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Abstract. In the Equation-free framework, a macro-coarse projective integration method
consists of two parts: the time stepper and time projection on macro scale. The first
one consists of lifting, micro simulation and restriction. For extracting directly from
microscopic simulations the information which would be obtained from the macro-
scopic model of two-dimensional microscopic systems, the time stepper based on the
one-dimensional cumulative distribution functions, the marginal cumulative and ap-
propriate number of the conditional cumulative distributions, is introduced. Here this
procedure is tested on the nonlinear ion acoustic wave in a plasma. The numerical
micro-solver is the one dimensional electrostatic particle-in-cell code. It is shown that
particle correlations related to wave structures are better preserved by the new model.
The lifting step is critically related to the noise in system. The enlarged noise, rise of
correlations, trapping of particles during the wave steepening can seriously violate the
basic assumptions of the equation-free approach.

AMS subject classifications: 68U20, 81T80
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1 Introduction

The macroscopic, e.g., coherent behavior in the complex systems emerges in the inter-
actions of microscopic constituents-atoms, molecules, cells, individuals of a population-
among themselves and with an environment. As a consequence the macroscopic be-
havior can somehow be deduced from the microscopic one. For some problems like
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Newtonian fluid mechanics the Navier-Stokes equation predated its microscopic deriva-
tion from the kinetic theory. However, in many problems in chemistry, ecology,material
science, engineering, etc. the closures required to translate them from the microscopic
(particle) level to a high-level macroscopic description are unknown. Severe limitations
arise in trying either to find closures or to solve these problems at the scale at which the
questions of interest are asked, by using microscopic simulations only. The Equation-free
(EFREE) proposed by I.G. Kevrekidis et al. [1–4] is one of the systematic frameworks
for directly extracting from microscopic simulations the information which would be ob-
tained from macroscopic models had these been available in a closed form. This is a
system based procedure processing the results of short bursts of appropriately initialized
microscopic simulations.

The main tool that allows the performance of numerical tasks at the macroscopic level
using the microscopic (e.g., stochastic) simulation codes is the so-called coarse time-stepper.
It consists of three parts: lifting (mapping from coarse-macroscopic to microscopic level),
short time micro calculations around which the macroscopic calculations are wrapped
and restriction (mapping from fine-micro scale to macroscopic level) [1]. The details
about each part are presented in many papers [1–10]. The coarse time stepper is com-
bined with time projection at macroscopic level, i.e., time projection of the coarse observ-
ables on the macroscopic scale. Significant premise in the EFREE framework is the clear
separation between micro and macro time scales.

The complexity of plasma phenomena challenged researchers to try to implement the
multiscale approaches developed in other scientific fields. One of these attempts is the
implementation of the EFREE procedure by Shay et al. [11], in the context of the nonlin-
ear ion-acoustic wave as the preparatory step for the intriguing task to solve a problem
of the magnetic reconnection. There, the ion-acoustic wave propagation and steepening
are originally followed by the modified three-dimensional electromagnetic particle-in-
cell (3D EM PIC) code. In EFREE the electrons are adiabatic, both the electron and ion
velocity distributions are assumed to be the shifted Maxwellian and quasineutrality is
proposed. The results of the multiscale EFREE calculations are discussed with respect to
the full micro-PIC simulations. At the first step the coarse observables are determined.
First three moments: ion density, ion velocity and pressure are taken as the’active’ coarse
observables, i.e., those macro variables which are directly computed forward in time.
On the other hand, the electron density, electron velocity and electric field are taken as
the ’passive’ coarse variables, i.e., variables which are not calculated directly but from
active macro observables. These observables are defined on the coarse mesh by the lin-
ear interpolation procedure [11]. The micro quantities, the ion and electron positions are
obtained through the lifting from corresponding densities and the ion and electron ve-
locities are lifted from corresponding velocity distributions (approximated by the shifted
Maxwellian). The PIC solver is then applied for the short time in order to ensure the
system to stay near the so-called slow manifold. In other words, the implementation
of the micro solver has to ensure the reconstruction of the values of the macro quantities
which would be obtained under the same conditions but using only the micro solver. The
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coarse-macro observables are generated by the reverse operation-restriction. After the lin-
ear interpolation they are projected in time. Approximately time interval for the micro
calculation is around 20 micro time steps and the macro (projection) time step is two or-
der of magnitude larger then the micro time step [11]. This procedure basically neglects
kinetic effects in a plasma. The problems which appeared in the reconstruction of the ion-
acoustic wave when the wave steepening is noticed were related to the particle trapping,
non-Maxwellian features and violated quasineutrality. Thus, instead of moments, the
wavelet technique for reconstructing the particle probability distribution function (PDF)
was indicated as a possible solution [11]. The aim of this paper is to further test appli-
cability of the EFREE framework, attempting to include kinetic effects through particle
correlations in the nonlinear ion-acoustic wave (IAW) paradigm. This approach uses the
marginal and conditional cumulative distribution functions as the macro (coarse) scale
observables [10]. The results of the EFREE simulations are compared with the results
obtained by the one-dimensional electrostatic particle-in-cell (1D ES PIC) solver [12]. In
addition results are compared with the results in [11] and multiscale calculations in the
framework of the systems of coupled oscillators [13–16].

2 The ion-acoustic wave

The theoretical modeling of the ion-acoustic waves usually starts with the fluid equations
in a form [11]:

∂ni

∂t
+∇·(ni

~Vi)=0,

mi(
∂
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+~Vi ·∇)~Vi =−

∇Pi

ni
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where n is density, ~V is velocity, P is pressure, and the subscript ′i′ and ′e′ refers to posi-
tive ions (protons) and electrons, respectively. In equations (2.1) the electron inertia term
(me) is ignored and because the electron thermal velocity is so much larger than the ion-
sound speed, the isothermal electrons (γe =1) are used. Initially the electron temperature
is constant in space, which allows to keep relation ∇Pe = Te∇ne for all time. The disper-
sion relation for ion-acoustic waves:
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can be obtained by the linearization of (2.1) by introducing a small perturbation in a form:

f (~x,t)= f0(~x)+ f̃ e(i~k·~x−ωt), (2.3)

for the electron and ion densities ( f =ni,ne), assuming the vanishing initial velocities, the
weak ion Landau damping and the non-isothermal condition, Te/Ti ≫1 [11].

2.1 One-dimensional electrostatic Particle-in-Cell code

We have employed a one-dimensional electrostatic Particle-in-Cell (PIC) code based on
es1 [12]. The ion and electron ensembles are initialized in the position - velocity space
by the quiet start procedure [12] assuming the Maxwellian velocity distribution for both
species.

The value of the particle charge densities are sampled by the first order weighting
smoothness or the cloud-in-cell (CIC) procedure [12]. This procedure significantly re-
duces noise in the system. The new mesh is built of nx grids (in x direction). The charge
density is used for determination of the electrostatic field on the corresponding mesh
through the Poisson equation:

E=−
∂ϕ

∂x
,

∂2 ϕ

∂x2
=−

ρ

ε0
,

(2.4)

where ρ is the charge density and E is the electric field. In numerical calculations the
Poisson equation is solved by the fast Fourier transform [12]. The field values at particle
positions are determined by the interpolation procedure.

The particle equations (i= N equations) of motion:

m
dvi

dt
= Fi =qiE,

dxi

dt
=vi,

(2.5)

are replaced by the finite-difference equations and solved by the leap-frog method [12].
All quantities are normalized to the ion scale: the ion plasma frequency, the ion Debye
length, and the IAW period, respectively.

The set of parameters (normalized) in this paper is: L=1.2, dt=0.0001, Ne=Ni=N=
252144, wpe =5091, qe/me =−1.0, vte =42.5, wpi =120, qi/mi =0.00056, vti =0.22, nx=512,
the particle drift velocities are initially taken as zero. Note that above corresponds to the
similar parameter set as in [11].

The macro (coarse) observables are the total energy and the particle densities. Their
values obtained by the 1D ES PIC code and EFREE procedure are compared and used to
estimate the possible benefits of the EFREE approach.
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3 Equation-free coarse projective integration

To resolve a multiscale phenomenon and propagate its influence across scales is the cru-
cial goal of mathematical and physics based models. If no explicit coarse-grained, macro-
scopic equations are available, the EFREE framework has been proposed [1–4]. Equation-
free methods numerically evolve the coarse-scale behavior through appropriately de-
signed short computational experiments performed by the fine scale (microscopic) mod-
els. One of the EFREE methods is coarse (macro) projective integration. The macro pro-
jective integrator consists of a coarse scale time-stepper and projection step in time, or
the temporal evolution of the macro observables [1–4].

3.1 A coarse time-stepper

The coarse time-stepper is the basic element for exchanging information between coarse-
scale model states and fine-scale states. It consists of three parts: lifting, micro-scale evo-
lution and restriction. The lifting transforms coarse-scale macro observables to consis-
tent fine-scale states; restriction is the reverse transformation, from fine-scale states to
coarse-grained observable. These two transformations applied successively should give
the identity on the coarse observables up to modulo round-off error [1–4].

In the standard approach for many multiscale problems observed along a single ef-
fective spatial dimension, the particle positions constitute the fine-scale model state and
the local mean particle concentration constitutes the coarse-grained state. Then the local
mean concentration is observed in terms of a histogram of the single particle position
probability distribution function (PDF). However, the PDF histogram depends on a bin
size used for estimation. Moreover, the PDF may become zero if the bin size is too small
so that no particle is inside it [1, 17]. To overcome these difficulties the cumulative dis-
tribution function (CDF) is used as an alternative coarse-scale observable. Actually, the
inverse CDF (ICDF) which is supported in [0,1] is constructed instead the CDF which
has in principle infinite support. The ICDF is further estimated by its projection on some
chosen orthogonal polynomial set [9, 10].

The fundamental problem in multidimensional particle systems originates from an
infeasibility to define the multidimensional CDF. Therefore, the idea is to substitute the
multidimensional CDF (ICDF) by defining the set of one-dimensional CDF-s (ICDF-s)
[10]. For two dimensional case, which is here of interest, the 2D CDF can be represented
in a form:

FXV(x,v)=

v
∫

−∞

FX|V(x|v)
dFV(v)

dv
dv, (3.1)

where FXV(x,v), FV(v) and FX|V(x|v) are the 2D CDF, differentiable marginal CDF
(MCDF) and conditional CDF-s (CCDF), respectively. The CCDF is defined by the proba-
bility of the particle positions to have values up to some fixed x while the corresponding
particle velocities are in infinitesimally small interval (v,v+△), or in the language of the
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Figure 1: 2D ’phase-space’ and the cumulative distribution functions: 2D CDF, MCDF and CCDF-s.

CDF-s:

FX|V(x|v)= lim
△v→0

FXV(x,v+△v)−FXV(x,v)

FV(v+△v)−FV(v)
. (3.2)

Assuming smoothness, a finite number of the CCDF-s can be used to recover (for example
through interpolation) the particle distribution. Schematic presentation of the CDF-s is
given in Fig. 1.

3.1.1 Lifting

The lifting procedure starts with the ICDF-s for the marginal and several 1D conditional
distributions. The number of latter ones is determined by the smoothness of the 2D phase
space. In practice, the velocity of the ith particle is directly taken from the marginal ICDF
as vs

i = IFV((i−0.5)/N), i=1,2,··· ,N, where N is the total number of particles and super-
script s indicates that vs

i are sorted in monotonically ascending sequence which reminds
on the so called quiet start procedure. Then corresponding to each vs

i is the particle posi-
tion xi determined as xi = IFX|V(Ui,v

s
i ), where Ui are uniformly distributed real random

values over [0,1]. Actually, as was noted, only a few conditional CDF-s are needed if
the particle distribution over phase space is sufficiently smooth [9]. Therefore, for each
particular vs

i the CCDF-s available in its neighborhood (e.g., the closest one, or an inter-
polation of the closest ones) are employed.

Let the number of CCDF-s be M (M ≪ N). Then the inverse CCDF is given by
IFX|V( f ,vs

k), k=1,2,··· ,M, where f is from [0,1], and vc
k =vs

(k−1)int(N/M)+int(N/2M). There-
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fore, the particles are lifted to their positions with respect to the vc
k, i.e., xik= IFX|V(Uik,vc

k),

where ik=1,2,··· ,nk, nk is the number of particles in kth layer in v-space and n1+n2 ···+
nM =N. By this procedure the particle correlations are implicitly better preserved then in
the EFREE procedures which are based on the PDF-s or 1D CDF-s.

3.1.2 Fine-scale evolution

In the ion-acoustic wave problem, the ensembles of the Ne = N electrons and Ni = N ions
are followed in the self-consistent electrostatic field. The fine-scale model state consists of
the electron and ion positions and velocities, i.e., the model state is represented by a point
in the corresponding 2N D phase space, (xi,vi), i = 1,2,··· ,N. The micro-scale particle
dynamics is modeled by the 1D ES PIC numerical routine [12] and corresponding fine-
scale (micro-scale) state is visualized in the 2D (x,v) space for each of mentioned species.
Being basically the collective phenomenon, the plasma ion-acoustic wave involves the
correlations in particle motion which are observed through the periodic pattern in the
numerical PIC experiment [11, 18], as can be seen in Figs. 3-6 g,h. The wave pattern
formation is interpreted as a consequence of the space-time particle position and velocity
correlations in the (x,v) phase space. Therefore, the above described procedure based
on the conditional cumulative distributions is adopted. In addition the separation of the
ion- and electron- correlation time is assumed which is the necessary assumption for the
implementation of the multi-scale procedure [1, 2, 11]. In other words, the application
of EFREE CCDF procedure assumes: the ion correlation time (ion plasma period) ≫ the
electron correlation time (electron plasma period).

Nonlinear evolution of the ion-acoustic wave involves in the latter phase (t∼0.5) the
ion trapping effects, Figs. 5-6. The new characteristic (correlation) time is the bounce time
which is between the electron and ion correlation time. Therefore, if it is not possible to
clearly separate the correlation timescales, the application of the EFREE maybe under
question. This point will be discussed in the next section.

3.1.3 Restriction

The mapping from fine-scale to coarse-scale state is started by sorting the particle veloc-
ities {vs

i }, i = 1,2,··· ,N, in the ascending order. To preserve the correlations the corre-
sponding particle positions are sorted as {xs

i }.

Then 2D mesh is formed with each grid point having a coordinate (xs
j ,v

s
l ), j=1,2,··· ,nx,

l=1,2,··· ,nv, (nx,nv≪N). For each (xs
j ,v

s
l ) grid point, the number, N f , of particles which

x and v coordinates satisfy xi <=xs
j and vi <=vs

l , respectively, is counted and the CDF at

this grid point evaluated as

FXV(xs
j ,V

s
l )=

N f −0.5

N
. (3.3)

This is only one of several possibly applicable restriction methods [8,9,17]. Assuming the
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CDF to be differentiable, that the CCDF (7) can be written in a form:

FX|V(xs
j |v

s
k)=

FXV(xs
j ,v

s
y2)−FXV(xs

j ,v
s
y1)

FXV(xs
nx,vs

y2)−FXV(xs
nx,vs

y1)
, (3.4)

where k=1,··· ,M(M≤nv≪N), and y1 and y2 can be chosen as (k−1)int(nv/M)+1 and
kint(nv/M), respectively. Once the CCDF is available numerically, the conditional ICDF
IFX|V( f ,vs

k) can be evaluated as one-dimensional inverse cumulative distribution by the
standard subroutine in the PIC code [12].

3.2 Projection step in time

The projection step in time, or the temporal evolution of the coarse observables, is re-
alized by the least -square method [2, 11] briefly described in the following. The value
of each coarse observable is collected from the successive m f time steps (the micro-time
steps, dt, or several micro-time steps long) including the projection time tp. With these
m f values the fitting procedure based on the least-square technique is initialized and the
value of coarse observable at the coarse-time scale, t=tp+△t, is estimated, where △t≫dt.
The separation of the electron and ion correlation time determines the relation between
the micro and macro time step. In addition, the Courant condition [12] should be kept in
mind. Generally, the macro time step, △t, is defined on the ion scale and micro time step,
dt, on the electron time scale: △t ∼ 10−50dt. Problem appears when the ion trapping
becomes pronounced, because the clear separation among the time scales disappears.

We note that the polynomial fitting procedure was also tested. After comparing the
results from different fitting schemes finally the least-square fitting was chosen.

4 Results and discussion

The presentation in Section 3 of the coarse time-stepper routine for the ion-acoustic wave
was of a general type. Thus, in the following, concrete realization is briefly illustrated.

At first, the set of coarse observables is identified to which the fine-scale model states
for the ion and electron species are restricted. The set of coarse ion observables consists
of the proper number of the expansion coefficients in the Lagrange polynomial basis [9]
of the MCDF, FV(v), and the several CCDF-s (Fk

X|V
(x|v),k = 1,2,···M). Number of the

significant expansion coefficients and the number of the CCDF-s are determined by the
direct numerical estimations. Here presented results are generated over the 2D mesh
which consists of (nx,nv) = (512,1e5) grid points, the number of expansion coefficients
is 30 and M = 100 (the values of other parameters are written in Section 2). The former
value is closely related to the smoothness of the corresponding MCDF and the latter to
the smoothness of the CCDF-s (Fig. 2).
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Figure 2: The ion 2D CDF, CCDF at t=tp=0.1 and CCDF after applying lifting and restriction. The parameter
set is given in Section 2.
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The set of the coarse electron observables consists of the marginal CDF, FV(v), and
density distribution which is determined from the corresponding ion charge density dis-
tribution assuming the adiabaticity [11].

The ion positions and velocities can be lifted from the corresponding coarse observ-
ables through the lifting procedure described in Section 3.1.1. The electron velocities are
lifted from the electron MCDF by the same procedure as ion velocities are lifted from
the corresponding ion MCDF. On the other hand, electron positions are lifted from the
electron charge density which is then interpreted as the MCDF in the coarse grid in x
space.

The noise is inherently present in each particle simulation [12] due to a finite number
of particles per grid. However, the additional noise appears during the restriction-lifting
procedure. In order to decrease it, the linear interpolation scheme introduced in [11] is
adopted to the ion charge distribution. The linear interpolation is realized in the follow-
ing way. The restricted, coarse observable-ion charge density after the first interpolation
level is:

ρ
(1)
i =0.25ρ2i−1+0.5ρ2i +0.25ρ2i+1, i=1,··· ,nm/2, (4.1)

where nm=512. Note that the periodic boundary conditions are assumed. The ρ(l) value
is defined at 2−lnm = nc = 32 grid points after l levels of interpolation. The ρ over the
coarse mesh with nc grids is then projected in time. Before lifting the number of mesh
grids is expanded to the nm grids. In other words, the linear interpolation is once more
called. Supposing the nc coarse data points for the variable ρ, the first level of interpola-
tion is:

ρ
(1)
2i =ρi, ρ

(1)
2i−1 =0.5(ρi−1+ρi), i=1,··· ,nc. (4.2)

Periodic boundary conditions are assumed. After l iterations, ρ(l) will be defined at mesh
with nm = 2lnc = 512 grid points. Therefore, the ion charge distribution collected in nm
positions, i.e., the corresponding electron density is the coarse observable for a lifting
step. The interpolation was also shown as necessary in order to be consistent with the
Courant condition [11, 12]. Somewhat unexpected, although the explicit Courant condi-
tion has not figured in the ES particle code, in the EFREE macro projection phase, this
condition emerges as the stability criterion [11,18]. Roughly, the macro time step (projec-
tive time step) has to be consistently chosen with respect to the finite speed of the infor-
mation transfer between the neighboring mesh grids in the simulation procedure. The
characteristic speed is the ion sound speed [11]. Thus, a larger macro time step requires
a bigger mesh cell. In practice this could be realized by time projection of the coarse
grained restricted quantities defined on the new mesh with smaller number of grids. It is
one reason more to project in time the density on the nc=32 spatial grids instead on the
512 grids. However, the projection time step (macro time step) appeared limited to the
10−20dt (micro time steps). Likely, not clear separation between the nonlinear IAW and
electron time scales is the one of possible reasons.

The lifting phase is followed by the fine-scale evolution which is realized by the 1D ES
PIC micro solver [12]. A crucial point is to determine an optimal time duration for short
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bursts of micro simulations in order to ensure that the system relaxes and always stays
near the slow-manifold; and to recover best possible values of macro (coarse) observables
closest to those that would be obtained by a direct micro solver (PIC simulations). Fact
that the regular ion-acoustic periodic wave pattern exists only in the limited time interval
to t∼ 0.5= 5000dt shows the main difficulty to determine the optimal interval for micro
bursts. The discussed points are illustrated in Figs. 3-6, which present the best results
after a large number of the numerical checks.

In Figs. 3-6 the snapshots of the ion density (a), electron density (b), marginal velocity
PDF for electrons (c) and ions (d), and the corresponding phase spaces obtained by the
full PIC and EFREE procedure are presented. Black curves in (a)-(d) are generated by the
PIC code and the red ones by the EFREE procedure. In addition, Fig. 7 illustrates time
development of the electron and ion kinetic energy, electric field energy and total energy
for parameter set in Section 2. The dark curves represent the EFREE and light curves the
results of full PIC calculations. In addition, in Fig. 8 the results of PIC simulations and
the EFREE projective integration are compared by defining the relative error [12]:

ε2 =

nxc

∑
j=1

(

f
e f ree
j − f

pic
j

)2

nxc

∑
j=1

(

( f
e f ree
j )2−( f

pic
j )2

)2
, (4.3)

where f j EFREE and PIC are the value of the coarse observable in the EFREE and PIC
output, respectively. In Fig. 8, errors for the electron and ion density are plotted. The
maximal value of the square root of the relative error is around 5%. Results presented
correspond to projective time step equal to 10 micro steps. During macro projective pro-
cedure the time stepper parts are checked separately, as mentioned in our several earlier
contributions [18].

The macro quantities, the ion and total energy obtained by the full PIC calculations are
nicely reproduced by the multiscale procedure in a time interval up to t<0.5, where the
separation of the ion and electron time scale is visible. However, clear separation of time
scales is absent when ion trapping is initialized as can be seen in the ion phase space. This
moment can be interpreted as a critical or bifurcation point as clearly manifested through
the relative errors plots in Fig. 8. Therefore, in this study, the application of the projective
integration routine becomes questionable after t∼0.5.

Let us return to the results in Figs. 3-6 to summarize several crucial points. The noise
is accumulated gradually with respect to the case with full PIC, as seen in Figs. 3-6. This
problem can be associated with the non-smoothness in the boundary layers in v-space of
the corresponding CCDF (Fig. 2). On the other hand, this is a reflection of poor statistics
(small number of ions) in these regions of phase space after the ion-wave (periodic) struc-
tures are developed. In addition, any implementation of the lifting step induces some
percentage of noise. Trying to overcome the noise problem by additional interpolation of
the coarse quantities before lifting has not given much improvement.
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Figure 3: Snapshots of the ion density (a), electron density (b), marginal velocity PDF for electrons (c) and
ions (d), and the corresponding phase spaces obtained by the PIC code and EFREE procedure at t=0.16. Black
curves in (a)-(d) are generated by the PIC code and the red ones by the EFREE procedure.
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Figure 4: Same as Fig. 3, except at t=0.38.
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time= 0.660
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Figure 5: Same as Fig. 3, except at t=0.66.
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time= 0.920
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Figure 6: Same as Fig. 3, except at t=0.92.
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Figure 7: The particle kinetic energies, electric field energy and total energy by PIC (grey) and EFREE.
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Figure 8: Relative error estimated by Eq. (4.3) for electrons and ions.

The lifting operation is not uniquely defined. In other words, naturally many dif-
ferent micro configurations correspond to the one macro state. This problem is partially
eliminated if the aim is to interpret evolution of the random, uncorrelated systems far
away from the critical points. There the probability of the most micro configurations is
equal. Only in such a steady case the clear separation of the micro and macro scale is
obvious. This is opposite to the ion-acoustic case treated here, where the collective phe-
nomena gradually build coherent structures increasing the correlation rate in a system.
That the lifting is critical step for the coherent-periodic (collective) processes is already
indicated in references [13–16] which are the pioneering attempts to implement the mul-
tiscale considerations in the coupled oscillator’s framework.



572 A. M. Maluckov, S. Ishiguro and M. M. Škorić / Commun. Comput. Phys., 4 (2008), pp. 556-574

At this point it is worth to overview our results with respect to some other works
on the EFREE framework. The similar problems mentioned here appeared in the EFREE
treatment by Shay et al. [11], which, actually, gave the motive to start this work. At first
sight their results might look better by comparing the relative errors after implementa-
tion of the EFREE procedure and used projective time step. However, by a closer inspec-
tion, these results are not fully clarified because the energy conservation has not been
presented. There are several uncertain points which influence to guess that the energy
conservation condition might be already violated in the very early stage of the projec-
tive integration. It is especially expected with respect to the used large projective time
step and consistency with the Courant condition. In addition, our experience after many
numerical calculations also indicates that the wavelet expansion, which is mentioned
in [11, 19], may not be sufficient to overcome the noise and particle correlation prob-
lems. Finally, although the qualitative presentation of the projective integration based on
the conditional cumulative technique is of our concern, it is worth mentioning that the
improved numerical procedures could possibly eliminate the part of a problem which
appeared here.

5 Conclusion

This work is one of the first attempts to test a method in the EFREE framework on the
plasma physics phenomenon. A new macro projective integration scheme developed for
two-dimensional microscopic systems was applied to the plasma ion acoustic wave. The
method consists of two parts: time stepper (lifting, micro simulation, restriction) and time
projection over the macro time scale. Time stepper is based on the one-dimensional cu-
mulative distribution functions as the coarse observables. These are the marginal cumu-
lative and several conditional cumulative distribution functions. The concrete number of
the coarse observables depends on the smoothness of the particle distributions, related
to the correlation among particles due to appearance of coherent wave structures. The
micro solver for the ion acoustic wave is the one-dimensional ES PIC code.

Our calculations indicate that the unclear separation of the micro and macro physics
scales in the nonlinear ion acoustic wave evolution is a crucial difficulty for working in
the EFREE framework. In addition, noise level which is inherent in PIC simulations has
been increasing specially during the repeating lifting phase in the procedure. Therefore,
it seems that the ion acoustic paradigm with the PIC micro solver may not be an adequate
test for the EFREE framework. Still, this should not discourage researchers to consider
alternative multiscale plasma physics problems in the EFREE context.
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