~ν· ∂H

∂t
=− 1

µ
(~ν·(∇×E)+σ∗(~ν·H))=−σ∗

µ
~ν·H. (2.5)

Since, by (2.1) and (2.2), ~ν×E0 = 0, then we have ~ν·H0 = 0 (see [16]). This together with
(2.5) implies that

~ν·H0 =0 on (0,T]×∂Ω. (2.6)

To derive the splitting FDTD schemes for Maxwell’s equations (1.1)-(1.6), we need
some notations. Introduce first the following mesh on Ω :

Ω̄h ={(xi,yj,zk)|xi = i∆x, yj = j∆y, zk = k∆z, i=0,1··· , I, j=0,1,··· , J,
k=0,1,··· ,K, x0 =y0 = z0 =0, xI = a, yJ =b, zK = c},
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where ∆x, ∆y and ∆z are the mesh sizes along the x, y and z directions, respectively. For
a positive integer N let ∆t=T/N be the time step and let tn =n∆t with n=0,1,··· ,N. Set

xi+ 1
2
= xi+

1

2
∆x, yj+ 1

2
=yj+

1

2
∆y, zk+ 1

2
= zk+

1

2
∆z, tn+ 1

2 = tn +
1

2
∆t,

and for a function F(t,x,y,z) define

Fm
α,β,γ = F(m∆t,α∆x,β∆y,γ∆z), δxFm

α,β,γ =
Fm

α+ 1
2 ,β,γ

−Fm
α− 1

2 ,β,γ

∆x
,

δyFm
α,β,γ =

Fm
α,β+ 1

2 ,γ
−Fm

α,β− 1
2 ,γ

∆y
, δzFm

α,β,γ =
Fm

α,β,γ+ 1
2

−Fm
α,β,γ− 1

2

∆z
,

δtF
m
α,β,γ =

F
m+ 1

2
α,β,γ −F

m− 1
2

α,β,γ

∆t
, δ̄tF

m
α,β,γ =

F
m+ 1

2
α,β,γ +F

m− 1
2

α,β,γ

2
.

Denote by Em
v

∣∣
α,β,γ

and Hm
v

∣∣
α,β,γ

the approximation of the electric field Ev(tm,xα,yβ,yγ)

and the magnetic field Hv(tm,xα,yβ,zγ), respectively, with v = x,y,z. Then the splitting
FDTD scheme for (1.1)-(1.6) can be written in two stages as follows:
Stage 1:

E
n+ 1

2
x

i+ 1
2 ,j,k

−En
x

i+ 1
2 ,j,k

∆t
=

1

ε
δyH̃

n+ 1
2

z
i+ 1

2 ,j,k
− σ

ε
Ẽ

n+ 1
2

x
i+ 1

2 ,j,k
, (2.7)

E
n+ 1

2
y

i,j+ 1
2 ,k
−En

y
i,j+ 1

2 ,k

∆t
=

1

ε
δzH̃

n+ 1
2

x
i,j+ 1

2 ,k
− σ

ε
Ẽ

n+ 1
2

y
i,j+ 1

2 ,k
, (2.8)

E
n+ 1

2
z

i,j,k+ 1
2

−En
z

i,j,k+ 1
2

∆t
=

1

ε
δxH̃

n+ 1
2

y
i,j,k+ 1

2

− σ

ε
Ẽ

n+ 1
2

z
i,j,k+ 1

2

, (2.9)

H
n+ 1

2
x

i,j+ 1
2 ,k+ 1

2

−Hn
x

i,j+ 1
2 ,k+ 1

2

∆t
=

1

µ
δzẼ

n+ 1
2

y
i,j+ 1

2 ,k+ 1
2

− σ∗

µ
H̃

n+ 1
2

x
i,j+ 1

2 ,k+ 1
2

, (2.10)

H
n+ 1

2
y

i+ 1
2 ,j,k+ 1

2

−Hn
y

i+ 1
2 ,j,k+ 1

2

∆t
=

1

µ
δxẼ

n+ 1
2

z
i+ 1

2 ,j,k+ 1
2

− σ∗

µ
H̃

n+ 1
2

y
i+ 1

2 ,j,k+ 1
2

, (2.11)

H
n+ 1

2
z

i+ 1
2 ,j+ 1

2 ,k
−Hn

z
i+ 1

2 ,j+ 1
2 ,k

∆t
=

1

µ
δyẼ

n+ 1
2

x
i+ 1

2 ,j+ 1
2 ,k
− σ∗

µ
H̃

n+ 1
2

z
i+ 1

2 ,j+ 1
2 ,k

, (2.12)

where the average values are defined, e.g.,

H̃
n+ 1

2
z

i+ 1
2 ,j,k

=
1

2

(
H

n+ 1
2

z
i+ 1

2 ,j,k
+Hn

z
i+ 1

2 ,j,k

)
, Ẽ

n+ 1
2

x
i+ 1

2 ,j+ 1
2 ,k

=
1

2

(
E

n+ 1
2

x
i+ 1

2 ,j+ 1
2 ,k

+En
x

i+ 1
2 ,j+ 1

2 ,k

)
. (2.13)
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Stage 2:

En+1
x

i+ 1
2 ,j,k

−E
n+ 1

2
x

i+ 1
2 ,j,k

∆t
=−1

ε
δzH

n+ 1
2

y
i+ 1

2 ,j,k
,

En+1
y

i,j+ 1
2 ,k
−E

n+ 1
2

y
i,j+ 1

2 ,k

∆t
=−1

ε
δxH

n+ 1
2

z
i,j+ 1

2 ,k
, (2.14)

En+1
z

i,j,k+ 1
2

−E
n+ 1

2
z

i,j,k+ 1
2

∆t
=−1

ε
δyH

n+ 1
2

x
i,j,k+ 1

2

, (2.15)

Hn+1
x

i,j+ 1
2 ,k+ 1

2

−H
n+ 1

2
x

i,j+ 1
2 ,k+ 1

2

∆t
=− 1

µ
δyE

n+ 1
2

z
i,j+ 1

2 ,k+ 1
2

, (2.16)

Hn+1
y

i+ 1
2 ,j,k+ 1

2

−H
n+ 1

2
y

i+ 1
2 ,j,k+ 1

2

∆t
=− 1

µ
δzE

n+ 1
2

x
i+ 1

2 ,j,k+ 1
2

, (2.17)

Hn+1
z

i+ 1
2 ,j+ 1

2 ,k
−H

n+ 1
2

z
i+ 1

2 ,j+ 1
2 ,k

∆t
=− 1

µ
δxE

n+ 1
2

y
i+ 1

2 ,j+ 1
2 ,k

, (2.18)

where the average value is defined in the conventional way, e.g.,

H
n+ 1

2
z

i+ 1
2 ,j,k

=
1

2

(
Hn+1

z
i+ 1

2 ,j,k
+Hn

z
i+ 1

2 ,j,k

)
, E

n+ 1
2

y
i+ 1

2 ,j+ 1
2 ,k

=
1

2

(
En+1

y
i+ 1

2 ,j+ 1
2 ,k

+En
y

i+ 1
2 ,j+ 1

2 ,k

)
. (2.19)

By the definition of the cross product of vectors the boundary condition (2.1) is satisfied
by letting

Em
x

i+ 1
2 ,0,k

=Em
x

i+ 1
2 ,J,k

=Em
x

i+ 1
2 ,j,0

=Em
x

i+ 1
2 ,j,K

=0, (2.20)

Em
y

0,j+ 1
2 ,k

=Em
y

I,j+ 1
2 ,k

=Em
y

i,j+ 1
2 ,0

=Em
y

i,j+ 1
2 ,K

=0, (2.21)

Em
z

0,j,k+ 1
2

=Em
z

I,j,k+ 1
2

=Em
z

i,0,k+ 1
2

=Em
z

i,J,k+ 1
2

=0, (2.22)

with m = n. The case with m = n+ 1
2 is also true by using the scheme (2.7)-(2.18) in con-

junction with (2.1) and (2.6). Finally, the initial values E0
α,β,γ and H0

α,β,γ are obtained by

imposing the initial condition (2.2) at t=0, that is,

E0
α,β,γ =E0(α∆x,β∆y,γ∆z), H0

α,β,γ =H0(α∆x,β∆y,γ∆z). (2.23)

The above splitting scheme (2.7)-(2.18) (called S-FDTD) is based on splitting of
Maxwell’s equations and its symmetric structure and consists of only two stages for each
time step [tn,tn+1]. At each stage the splitting scheme S-FDTD can be solved effectively
by first solving three tridiagonal systems of equations for, say, the three components
Ex,Ey,Ez of the electric field and then computing Hx,Hy,Hz explicitly. For example, using
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(2.12) to eliminate H
n+ 1

2
z

i+ 1
2 ,j+ 1

2 ,k
and H

n+ 1
2

z
i+ 1

2 ,j− 1
2 ,k

in (2.7) gives

− (∆t)2

4(∆y)2
E

n+ 1
2

x
i+ 1

2 ,j−1,k
+

[
µ+ε++

(∆t)2

2(∆y)2

]
E

n+ 1
2

x
i+ 1

2 ,j,k
− (∆t)2

4(∆y)2
E

n+ 1
2

x
i+ 1

2 ,j+1,k

=µ+ε−En
x

i+ 1
2 ,j,k

+∆tµ−δyHn
z

i+ 1
2 ,j,k

+
(∆t)2

4
δyδyEn

x
i+ 1

2 ,j,k
, (2.24)

where

ε+ = ε+
1

2
σ∆t, ε−= ε− 1

2
σ∆t, µ+ =µ+

1

2
σ∗∆t, µ−=µ− 1

2
σ∗∆t.

Eq. (2.24) is tridiagonal for En+1/2
x with all the field components on the right hand side

being known from the previous time step and can be solved efficiently for the values of
En+1/2

x at the grid points

{((i+1/2)∆x, j∆y,k∆z)| j=0,1,··· , J}.

This can be seen as solving a one-dimensional problem in the y direction. Note that the
coefficient matrix of the tridiagonal system (2.24) does not change with the time level n.
Hn+1/2

z then follows explicitly from the equation

H
n+ 1

2
z

i+ 1
2 ,j+ 1

2 ,k
=

µ−

µ+
Hn

z
i+ 1

2 ,j+ 1
2 ,k

+
∆t

2µ+
δy

(
E

n+ 1
2

x
i+ 1

2 ,j+ 1
2 ,k

+En
x

i+ 1
2 ,j+ 1

2 ,k

)
.

Similarly, we can obtain and solve the tridiagonal systems for Ey,Ez, and Hy,Hz then
follow explicitly.

Remark 2.2. The S-FDTD scheme is different from the conventional ADI procedure in
[4–6, 23], where the alternations in the computation directions are made with respect to
the three spatial coordinate directions so, in the 3-D case, the computation is broken down
into three stages for each time step.

Remark 2.3. The S-FDTD scheme is also different from the ADI-FDTD scheme proposed
in [27] and [21]. From (2.7)-(2.18) it is found that the values of the electric and magnetic
fields at the intermediate time levels are not the real values of the fields at the time levels.

The truncation error of the S-FDTD scheme is of first order in time, as seen from the
detailed analysis in the next section. In order to improve the accuracy of the S-FDTD
scheme, we give an improved scheme by reducing the perturbation error of the S-FDTD
scheme. The improved scheme (called IS-FDTD) becomes a second-order perturbation to
the CN scheme for the Maxwell equations.
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The IS-FDTD scheme is defined as follows:
Stage 1:

E
n+ 1

2
x

i+ 1
2 ,j,k

−En
x

i+ 1
2 ,j,k

∆t
=

1

ε
δyH̃

n+ 1
2

z
i+ 1

2 ,j,k
− σ

ε
Ẽ

n+ 1
2

x
i+ 1

2 ,j,k
− ∆t

2µε
δyδxEn

y
i+ 1

2 ,j,k
+

σ∆t

2ε2
δzHn

y
i+ 1

2 ,j,k
, (2.25)

E
n+ 1

2
y

i,j+ 1
2 ,k
−En

y
i,j+ 1

2 ,k

∆t
=

1

ε
δzH̃

n+ 1
2

x
i,j+ 1

2 ,k
− σ

ε
Ẽ

n+ 1
2

y
i,j+ 1

2 ,k
− ∆t

2µε
δzδyEn

z
i,j+ 1

2 ,k
+

σ∆t

2ε2
δxHn

z
i,j+ 1

2 ,k
, (2.26)

E
n+ 1

2
z

i,j,k+ 1
2

−En
z

i,j,k+ 1
2

∆t
=

1

ε
δxH̃

n+ 1
2

y
i,j,k+ 1

2

− σ

ε
Ẽ

n+ 1
2

z
i,j,k+ 1

2

− ∆t

2µε
δxδzEn

x
i,j,k+ 1

2

+
σ∆t

2ε2
δyHn

x
i,j,k+ 1

2

, (2.27)

H
n+ 1

2
x

i,j+ 1
2 ,k+ 1

2

−Hn
x

i,j+ 1
2 ,k+ 1

2

∆t
=

1

µ
δzẼ

n+ 1
2

y
i,j+ 1

2 ,k+ 1
2

− σ∗

µ
H̃

n+ 1
2

x
i,j+ 1

2 ,k+ 1
2

− ∆t

2µε
δzδxHn

z
i,j+ 1

2 ,k+ 1
2

+
σ∗∆t

2µ2
δyEn

z
i,j+ 1

2 ,k+ 1
2

, (2.28)

H
n+ 1

2
y

i+ 1
2 ,j,k+ 1

2

−Hn
y

i+ 1
2 ,j,k+ 1

2

∆t
=

1

µ
δxẼ

n+ 1
2

z
i+ 1

2 ,j,k+ 1
2

− σ∗

µ
H̃

n+ 1
2

y
i+ 1

2 ,j,k+ 1
2

− ∆t

2µε
δxδyHn

x
i+ 1

2 ,j,k+ 1
2

+
σ∗∆t

2µ2
δzEn

x
i+ 1

2 ,j,k+ 1
2

, (2.29)

H
n+ 1

2
z

i+ 1
2 ,j+ 1

2 ,k
−Hn

z
i+ 1

2 ,j+ 1
2 ,k

∆t
=

1

µ
δyẼ

n+ 1
2

x
i+ 1

2 ,j+ 1
2 ,k
− σ∗

µ
H̃

n+ 1
2

z
i+ 1

2 ,j+ 1
2 ,k

− ∆t

2µε
δyδzHn

y
i+ 1

2 ,j+ 1
2 ,k

+
σ∗∆t

2µ2
δxEn

y
i+ 1

2 ,j+ 1
2 ,k

, (2.30)

where H̃ and Ẽ are defined in (2.13).

Stage 2: Same as (2.14)-(2.18) in Stage 2 of S-FDTD.

The initial and boundary conditions for this scheme are the same as given for the
S-FDTD scheme.

The IS-FDTD scheme is just a modification of the S-FDTD scheme by adding only one
previous time level terms to Eqs. (2.7)-(2.12). The IS-FDTD scheme can also be solved
similarly as in solving the S-FDTD scheme (see the discussion above).

Remark 2.4. The truncation error of the IS-FDTD scheme is of second order in both space
and time. This can be seen from the following equivalent scheme to IS-FDTD, which can
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be easily obtained by eliminating the intermediate values of the fields:

δtE
n+ 1

2
x =

1

ε
{δyδ̄tH

n+ 1
2

z −δzδ̄tH
n+ 1

2
y −σδ̄tE

n+ 1
2

x }

+
(∆t)2

4µε
δyδxδtE

n+ 1
2

y − σ(∆t)2

4ε2
δzδtH

n+ 1
2

y , (2.31)

δtE
n+ 1

2
y =

1

ε
{δz δ̄tH

n+ 1
2

x −δx δ̄tH
n+ 1

2
z −σδ̄tE

n+ 1
2

y }

+
(∆t)2

4µε
δzδyδtE

n+ 1
2

z − σ(∆t)2

4ε2
δxδtH

n+ 1
2

z , (2.32)

δtE
n+ 1

2
z =

1

ε
{δx δ̄tH

n+ 1
2

y −δyδ̄tH
n+ 1

2
x −σδ̄tE

n+ 1
2

z }

+
(∆t)2

4µε
δxδzδtE

n+ 1
2

x − σ(∆t)2

4ε2
δyδtH

n+ 1
2

x ; (2.33)

similar formulas hold for Hx, Hy and Hz. The scheme (2.31)-(2.33) is the CN scheme for
the Maxwell equations plus second-order perturbation terms (the last two terms in each
of (2.31)-(2.33)). Thus, the improved splitting scheme IS-FDTD is equivalent to a second-
order perturbation of the CN scheme for the Maxwell equations, so the local truncation
error of the scheme is of second-order in both space and time. This is also confirmed by
their numerical dispersion relations in Section 4 and numerical experiments in Section 5.

Remark 2.5. In the IS-FDTD scheme the values of the electric and magnetic fields at the
intermediate time levels are not the real values of the fields at the time levels. Thus,
the IS-FDTD scheme is in general different from the ADI-FDTD scheme proposed in [27]
and [21]. In the special case with σ = σ∗ = 0, however, the equivalent form of the ADI-
FDTD scheme proposed in [27] is exactly the same as (2.31)-(2.33). This means that, in
this special case, the ADI-FDTD scheme and the improved splitting scheme IS-FDTD are
equivalent theoretically so their numerical dispersion relations are the same. But, the
implementation of the two schemes are different, so their performance will be different
in practical computation. In fact, the numerical experiments in Section 5 shows that the
improved splitting scheme IS-FDTD is more accurate than the ADI-FDTD scheme.

Remark 2.6. Our technique of deriving the improved splitting scheme, IS-FDTD, is based
on an idea proposed in [7] for the ADI scheme of parabolic equations. The IS-FDTD
scheme is different from the S-FDTD scheme only by two terms in each of the six equa-
tions at Stage 1. These added terms contain values of fields at only one time level, which
is different from that in [7], where the terms added to a second-order ADI scheme for
a parabolic equation contain values of the solution at two time levels. A different idea
to improve the truncation error of splitting schemes is Strang’s splitting: a half-step in
one direction, a whole step in the other, a half-step in the first direction. However, this
splitting technique is not straightforward for the S-FDTD scheme and needs further in-
vestigation.
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3 Error estimates and stability analysis

In this section we establish error estimates and the unconditional stability of the splitting
scheme S-FDTD by using the energy method. To this end, we define two discrete energy
norms. For

V=(Vxi+ 1
2 ,j,k,Vyi,j+ 1

2 ,k
,Vzi,j,k+ 1

2
), W=(Wx i,j+ 1

2 ,k+ 1
2
,Wyi+ 1

2 ,j,k+ 1
2
,Wzi+ 1

2 ,j+ 1
2 ,k),

define the following discrete norms:

‖V‖2
E =

[
I−1

∑
i=0

J−1

∑
j=1

K−1

∑
k=1

V2
x

i+ 1
2 ,j,k

+
I−1

∑
i=1

J−1

∑
j=0

K−1

∑
k=1

V2
y

i,j+ 1
2 ,k

+
I−1

∑
i=1

J−1

∑
j=1

K−1

∑
k=0

V2
z

i,j,k+ 1
2

]
∆x∆y∆z,

‖W‖2
H =

[
I

∑
i=0

J−1

∑
j=0

K−1

∑
k=0

W2
x

i,j+ 1
2 ,k+ 1

2

+
I−1

∑
i=0

J

∑
j=0

K−1

∑
k=0

W2
y

i+ 1
2 ,j,k+ 1

2

+
I−1

∑
i=0

J−1

∑
j=0

K

∑
k=0

W2
z

i+ 1
2 ,j+ 1

2 ,k

]
∆x∆y∆z.

For

U=(Uxα,β,γ
,Uyα,β,γ

,Uzα,β,γ
),

define

δh
1 U=(δyUzα,β,γ

,δzUxα,β,γ
,δxUyα,β,γ

), δh
2U=(δzUyα,β,γ

,δxUzα,β,γ
,δyUxα,β,γ

).

We then have the following result on error estimates of the splitting scheme S-FDTD.

Theorem 3.1. Let E and H be the solution of the Maxwell equations (1.1)-(1.6) with the bound-
ary condition (2.1) and the initial conditions (2.2). For n≥0 let

En =(En
x

i+ 1
2 ,j,k

,En
y

i,j+ 1
2 ,k

,En
z

i,j,k+ 1
2

), Hn =(Hn
x

i,j+ 1
2 ,k+ 1

2

,Hn
y

i+ 1
2 ,j,k+ 1

2

,Hn
z

i+ 1
2 ,j+ 1

2 ,k
)

be the solution of the S-FDTD scheme. Assume that the regularity property (2.3)-(2.4) is true.
Then, for any fixed T >0, there is constant C independent of ∆t,∆x,∆y,∆z such that

max
0≤n≤N

[
‖E(tn)−En‖E+‖H(tn)−Hn‖H

]

≤C
[
∆t+(∆x)2+(∆y)2+(∆z)2

]
, (3.1)

max
0≤n≤N

[
‖δt(E(tn+ 1

2 )−En+ 1
2 )‖E+‖δt(H(tn+ 1

2 )−Hn+ 1
2 )‖H

]

≤C
[
∆t+(∆x)2+(∆y)2+(∆z)2

]
. (3.2)

Proof. To prove Theorem 3.1, let us define

En
wα,β,γ

=Ew(tn,xα,yβ,zγ)−En
wα,β,γ

, Hn
wα,β,γ

= Hw(tn,xα,yβ,zγ)−Hn
wα,β,γ
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for all valid choices of subscripts α,β,γ and for w= x,y,z. Set

En =(En
x ,En

y ,En
z ), Hn =(Hn

x ,Hn
y ,Hn

z ).

In order to get the error equations we need to derive the following equivalent form of the
S-FDTD scheme by eliminating the electric and magnetic fields at the intermediate time

levels, E
n+ 1

2
uα,β,γ

and H
n+ 1

2
uα,β,γ

(u= x, y, z), from the splitting scheme (2.7)-(2.18):

δtE
n+ 1

2
x

i+ 1
2 ,j,k

=
1

ε

{
δyδ̄tH

n+ 1
2

z
i+ 1

2 ,j,k
−δzδ̄tH

n+ 1
2

y
i+ 1

2 ,j,k
−σδ̄tE

n+ 1
2

x
i+ 1

2 ,j,k

}

+
∆t

2ε
δy

[
1

µ
δxδ̄tE

n+ 1
2

y
i+ 1

2 ,j,k

]
− σ∆t

2ε2
δzδ̄tH

n+ 1
2

y
i+ 1

2 ,j,k
, (3.3)

δtE
n+ 1

2
y

i,j+ 1
2 ,k

=
1

ε

{
δzδ̄tH

n+ 1
2

x
i,j+ 1

2 ,k
−δx δ̄tH

n+ 1
2

z
i,j+ 1

2 ,k
−σδ̄tE

n+ 1
2

y
i,j+ 1

2 ,k

}

+
∆t

2ε
δz

[
1

µ
δyδ̄tE

n+ 1
2

z
i,j+ 1

2 ,k

]
− σ∆t

2ε2
δx δ̄tH

n+ 1
2

z
i,j+ 1

2 ,k
, (3.4)

δtE
n+ 1

2
z

i,j,k+ 1
2

=
1

ε

{
δx δ̄tH

n+ 1
2

y
i,j,k+ 1

2

−δyδ̄tH
n+ 1

2
x

i,j,k+ 1
2

−σδ̄tE
n+ 1

2
z

i,j,k+ 1
2

}

+
∆t

2ε
δx

[
1

µ
δzδ̄tE

n+ 1
2

x
i,j,k+ 1

2

]
− σ∆t

2ε2
δyδ̄tH

n+ 1
2

x
i,j,k+ 1

2

; (3.5)

similar formulas hold for δtH
n+ 1

2
x

i,j+ 1
2 ,k+ 1

2

, δtH
n+ 1

2
y

i+ 1
2 ,j,k+ 1

2

and δtH
n+ 1

2
z

i+ 1
2 ,j+ 1

2 ,k
. Then from (1.1)-(1.3)

and (3.3)-(3.5) we have the following error equations:

En+1
x −∆t

2ε
{δyHn+1

z −δzHn+1
y −σEn+1

x }− (∆t)2

4ε
δy[

1

µ
δxEn+1

y ]+
σ(∆t)2

4ε2
δzHn+1

y

=En
x +

∆t

2ε
{δyHn

z −δzHn
y−σEn

x }+
(∆t)2

4ε
δy[

1

µ
δxEn

y ]− σ(∆t)2

4ε2
δzHn

y +∆tξx
n+ 1

2 , (3.6)

En+1
y −∆t

2ε
{δzHn+1

x −δxHn+1
z −σEn+1

y }− (∆t)2

4ε
δz[

1

µ
δyEn+1

z ]+
σ(∆t)2

4ε2
δxHn+1

z

=En
y +

∆t

2ε
{δzHn

x−δxHn
z −σEn

y }+
(∆t)2

4ε
δz[

1

µ
δyEn

z ]− σ(∆t)2

4ε2
δxHn

z +∆tξy
n+ 1

2 , (3.7)

En+1
z −∆t

2ε
{δxHn+1

y −δyHn+1
x −σEn+1

z }− (∆t)2

4ε
δx[

1

µ
δzEn+1

x ]+
σ(∆t)2

4ε2
δyHn+1

x

=En
z +

∆t

2ε
{δxHn

y−δyHn
x−σEn

y }+
(∆t)2

4ε
δx[

1

µ
δzEn

x ]− σ(∆t)2

4ε2
δyHn

x +∆tξz
n+ 1

2 , (3.8)

where, for simplicity, we have omitted all the subscripts since they are the same in each
equation, and ξn+1/2

u and ηn+1/2
u with u = x,y,z are the truncation errors which can be
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expressed by the Taylor expansion theorem. For example,

ξ
n+ 1

2
x

i+ 1
2 ,j,k

=∆t
[ σ

2ε2

∂Hy

∂z
(τ15,xi+ 1

2
,yj,z13)−

1

2µε

∂2Ey

∂x∂y
(τ16,x11,y13,zk)

]

+(∆t)2
[ 1

24

∂3Ex

∂t3
(τ11,xi+ 1

2
,yj,zk)−

1

8ε

∂3Hz

∂t2∂y
(τ13,xi+ 1

2
,y12,zk)

+
1

8ε

∂3Hy

∂t2∂z
(τ14,xi+ 1

2
,yj,z12)+

σ

8ε

∂2Ex

∂t2
(τ12,xi+ 1

2
,yj,zk)

]

− (∆y)2

24ε

∂3Hz

∂y3
(tn+ 1

2 ,xi+ 1
2
,y11,zk)+

(∆z)2

24ε

∂3Hy

∂z3
(tn+ 1

2 ,xi+ 1
2
,yj,z11)

for some tn ≤τ11,··· ,τ16≤ tn+1, xi−1/2≤ x11 ≤ xi+1/2, yj−1/2 ≤y11,y12,y13 ≤yj+1/2, zk−1/2 ≤
z11,z12,z13≤ zk+1/2. Thus,

I−1

∑
i=0

J−1

∑
j=1

K−1

∑
k=1

|ξn+ 1
2

x
i+ 1

2 ,j,k
|2∆x∆y∆z

≤ (∆t)2

[
2σ2

ε4
‖∂Hy

∂z
‖2

∞+
2

µ2ε2
‖ ∂2Ey

∂x∂y
‖2

∞

]

+(∆t)4

[
‖∂3Ex

∂t3
‖2

∞ +
1

ε2
‖ ∂3Hz

∂t2∂y
‖2

∞ +
1

ε2
‖ ∂3Hy

∂t2∂z
‖2

∞+
σ2

ε2
‖∂2Ex

∂t2
‖2

∞

]

+
(∆y)4

ε2
‖∂3Hz

∂y3
‖2

∞+
(∆z)4

ε2
‖∂3Hy

∂z3
‖2

∞

≤Cµεσ∗σ M2
[
(∆t)2+(∆t)4+(∆y)4+(∆z)4

]
, (3.9)

where Cµεσ∗σ is a positive constant depending only on µ, ε, σ and σ∗, and, with the no-
tation ‖ f‖∞ = ‖ f‖L∞([0,T];L2(Ω)) for a scalar function f or ‖f‖∞ = ‖f‖L∞([0,T];[L2(Ω)]3) for a
three-dimensional vector function f,

M = max
{
‖∂2

t E‖∞,‖∂3
t E‖∞,‖∂v∂uE‖∞,‖∂vE‖∞,‖∂3

vE‖∞,‖∂t∂vE‖∞,

‖∂2
t H‖∞,‖∂3

t H‖∞,‖∂v∂uH‖∞,‖∂vH‖∞,‖∂3
vH‖∞,‖∂t∂vH‖∞, u,v= x,y,z

}
.

Similar estimates to (3.9) hold for ξy
n+1/2, ξz

n+1/2, ηx
n+1/2, ηy

n+1/2 and ηz
n+1/2. Now

multiplying Eq. (3.6) with
√

ε and regrouping the terms, we have

√
εEn+1

x +
∆t

2
√

ε
δzHn+1

y − ∆t

2
√

ε

(
δyHn+1

z +
∆t

2
δy(

1

µ
δxEn+1

y )
)

=
√

εEn
x −

∆t

2
√

ε
δzHn

y +
∆t

2
√

ε

(
δyHn

z +
∆t

2
δy(

1

µ
δxEn

y )
)

− σ∆t

2
√

ε

(
En+1

x +En
x +

∆t

2ε
δz(Hn+1

y +Hn
y)

)
+∆t

√
εξx

n+ 1
2 . (3.10)
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Taking the square of both sides of (3.10) and using the inequality

(a+∆tb)2 ≤ (1+∆t)(a2 +∆tb2),

we obtain that

β1ε(En+1
x )2+

(∆t)2

4ε
β1(δzHn+1

y )2+
(∆t)2

4ε

(
δyHn+1

z +
∆t

2
δy(

1

µ
δxEn+1

y )
)2

+∆tEn+1
x ·

(
δzHn+1

y −δyHn+1
z −∆t

2
δy(

1

µ
δxEn+1

y )
)

− (∆t)2

2ε
δzHn+1

y ·
(

δyHn+1
z +

∆t

2
δy(

1

µ
δxEn+1

y )
)

≤ (1+∆t)
{

β2ε(En
x )2+

(∆t)2

4ε
β2(δzHn

y)2+
(∆t)2

4ε

(
δyHn

z +
∆t

2
δy(

1

µ
δxEn

y )
)2

−∆tEn
x ·

(
δzHn

y−δyHn
z −

∆t

2
δy(

1

µ
δxEn

y )
)

− (∆t)2

2ε
δzHn

y ·
(

δyHn
z +

∆t

2
δy(

1

µ
δxEn

y )
)
+5∆tε(ξ

n+ 1
2

x )2
}

, (3.11)

where and in what follows,

β1 =1− 5σ2

4ε
∆t(1+∆t), β2 =1+

5σ2

4ε
∆t,

γ1 =1− 5(σ∗)2

4µ
∆t(1+∆t), γ2 =1+

5(σ∗)2

4µ
∆t.

Similar procedure can be applied to other error equations to get five inequalities similar
to (3.11). Here, for brevity, we only present the inequality for Hn+1

y :

γ1µ(Hn+1
y )2+

(∆t)2

4µ
γ1(δzEn+1

x )2+
(∆t)2

4µ

(
δxEn+1

z +
∆t

2
δx(

1

ε
δyHn+1

x )
)2

+∆tHn+1
y ·

(
δzEn+1

x −δxEn+1
z −∆t

2
δx(

1

ε
δyHn+1

x )
)

− (∆t)2

2µ
δzEn+1

x ·
(

δxEn+1
z +

∆t

2
δx(

1

ε
δyHn+1

x )
)

≤ (1+∆t)
{

µγ2(Hn
y)2+

(∆t)2

4µ
γ2(δzEn

x )2+
(∆t)2

4µ

(
δxEn

z +
∆t

2
δx(

1

ε
δyHn

x)
)2

−∆tHn
y ·

(
δzEn

x −δxEn
z −

∆t

2
δx(

1

ε
δyHn

x)
)

− (∆t)2

2µ
δzEn

x ·
(

δxEn
z +

∆t

2
δx(

1

ε
δyHn

x)
)
+5∆tµ(η

n+ 1
2

y )2
}

, (3.12)
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and

µγ1(Hn+1
z )2+

(∆t)2

4µ
γ1(δxEn+1

y )2+
(∆t)2

4µ

(
δyEn+1

x +
∆t

2
δy(

1

ε
δzHn+1

y )
)2

+∆tHn+1
z ·

(
δxEn+1

y −δyEn+1
x −∆t

2
δy(

1

ε
δzHn+1

y )
)

− (∆t)2

2µ
δxEn+1

y ·
(

δyEn+1
x +

∆t

2
δy(

1

ε
δzHn+1

y )
)

≤ (1+∆t)
{

µγ2(Hn
z )

2+
(∆t)2

4µ
γ2(δxEn

y )2+
(∆t)2

4µ

(
δyEn

x +
∆t

2
δy(

1

ε
δzHn

y)
)2

−∆tHn
z ·

(
δxEn

y −δyEn
x −

∆t

2
δy(

1

ε
δzHn

y)
)

− (∆t)2

2ε
δxEn

y ·
(

δyEn
x +

∆t

2
δy(

1

ε
δzHn

y)
)
+5∆tµ(η

n+ 1
2

z )2
}

. (3.13)

The sums over i, j,k in their corresponding valid ranges of the mixed product terms on
the left-hand (or right-hand) sides of the six inequalities thus obtained (including (3.11)-
(3.13)) can be shown to be canceled out with each other by using summation by parts
and the boundary conditions (2.20)-(2.22). For example, consider the sums of the mixed
product terms on the left-hand sides of (3.11)-(3.12). By summation by parts it follows
that

I−1

∑
i=0

J−1

∑
j=1

K−1

∑
k=0

∆tHn+1
y

i+ 1
2 ,j,k+ 1

2

·δzEn+1
x

i+ 1
2 ,j,k+ 1

2

=
I−1

∑
i=0

J−1

∑
j=1

∆t

∆z

[
Hn+1

y
i+ 1

2 ,j,K− 1
2

En+1
x

i+ 1
2 ,j,K

−Hn+1
y

i+ 1
2 ,j, 1

2

En+1
x

i+ 1
2 ,j,0

−
K−1

∑
k=1

En+1
x

i+ 1
2 ,j,k

(Hn+1
y

i+ 1
2 ,j,k+ 1

2

−Hn+1
y

i+ 1
2 ,j,k− 1

2

)
]

=
I−1

∑
i=0

J−1

∑
j=1

K−1

∑
k=1

∆tEn+1
x

i+ 1
2 ,j,k

δzHn+1
y

i+ 1
2 ,j,k

, (3.14)

where we have used the boundary conditions (2.20)-(2.22) that

En+ 1
2

x
i+ 1

2 ,j,0
=En+ 1

2
x

i+ 1
2 ,j,K

=En+ 1
2

x
i+ 1

2 ,0,k
=En+ 1

2
x

i+ 1
2 ,J,k

=0,

En+ 1
2

y
0,j+ 1

2 ,k
=En+ 1

2
y

I,j+ 1
2 ,k

=En+ 1
2

y
i,j+ 1

2 ,0
=En+ 1

2
y

i,j+ 1
2 ,K

=0,

En+ 1
2

z
0,j,k+ 1

2

=En+ 1
2

z
I,j,k+ 1

2

=En+ 1
2

z
i,0,k+ 1

2

=En+ 1
2

z
i,J,k+ 1

2

=0

(3.15)

for all valid values of i, j,k. This means that the sum over i, j,k in their valid ranges of
the first mixed product term on the left-hand side of (3.12) plus that of the first mixed
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product term on the left-hand side of (3.11) is equal to zero. Similar argument can be
used to show that the sum over i, j,k in their valid ranges of the second mixed product
term on the left-hand side of (3.13) plus the sum over i, j,k in their valid ranges of the
second mixed product term on the left-hand side of (3.11) equals zero.

Now consider the fourth mixed product term on the left-hand side of (3.13). By sum-
mation by parts and the boundary conditions (3.15) it is seen that

−
I−1

∑
i=0

J−1

∑
j=0

K−1

∑
k=1

(∆t)2

2µ
δxEn+1

y
i+ 1

2 ,j+ 1
2 ,k

δyEn+1
x

i+ 1
2 ,j+ 1

2 ,k

=−
I−1

∑
i=0

K−1

∑
k=1

(∆t)2

2∆y

[ 1

µ
δxEn+1

y
i+ 1

2 ,J− 1
2 ,k
En+1

x
i+ 1

2 ,J,k
− 1

µ
δxEn+1

y
i+ 1

2 , 1
2 ,k
En+1

x
i+ 1

2 ,0,k

−
J−1

∑
j=1

En+1
x

i+ 1
2 ,j,k

(
1

µ
δxEn+1

y
i+ 1

2 ,j+ 1
2 ,k
− 1

µ
δxEn+1

y
i+ 1

2 ,j− 1
2 ,k

)
]

=
I−1

∑
i=0

J−1

∑
j=1

K−1

∑
k=1

(∆t)2

2µ
En+1

x
i+ 1

2 ,j,k
δy(

1

µ
δxEn+1

y
i+ 1

2 ,j,k
), (3.16)

which plus the sum over i, j,k in their valid ranges of the third mixed product term on
the left-hand side of (3.11) is zero. Next, the sum of the third mixed term on the left-hand
side of (3.13) is

−
I−1

∑
i=0

J−1

∑
j=0

K−1

∑
k=1

∆tHn+1
z

i+ 1
2 ,j+ 1

2 ,k
·∆t

2
δy

(1

ε
δzHn+1

y
i+ 1

2 ,j+ 1
2 ,k

)

=−
I−1

∑
i=0

K−1

∑
k=1

(∆t)2

2∆y

[
Hn+1

z
i+ 1

2 ,J− 1
2 ,k
· 1

ε
δzHn+1

y
i+ 1

2 ,J,k
−Hn+1

z
i+ 1

2 , 1
2 ,k
· 1

ε
δzHn+1

y
i+ 1

2 ,0,k

−
J−1

∑
j=1

1

ε
δzHn+1

y
i+ 1

2 ,j,k
·(Hn+1

z
i+ 1

2 ,j+ 1
2 ,k
−Hn+1

z
i+ 1

2 ,j− 1
2 ,k

)
]

=
I−1

∑
i=0

J−1

∑
j=1

K−1

∑
k=1

(∆t)2

2ε
δzHn+1

y
i+ 1

2 ,j,k
·δyHn+1

z
i+ 1

2 ,j,k
, (3.17)

which plus the sum over i, j,k in their valid ranges of the fourth mixed product term
on the left-hand side of (3.11) equals zero, where we have used the following boundary
conditions which follows from the boundary condition (2.6):

Hn
x

0,j+ 1
2 ,k+ 1

2

=Hn
x

I,j+ 1
2 ,k+ 1

2

=0, ∀ j,k, n;

Hn
y

i+ 1
2 ,0,k+ 1

2

= Hn
y

i+ 1
2 ,J,k+ 1

2

= 0, ∀ i, k, n;

Hn
z

i+ 1
2 ,j+ 1

2 ,0
=Hn

z
i+ 1

2 ,j+ 1
2 ,K

=0, ∀ i, j, n.
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Using the above boundary conditions and summation by parts again we have for the
sum of the last mixed product term on the left-hand side of (3.13) that

−
I−1

∑
i=0

J−1

∑
j=0

K−1

∑
k=1

(∆t)2

2µ
δxEn+1

y
i+ 1

2 ,j+ 1
2 ,k
·∆t

2
δy

(1

ε
δzHn+1

y
i+ 1

2 ,j+ 1
2 ,k

)

=−
I−1

∑
i=0

K−1

∑
k=1

(∆t)3

4∆y

[ 1

µ
δxEn+1

y
i+ 1

2 ,J− 1
2 ,k
· 1

ε
δzHn+1

y
i+ 1

2 ,J,k
− 1

µ
δxEn+1

y
i+ 1

2 , 1
2 ,k
· 1

ε
δzHn+1

y
i+ 1

2 ,0,k

−
J−1

∑
j=1

1

ε
δzHn+1

y
i+ 1

2 ,j,k
·( 1

µ
δxEn+1

y
i+ 1

2 ,j+ 1
2 ,k
− 1

µ
δxEn+1

y
i+ 1

2 ,j− 1
2 ,k

)
]

=
I−1

∑
i=0

J−1

∑
j=1

K−1

∑
k=1

(∆t)3

4ε
δzHn+1

y
i+ 1

2 ,j,k
·δy

( 1

µ
δxEn+1

y
i+ 1

2 ,j,k

)
, (3.18)

which cancels out the sum over i, j,k in their valid ranges of the last mixed product term
on the left-hand side of (3.11). Thus all mixed product terms on the left-hand side of (3.11)
are cancelled out by some terms on the left-hand side of (3.12)-(3.13) when the sums are
taken over i, j,k in their valid ranges. By a similar argument it can be shown that the sums
over i, j,k in their valid ranges of the other mixed product terms on both sides of the six
inequalities can also be cancelled out with each other. Thus, summing each of the six
inequalities (including (3.11)-(3.13)) up over i, j,k in their valid ranges and then adding
the updated six inequalities together, we arrive at

∑
i,j,k

[
εβ1(En+1

x )2+
(∆t)2

4ε
β1(δzHn+1

y )2+
(∆t)2

4ε

(
δyHn+1

z +
∆t

2
δy(

1

µ
δxEn+1

y )
)2]

+∑
i,j,k

[
εβ1(En+1

y )2+
(∆t)2

4ε
β1(δxHn+1

z )2+
(∆t)2

4ε

(
δzHn+1

x +
∆t

2
δz(

1

µ
δyEn+1

z )
)2]

+∑
i,j,k

[
εβ1(En+1

z )2+
(∆t)2

4ε
β1(δyHn+1

x )2+
(∆t)2

4ε

(
δxHn+1

y +
∆t

2
δx(

1

µ
δzEn+1

x )
)2]

+∑
i,j,k

[
µγ1(Hn+1

x )2+
(∆t)2

4µ
γ1(δyEn+1

z )2+
(∆t)2

4µ

(
δzEn+1

y +
∆t

2
δz(

1

ε
δxHn+1

z )
)2]

+∑
i,j,k

[
µγ1(Hn+1

y )2+
(∆t)2

4µ
γ1(δzEn+1

x )2+
(∆t)2

4µ

(
δxEn+1

z +
∆t

2
δx(

1

ε
δyHn+1

x )
)2]

+∑
i,j,k

[
µγ1(Hn+1

z )2+
(∆t)2

4µ
γ1(δxEn+1

y )2+
(∆t)2

4µ

(
δyEn+1

x +
∆t

2
δy(

1

ε
δzHn+1

y )
)2]
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≤ (1+∆t)
{

∑
i,j,k

[
εβ2(En

x )2+
(∆t)2

4ε
β2(δzHn

y)
2

+
(∆t)2

4ε

(
δyHn

z +
∆t

2
δy(

1

µ
δxEn

y )
)2

+5∆tε(ξ
n+ 1

2
x )2

]

+∑
i,j,k

[
εβ2(En

y )2+
(∆t)2

4ε
β2(δxHn

z )
2+

(∆t)2

4ε

(
δzHn

x +
∆t

2
δz(

1

µ
δyEn

z )
)2

+5∆tε(ξ
n+ 1

2
y )2

]

+∑
i,j,k

[
εβ2(En

z )2+
(∆t)2

4ε
β2(δyHn

x)
2+

(∆t)2

4ε

(
δxHn

y +
∆t

2
δx(

1

µ
δzEn

x )
)2

+5∆tε(ξ
n+ 1

2
z )2

]

+∑
i,j,k

[
µγ2(Hn

x)
2+

(∆t)2

4µ
γ2(δyEn

z )2+
(∆t)2

4µ

(
δzEn

y +
∆t

2
δz(

1

ε
δxHn

z )
)2

+5∆tµ(η
n+ 1

2
x )2

]

+∑
i,j,k

[
µγ2(Hn

y)2+
(∆t)2

4µ
γ2(δzEn

x )2+
(∆t)2

4µ

(
δxEn

z +
∆t

2
δx(

1

ε
δyHn

x)
)2

+5∆tµ(η
n+ 1

2
y )2

]

+∑
i,j,k

[
µγ2(Hn

z )2+
(∆t)2

4µ
γ2(δxEn

y )2+
(∆t)2

4µ

(
δyEn

x +
∆t

2
δy(

1

ε
δzHn

y)
)2

+5∆tµ(η
n+ 1

2
z )2

]}
, (3.19)

where the summation is for 0≤ i≤ I−1, 0≤ j≤ J−1 and 0≤ k≤K−1. Let

α=max

{
5σ2

4ε
,
5(σ∗)2

4µ
,
5σ2

4ε
(1+∆t),

5(σ∗)2

4µ
(1+∆t)

}
. (3.20)

Then β1 and γ1 are greater than 1−α∆t and β2 and γ2 are less than 1+α∆t. So, multi-
plying the above inequality with (1−α∆t)−1∆x∆y∆z and using the estimates of the local
truncation errors it follows on noting the definitions of δh

1 , δh
2 and the energy norm that

the above inequality can be written as

‖ε
1
2 En+1‖2

E+‖µ
1
2 Hn+1‖2

H +
(∆t)2

4

(
‖ε−

1
2 δh

2Hn+1‖2
E+‖µ− 1

2 δh
1En+1‖2

H

)

+
(∆t)2

4

(
‖ε−

1
2 (δh

1Hn+1+
∆t

2
δh

1(
1

µ
δh

1En+1))‖2
E+‖µ− 1

2 (δh
2En+1+

∆t

2
δh

2(
1

ε
δh

2Hn+1))‖2
H

)

≤ (1+∆t)(1+α∗∆t)
{
‖ε

1
2 En‖2

E+‖µ
1
2 Hn‖2

H +
(∆t)2

4

(
‖ε−

1
2 δh

2Hn‖2
E+‖µ− 1

2 δh
1En‖2

H

)

+
(∆t)2

4

(
‖ε−

1
2 (δh

1Hn+
∆t

2
δh

1(
1

µ
δh

1En))‖2
E+‖µ− 1

2 (δh
2En +

∆t

2
δh

2(
1

ε
δh

2Hn))‖2
H

)

+C1∆t[(∆t)2 +(∆x)4+(∆y)4+(∆z)4]
}

, (3.21)

where (1+α∆t)/(1−α∆t)=1+α∗∆t with

α∗=2α/(1−α∆t), C1 =30max(ε,µ)Cµεσ∗σM2.
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A successive application of the above inequality gives

LHS of (3.21)

≤ (1+∆t)n+1(1+α∗∆t)n+1
{
‖ε

1
2 E0‖2

E+‖µ
1
2 H0‖2

H +
(∆t)2

4

(
‖ε−

1
2 δh

2H0‖2
E

+‖µ− 1
2 δh

1Ex
0‖2

H +‖ε−
1
2 (δh

1H0+
∆t

2
δh

1(
1

µ
δh

1Ex
0))‖2

E+‖µ− 1
2 (δh

2E0+
∆t

2
δh

2(
1

ε
δh

2H0))‖2
H

)

+C1(n+1)∆t[(∆t)2 +(∆x)4+(∆y)4+(∆z)4]
}

≤C[(∆t)2+(∆x)4+(∆y)4+(∆z)4], (3.22)

where

C=2C1T(1+T)(1+α∗T)eT(α∗+1)

is bounded above with a bound independent of ∆t, which implies (3.1).

To prove (3.2), subtracting each equation in (3.6)-(3.8) and the relevant equations for
Hx, Hy, Hz with n replaced by n−1 from itself, respectively, will give six new error equa-
tions. Then (3.2) can be derived by repeating the above argument starting from the new
error equations. Theorem 3.1 is thus proved.

A similar argument as above can be used to show the following theorem on the sta-
bility of the splitting scheme S-FDTD.

Theorem 3.2. Let n≥0 and let

En =(En
x

i+ 1
2 ,j,k

,En
y

i,j+ 1
2 ,k

,En
z

i,j,k+ 1
2

), Hn =(Hn
x

i,j+ 1
2 ,k+ 1

2

,Hn
y

i+ 1
2 ,j,k+ 1

2

,Hn
z

i+ 1
2 ,j+ 1

2 ,k
)

be the solution of the splitting scheme S-FDTD. Then

‖ε
1
2 En+1‖2

E+‖µ
1
2 Hn+1‖2

H

≤‖ε
1
2 E0‖2

E+‖µ
1
2 H0‖2

H +
(∆t)2

4

(
‖ε−

1
2 δh

2H0‖2
E+‖µ− 1

2 δh
1E0‖2

H

+‖ε−
1
2

[
δh

1H0+
∆t

2µ
(δh

1)
2E0

]
‖2

E+‖µ− 1
2

[
δh

2 E0+
∆t

2ε
(δh

2)
2H0

]
‖2

H

)
,

‖ε
1
2 δtE

n+ 1
2 ‖2

E+‖µ
1
2 δtH

n+ 1
2 ‖2

H

≤‖ε
1
2 δtE

1
2 ‖2

E+‖µ
1
2 δtH

1
2 ‖2

H +
(∆t)2

4

(
‖ε−

1
2 δh

2 δtH
1
2 ‖2

E+‖µ− 1
2 δh

1δtE
1
2 ‖2

H

+‖ε−
1
2 δt

[
δh

1 H
1
2 +

∆t

2µ
(δh

1)
2E

1
2

]
‖2

E+‖µ− 1
2 δt

[
δh

2E
1
2 +

∆t

2ε
(δh

2)2H
1
2

]
‖2

H

)
.

This means that the splitting scheme S-FDTD is unconditionally stable.
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Remark 3.1. Theorems 3.1 and 3.2 remain true for the case of variable coefficients ε,µ,σ
and σ∗ provided ε and µ are strictly positive continuous functions on Ω̄ and σ and σ∗

are nonnegative continuous functions on Ω̄ (and the required smoothness on E and H

is present). In fact, in this case, the same argument as in the proof of Theorem 3.1 still
works.

Remark 3.2. The error estimates in Theorem 3.1 depend on strong spatial smoothness as-
sumptions on the solutions of the Maxwell equations. The spatial smoothness restrictions
on E and H might be reduced to Sobolev space bounds if the Bramble-Hilbert lemma,
rather than the Taylor series remainder, is used to bound the error terms.

4 Dispersion and dissipation properties of the two schemes

In this section, we study the dispersion and dissipation properties of the two splitting
schemes using a Fourier analysis. To this end, let us assume that σ = σ∗ =0 and ε and µ
are constant, that is, the isotropic medium is lossless and homogeneous. Let

En
α,β,γ = Êξne−i(αkx∆x+βky∆y+γkz∆z), Hn

α,β,γ = Ĥξne−i(αkx∆x+βky∆y+γkz∆z),

where the complex-valued vectors Ê is the eigenvector of the equivalent scheme (2.31)-
(2.33) of the scheme IS-FDTD, Ĥ is the corresponding eigenvalue for H, ξ is the complex
time eigenvalue (or stability factor) we wish to find out and whose magnitude will deter-
mine the stability and dissipation properties of the scheme IS-FDTD. Substituting them
into (2.31)-(2.33) yields a homogeneous algebraic system with a non-zero solution Ê. Sim-
ilar system can be obtained for Ĥ. It is known that the determinant of the coefficient ma-
trix should be zero. A straightforward but tedious calculation leads to the characteristic
polynomial equation for ξ:

(ξ−1)2 ( β2 ξ2+2 β1 ξ+β0 )2 = 0, (4.1)

where

β2 = β0 =1+γ1+γ2+(c∆t)6(ax)
2(by)

2(cz)
2,

β1 =−1+γ1+γ2−(c∆t)6(ax)
2(by)

2(cz)
2,

ax =
sin( 1

2 kx∆x)

∆x
, by =

sin( 1
2 ky∆y)

∆y
, cz =

sin( 1
2 kz∆z)

∆z
.

In the definitions of β1 and β2,

γ1 =(c∆t)2[(ax)
2+(by)

2+(cz)
2], γ2 =(c∆t)4[(axby)

2+(bycz)
2+(czax)

2]. (4.2)

Eq. (4.1) has exactly six roots:

ξ1 = ξ2 =1, ξ3 = ξ4 =(β2)
−1[−β1+i

√
(β2)2−(β1)2],

ξ5 = ξ6 =(β2)
−1[−β1−i

√
(β2)2−(β1)2].
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It is clear that the moduli of the six roots are equal to unity. This means that the scheme
IS-FDTD is unconditionally stable and non-dissipative.

Similarly, we can derive the characteristic polynomial equation for the splitting
scheme S-FDTD:

(α3 ξ3+α2 ξ2+α1 ξ+α0 )2 = 0, (4.3)

where

α3 =1+γ1+γ2+(c∆t)6(ax)
2(by)

2(cz)
2,

α2 =−3+γ1+3γ2+3(c∆t)6(ax)
2(by)

2(cz)
2,

α1 =3−γ1+3γ2+3(c∆t)6(ax)
2(by)

2(cz)
2,

α0 =−1−γ1+γ2+(c∆t)6(ax)
2(by)

2(cz)
2,

where γ1 and γ2 are given by (4.2). The three repeated roots (one real and two complex)
can still be expressed explicitly but are very complicated. So we omit them here but plot
|ξ| numerically in Figs. 1 and 2 below. To this end, let

kx = ksin(φ)cos(θ), ky = ksin(φ)sin(θ), kz = kcos(φ),

k2 =(kx)
2+(ky)

2+(kz)
2, Nλ =

λ

h
, ω = ck, S= c∆t/h.

Then k is the wave number, θ and φ are the wave propagation angles, λ is the wavelength,
Nλ is the number of points per wavelength (NPPW) (we assume here that ∆x=∆y=∆z=
h), and

√
3S is the Courant (or CFL) number.

Fig. 1 shows the modulus of the three roots ξ of the polynomial equation (4.3) (or
the stability factor) for the splitting scheme S-FDTD as a function of the propagation
angle θ at a CFL number

√
3S = 1.5

√
3 in the case with Nλ = 30 (number of points per

wavelength) and φ = 45◦ (left picture), and as a function of the propagation angle φ in
the case with θ = 35◦, the number of points per wavelength Nλ = 40 and S = 1.4 (the
CFL number is

√
3S) (right picture). Fig. 2 presents the modulus of the three roots ξ

of (4.3) for S-FDTD as a function of S (the CFL number is
√

3S) in the case with the
number of points per wavelength Nλ = 60, θ = 65◦ and φ = 35◦ (left picture), and as a
function of Nλ (the number of points per wavelength) in the case with θ = 65◦, φ = 35◦

and the CFL number
√

3S = 1.5
√

3 (right picture). In both figures, the solid line (lower
curve) represents the non-propagating computational mode corresponding to the real
root, and the dashed line (the upper curve) represents the physical mode corresponding
to the principal (complex) root ξ of the characteristic polynomial equation (4.3) that is
an approximation to exp(iω∆t) = exp(ick∆t). From the Figs. 1 and 2 it can be seen that
the modulus of the principal (complex) root is bigger than 1 but |ξ|= 1+O(∆t). So the
splitting scheme S-FDTD is unconditionally stable and dissipative.
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Figure 1: Modulus |ξ| of the three roots of the characteristic polynomial equation (4.3) (or the stability factor)

for S-FDTD against the propagation angle θ at a CFL number
√

3S = 1.5
√

3 in the case with φ = 45◦ and

Nλ = 30 (left), and against the angle φ at a CFL number
√

3S = 1.4
√

3 in the case with θ = 35◦ and Nλ = 40
(right).
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Figure 2: Modulus |ξ| of the three roots of the characteristic polynomial equation (4.3) (or the stability factor)

for S-FDTD as a function of S (the CFL number is
√

3S) in the case with Nλ =60, θ =65◦ and φ=35◦ (left),

and as a function of Nλ (number of points per wavelength) at the CFL number
√

3S=1.5
√

3 in the case with
θ =65◦ and φ=35◦ (right).

The normalized phase velocity is determined from the principal root ξ as follows
(see [25]):

vp

c
=

1

ω∆t
arctan

(ℑ(ξ)

ℜ(ξ)

)

=
1

ck∆t
arctan

(ℑ(ξ)

ℜ(ξ)

)
=

Nλ

2πS
arctan

(ℑ(ξ)

ℜ(ξ)

)
. (4.4)
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Figure 3: Normalized phase velocity vp/c as a function of the angle θ at a CFL number of 1.5
√

3 in the case

with Nλ = 20 (NPPW) and φ = 40◦ (left) and as a function of the angle φ at a CFL number of 3.5
√

3 in the
case with Nλ =40 (NPPW) and θ =25◦ (right) for S-FDTD and IS-FDTD.
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Figure 4: normalized phase velocity vp/c as a function of S (the CFL number is
√

3S) in the case with θ=45◦,
φ=65◦ and Nλ=40 (left), and as a function of Nλ (NPPW) at a CFL number of 2.4

√
3 in the case with θ=35◦

and φ=65◦ (right) for S-FDTD and IS-FDTD.

Fig. 3 shows the normalized phase velocity vp/c as a function of the propagation angle θ

at a CFL number of
√

3S = 1.5
√

3 in the case with the number of points per wavelength
Nλ = 20 and φ = 40◦ (left picture) and as a function of the propagation angle φ at a CFL
number of

√
3S = 3.5

√
3 in the case with the number of points per wavelength Nλ = 40

and θ = 25◦ (right picture) for the schemes S-FDTD and IS-FDTD. Fig. 4 presents the
normalized phase velocity vp/c as a function of S (the CFL number is

√
3S) in the case

with θ =45◦, φ=65◦ and Nλ =40 (left picture), and as a function of the number of points
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per wavelength Nλ at a CFL number of
√

3S=2.4
√

3 in the case with θ =35◦ and φ=65◦

(right picture) for the schemes S-FDTD and IS-FDTD. As seen from Figs. 3 and 4, the
normalized phase velocity vp/c of the improved splitting scheme IS-FDTD is much more
close to 1 than that of the splitting scheme S-FDTD, which means that the dispersion error
of the scheme IS-FDTD is much smaller than that of the scheme S-FDTD.

5 Numerical experiments

In this section we present some numerical results to illustrate the efficiency of the two
schemes and verify the theoretical convergence rates of the two schemes in some simple
cases. Results obtained by the two schemes are also compared with those given by the
ADI-FDTD scheme proposed in [21, 27].

In all examples, we assume that Ω = [0,1]×[0,1]×[0,1] and that ε = µ = 1. All the
problems were computed using the three schemes: S-FDTD, IS-FDTD and ADI-FDTD
and coded in Fortran 77 with implementation in a 1.70GHz PC with 256Mb memory and
an operating system Windows 2000.

5.1 Example 1

We firstly assume that σ = σ∗ =0. An exact solution of the Maxwell equations (1.1)-(1.6)
with the boundary condition (2.1) is:

Ex =
1

4

√
3cos(

√
3πt)cos[π(1−x)]sin[π(1−y)]sin[π(1−z)],

Ey =
1

2

√
3cos(

√
3πt)sin[π(1−x)]cos[π(1−y)]sin[π(1−z)],

Ez =−3

4

√
3cos(

√
3πt)sin[π(1−x)]sin[π(1−y)]cos[π(1−z)],

Hx =−5

4
sin(

√
3πt)sin[π(1−x)]cos[π(1−y)]cos[π(1−z)],

Hy =sin(
√

3πt)cos[π(1−x)]sin[π(1−y)]cos[π(1−z)],

Hz =
1

4
sin(

√
3πt)cos[π(1−x)]cos[π(1−y)]sin[π(1−z)].

The experiment was carried out with different spatial mesh sizes and CFL numbers.
The elapsed CPU time in seconds (CPU) and absolute error of the electric and magnetic
fields in the discrete energy norm (E-error, H-error) as well as the estimated rate in time
of convergence of E and H (Rate-E, Rate-H) are provided in Table 1, where the spatial
step size is taken as h=0.01.

From Table 1 it is seen that the convergence rate in time of S-FDTD is of first-order and
that of IS-FDTD and ADI-FDTD is of second-order, as demonstrated by the theoretical
analysis. It should be pointed out that the error is dominated by the time discretization
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Table 1: Absolute error of E and H in the energy norm, convergence rate in time and CPU time of S-FDTD,
IS-FDTD and ADI-FDTD under different CFL numbers with the spatial step size h=0.01 at time T =1.

Scheme ∆t E-error H-error Rate-E Rate-H CPU

5h 3.988e-2 6.702e-2 112.1

4h 3.367e-2 5.139e-2 0.759 1.19 140.1

S-FDTD 2h 1.844e-2 2.345e-2 0.856 1.139 271.66

1h 9.554e-3 1.120e-2 0.9491 1.067 529.28

0.5h 4.821e-3 5.498e-3 0.9868 1.026 1192.80

0.25h 2.387e-3 2.756e-3 1.014 0.9962 2351.69

5h 4.831e-3 4.712e-3 147.6

4h 3.14e-3 3.02e-3 1.93 2.02 182.3

IS-FDTD 2h 8.657e-4 7.892e-4 1.859 1.928 355.94

1h 2.893e-4 2.552e-4 1.581 1.628 703.42

0.5h 1.441e-4 1.262e-4 1.005 1.016 1398.92

0.25h 1.078e-4 9.532e-5 0.4298 0.4048 2796.66

0.125h 9.865e-5 8.783e-5 0.1274 0.1180 5612.53

5h 7.304e-3 6.815e-3 128.0

4h 4.7e-3 4.405e-3 1.976 1.956 156.6

ADI-FDTD 2h 1.244e-3 1.167e-3 1.918 1.917 305.02

1h 3.825e-4 3.533e-4 1.701 1.723 603.42

0.5h 1.673e-4 1.511e-4 1.193 1.225 1196.01

0.25h 1.135e-4 1.015e-4 0.5595 0.5736 2401.22

0.125h 1.001e-4 8.939e-5 0.1818 0.1839 5512.44

error only when ∆t ≥ h. Table 1 shows that IS-FDTD is more accurate than ADI-FDTD
though IS-FDTD uses about 16.7% more CPU time than ADI-FDTD does. Further, with
the CFL number is getting bigger, the scheme IS-FDTD is getting more accurate than the
scheme ADI-FDTD.

To see the convergence rate in space of the improved scheme IS-FDTD and the ADI-
FDTD scheme we take h = 0.02 and present the results in Table 2. Table 3 gives the esti-
mated convergence rate in space of the two schemes, which is obtained by using Tables
1 and 2. From Table 3 it is found that the convergence rate in space of the two schemes is
of second-order, which is consistent with the theoretical analysis. It should be noted that
the error is dominated by the spatial discretization error only when ∆t≤h. To investigate
the performance of the improved splitting scheme IS-FDTD and the ADI-FDTD scheme
in a long time, we present Table 4 to show the absolute error and CPU time of the two
schemes in the case with h=0.02 and time T=8. The CFL number is 0.5. From the Tables
1-4 we see that the improved splitting scheme IS-FDTD and the ADI-FDTD scheme are
more accurate than the splitting scheme S-FDTD.
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Table 2: Absolute error of E and H in the energy norm and CPU time of S-FDTD, IS-FDTD and ADI-FDTD
under different CFL numbers with the spatial step size h=0.02 at time T =1.

Scheme ∆t E-error H-error CPU

2h 3.338e-2 5.165e-2 17.23
S-FDTD 1h 1.816e-2 2.371e-2 32.72

0.5h 9.278e-3 1.146e-2 64.78
0.25h 4.549e-3 5.756e-3 129.48

0.125h 2.119e-3 3.013e-3 258.47

2h 3.426e-3 3.236e-3 22.41
IS-FDTD 1h 1.152e-3 1.030e-3 43.36

0.5h 5.759e-4 5.057e-4 87.98
0.25h 4.310e-4 3.812e-4 167.38

0.125h 3.947e-4 3.512e-4 386.42

2h 4.988e-3 4.642e-3 18.59
ADI-FDTD 1h 1.531e-3 1.411e-3 35.95

0.5h 6.695e-4 6.039e-4 70.81
0.25h 4.543e-4 4.059e-4 142.02

0.125h 4.005e-4 3.574e-4 290.47

Table 3: Convergence rate in space of the two schemes IS-FDTA and ADI-FDTD at time T =1.

Scheme Time Step ∆t 1h 0.5h 0.25h 0.125h

IS-FDTD Rate-E 0.993 1.58 1.873 1.967
Rate-H 0.986 1.595 1.8817 1.969

ADI-FDTD Rate-E 0.808 1.441 1.819 1.951
Rate-H 0.773 1.426 1.815 1.950

5.2 Example 2

In this example we assume that σ∗ = 0, σ = 3π2+1. The exact solution of the Maxwell
equations (1.1)-(1.6) with the boundary condition (2.1) is given by

Ex =
2

3π
e−t cos(πx)sin(πy)sin(πz),

Ey =− 5

6π
e−t sin(πx)cos(πy)sin(πz),

Ex =
1

6π
e−t sin(πx)sin(πy)cos(πz),

Hx = e−t sin(πx)cos(πy)cos(πz),

Hy =
1

2
e−t cos(πx)sin(πy)cos(πz),

Hz =−3

2
e−t cos(πx)cos(πy)sin(πz).



430 L. Gao, B. Zhang and D. Liang / Commun. Comput. Phys., 4 (2008), pp. 405-432

Table 4: Performance of IS-FDTD and ADI-FDTD at a long time T =8 with h=0.02.

Scheme ∆t E-error H-error CPU

IS-FDTD 0.5h 2.706e-3 5.558e-3 680.91

ADI-FDTD 0.5h 3.169e-3 6.439e-3 562.42

Table 5: Relative error of E in the energy norm and CPU time of S-FDTD, IS-FDTD and ADI-FDTD under
different CFL numbers with the spatial step size h=0.01 at time T =1.

Scheme ∆t RE-E CPU

0.5h 2.5228e-2 501.75
S-FDTD 0.4h 2.0317e-2 636.33

0.25h 1.2828e-2 989.38
0.20h 1.030e-2 1261.63

0.5h 5.5377e-5 707.67
IS-FDTD 0.4h 3.8892e-5 889.39

0.25h 3.3472e-5 1369.44
0.20h 3.4900e-5 1732.04

0.5h 6.0676e-5 583.69
ADI-FDTD 0.4h 5.2007e-5 720.01

0.25h 4.3819e-5 1124.20
0.20h 4.2184e-5 1401.98

Table 5 presents the relative error of the electric field E in the energy norm and CPU
time of S-FDTD, IS-FDTD and ADI-FDTD under different CFL numbers with the spatial
step size h = 0.01 at time T = 1. The results show that IS-FDTD is more accurate than
ADI-FDTD for this damped wave case.
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