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Abstract. We study the generation of nonlinear plasma wake fields by intense laser
pulses, using an Eulerian code for the numerical solution of the fully relativistic one-
dimensional (1D) Vlasov-Maxwell equations. The examination of the phase-space of
the distribution function allows to study without numerical noise aspects of the par-
ticle acceleration by the wake-field generated by intense laser pulses, in the very low
density regions of the phase-space. We study the effect of the thermal spread on the
existence of accelerated beams, and we compare between results obtained from a cir-
cularly polarized wave and a linearly polarized wave.
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1 Introduction

Large amplitude wake fields can be produced by propagating ultrahigh power, short
laser pulses in underdense plasmas. When the laser power is high enough, the elec-
tron oscillation (quiver) velocity becomes relativistic, and large amplitude wake fields
are generated which support acceleration gradients much greater than those obtained in
conventional linear accelerators. Some important aspects of this problem and other non-
linear problems related to large amplitude laser-plasma interactions have been discussed
using the cold relativistic fluid equations [1, 2] (see also the review article in [3]).

Numerical simulations however remain the only alternative to study the kinetic ef-
fects in this highly relativistic and highly nonlinear problem. Kinetic effects (e.g., particle
trapping and acceleration) in short-pulse laser-plasma interactions are often simulated
numerically using particle-in-cell (PIC) codes. However several numerical effects in PIC
codes can lead to phase-space errors and unphysical numerical heating in the simulation,
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and hence the detailed phase-space structure and kinetic effects will be poorly approxi-
mated in the simulation. It was indeed reported in [4] that the results obtained by the PIC
codes show a momentum spread inside the laser pulse which is excessively and unphys-
ically large. At a high laser intensity, this can lead to spurious trapping of erroneously
large levels. The correction of this momentum spread error may require unacceptably
high resolution in a PIC code, especially if we want to look beyond the bulk fields for
phenomena which depends on the details of the phase-space, especially in the low den-
sity regions. A warm fluid model has been presented to study laser-plasma interactions
in [4], and in the results reported the bulk fields were insensitive to the details of the
distribution functions, for the set of parameters used. This was explained by the fact
the Lorentz force was much more important than the pressure force at the temperatures
considered. However, many processes of interest, like the trapping and acceleration of a
beam, should depend on the details of the phase-space.

We study in the present work the problem of the laser wake-field acceleration by us-
ing an Eulerian Vlasov code for the direct numerical solution in phase-space of the 1D
relativistic Vlasov-Maxwell equations. Eulerian Vlasov codes have been successfully ap-
plied in recent years to study several problems in plasma physics, especially problems
associated with wave-particle interaction and stimulated Raman scattering [5]. Inter-
est in Eulerian grid-based Vlasov solvers arise from the very low noise level associated
with these codes, which allows accurate representation of the low density regions of the
phase-space. This is obviously important if the physics of interest is in the low density
region of phase-space or in the high energy tail of the distribution function, as is the case
in the present problem. In the laser wake-field accelerator concept, a correctly placed
trailing electron bunch can be accelerated by the longitudinal electric field and focused
by the transverse electric field of the wake plasma waves. A fully nonlinear 1D relativis-
tic Vlasov-Maxwell model to study the self-consistent interaction of intense laser pulses
with plasmas can be found for instance in [6]. A characteristic parameter of a high power
laser beam is the normalized vector potential

|~α⊥|= |e ~A⊥/Mec
2|=α0,

where ~A⊥ is the vector potential, e and Me the electronic charge and mass respectively,
and c the speed of light. We are interested in the regime α0≥1.

A problem related to the laser wake-field accelerator concept is the plasma wake-
field accelerator, where the plasma responds to the self-fields of a driving electron beam,
instead of the ponderomotive forces of the laser pulse. The problem of the plasma wake-
field accelerator has been studied using an Eulerian Vlasov code to solve the 1D rela-
tivistic Vlasov-Maxwell equations [7]. The numerical technique was based on a fractional
step method similar to what has been presented in [8, 9]. This numerical approach dif-
fers from the one we use in the present work, which consists of integrating the Vlasov
equation along its characteristics in two dimensions, using a tensor product of cubic B-
splines for the interpolation along the characteristics, without applying a fractional step
technique [10]. A kinetic equation for the ions is included in the simulations.
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2 The relevant equations

2.1 The 1D relativistic Vlasov-Maxwell model

Time t is normalized to the inverse electron plasma frequency ω−1
pe , length is normal-

ized to l0 = cω−1
pe , velocity and momentum are normalized respectively to the velocity

of light c and to Mec. The general form of the Vlasov equation in a 4D phase-space
for the electron distribution function Fe(x,pxe,pye,pze,t) and the ion distribution function
Fi(x,pxi,pyi,pzi,t) (one spatial dimension) is written in a dimensionless form as follows :

∂Fe,i

∂t
+me,i

pxe,i

γe,i

∂Fe,i

∂x
∓
(

~E+
~pX~B

γe,i

)

· ∂Fe,i

∂~pe,i
=0, (2.1)

with

γe,i =
(

1+m2
e,i

(

p2
xe,i+p2

ye,i+p2
ze,i

))1/2
, (2.2)

(the upper sign in (2.1) is for the electrons equation and the lower sign for the ions equa-
tion, and subscripts e or i denote electrons or ions respectively). In our normalized units
me =1 and mi = Me/Mi, the ratio of electron to ion masses.

We write the Hamiltonian of a particle in the electromagnetic field of the wave:

He,i =
1

me,i
(γe,i−1)∓ϕ, (2.3)

where ϕ is the scalar potential. Eq. (2.1) can be reduced to a two-dimensional phase-space
Vlasov equation as follows. The canonical momentum ~Pce,i is connected to the particle
momentum ~pe,i by the relation

~Pce,i =~pe,i∓~α,

where~α= e~A/Mec is the normalized vector potential. From Eqs. (2.2)-(2.3), we can write

He,i =
1

me,i

(

(

1+m2
e,i

(

~Pce,i±~α
)2
)1/2

−1

)

∓ϕ. (2.4)

Choosing the Coulomb gauge (div~α=0) , we have for our 1D problem ∂αx/∂x=0, hence
αx = 0. The vector potential is now~α =~α⊥(x,t), and we also have the following relation
along the longitudinal direction:

dPcxe,i

dt
=−∂He,i

∂x
. (2.5)

And since there is no transverse dependence:

d~Pc⊥e,i

dt
=−∇⊥He,i =0. (2.6)
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This last equation means ~Pc⊥e,i = const. We can choose this constant to be zero without
loss of generality, which means that initially all particles at a given (x,t) have the same
perpendicular momentum ~p⊥e,i =±~α⊥(x,t). The Hamiltonian now is written:

He,i =
1

me,i

(

(

1+m2
e,i p

2
xe,i+m2

e,iα
2
⊥(x,t)

)1/2−1
)

∓ϕ(x,t). (2.7)

The 4D distribution function Fe,i(x,pxe,i,~p⊥e,i,t) can now be reduced to a 2D distribution
function fe,i(x,pxe,i,t):

Fe,i(x,pxe,i,~p⊥e,i,t)= fe,i(x,pxe,i,t)δ(~p⊥e,i∓~α⊥), (2.8)

where fe,i(x,pxe,i,t) verify the relation:

∂ fe,i

∂t
=

∂ fe,i

∂t
+

∂He,i

∂pxe,i

∂ fe,i

∂x
− ∂He,i

∂x

∂ fe,i

∂pxe,i
=0. (2.9)

This gives the following Vlasov equations for the electrons and the ions:

∂ fe,i

∂t
+me,i

pxe,i

γe,i

∂ fe,i

∂x
+

(

∓Ex−
me,i

2γe,i

∂α2
⊥

∂x

)

∂ fe,i

∂pxe,i
=0. (2.10)

where

γe,i =
(

1+(me,i pxe,i)
2+(me,iα⊥)2

)1/2
,

Ex =−∂ϕ

∂x
, ~E⊥=−∂~α⊥

∂t
,

(2.11)

and Poisson’s equation is given by

∂2 ϕ

∂x2
=
∫

fe(x,pxe)dpxe−
∫

fi(x,pxi)dpxi. (2.12)

The transverse electromagnetic fields Ey, Bz and Ez, By for the circularly polarized wave
obey Maxwell’s equations. With E±=Ey±Bz and F±=Ez±By, we have

(

∂

∂t
± ∂

∂x

)

E±=−Jy;

(

∂

∂t
∓ ∂

∂x

)

F±=−Jz, (2.13)

which are integrated along their vacuum characteristic x= t. In our normalized units we
have the following expressions for the normal current densities:

~J⊥=~J⊥e+~J⊥i; ~J⊥e,i =−~α⊥me,i

+∞
∫

−∞

fe,i

γe,i
dpxe,i. (2.14)
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2.2 The numerical scheme

Since the early works presented in [8, 9] which proposed the second-order fractional
step scheme for the solution of the Vlasov-Poisson system, the direct solution of the
Vlasov equation as a partial differential equation in phase-space has become an impor-
tant method for the numerical solution of the Vlasov equation (see the review articles
in [11, 12]). The code we use applies a numerical scheme based on a two-dimensional
advection technique, of second order accuracy in time-step, where the value of the distri-
bution function is advanced in time by interpolating in two dimensions along the charac-
teristics using a tensor product of cubic B-splines [13, 14], also called an Euler-Lagrange
method [15].

The numerical scheme to advance equation (2.10) from time tn to tn+1 necessitates the
knowledge of the electromagnetic field E± and F± at time tn+1/2. This is done using a
centered scheme where we integrate (2.13) exactly along the vacuum characteristics with
∆x=∆t, to calculate E±n+1/2 and F±n+1/2 as follows:

E±(x±∆t,tn+1/2)=E±(x,tn−1/2)−∆tJy(x±∆t/2,tn), (2.15)

with

Jy(x±∆t/2,tn)=
Jy(x±∆x,tn)+ Jy(x,tn)

2
.

A similar equation can be written for F±n+1/2. From (2.11) we also have

~αn+1
⊥ =~αn

⊥−∆t~En+1/2
⊥ ,

from which we calculate

~αn+1/2
⊥ =

1

2
(~αn+1

⊥ +~αn
⊥).

To calculate En+1/2
x , two methods have been used. A first method calculates En

x from f n
e,i

using Poisson’s equation, then we use a Taylor expansion:

En+1/2
x =En

x +
∆t

2

(

∂Ex

∂t

)n

+0.5

(

∆t

2

)2(∂2Ex

∂t2

)n

; (2.16)

with
(

∂Ex

∂t

)n

=−Jn
x ;

(

∂2Ex

∂t2

)n

=−
(

∂Jx

∂t

)n

,

Jn
x =mi

+∞
∫

−∞

pxi

γi
f n
i dpxi−me

+∞
∫

−∞

pxe

γe
f n
e dpxe.

A second method to calculate En+1/2
x is to use Ampère’s equation: ∂Ex/∂t =−Jx, from

which
En+1/2

x =En−1/2
x −∆tJn

x .
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Both methods gave the same results. (We have used the second method for the results
presented in Section 3).

Eq. (2.10) is solved using an Euler-Lagrange scheme. Given f n
e,i at mesh points (we

stress here that the subscript i denotes the ion distribution function), we calculate the
new value f n+1

e,i at the grid points jx , and jp corresponding to the mesh points (xjx ,pxe,ijp
)

by writing that the distribution function is constant along the characteristics. The charac-
teristics equations for (2.10) are given by:

dx

dt
=me,i

pxe,i

γe,i
=Vxe,i(x,pxe,i),

dpxe,i

dt
=∓Ex−

me,i

2γe,i

∂α2
⊥

∂x
=Vpxe,i

(x,pxe,j).

(2.17)

We assume that at the time tn+1 ≡ tn+∆t, x is at the grid point jx, and pxe,i is at the grid
point jp. The following leapfrog scheme can be written for the solution of (2.17):

xjx −x(tn)

∆t
=Vxe,i(xn+1/2,pn+1/2

xe,i )=Vxe,i

(

xjx +x(tn)

2
,
pxe,ijp

+pxe,i(tn)

2

)

, (2.18)

pxe,ijp
−pxe,i(tn)

∆t
=Vpxe,i

(xn+1/2,pn+1/2
xe,i )=Vpxe,i

(

xjx +x(tn)

2
,
pxe,ijp

+pxe,i(tn)

2

)

, (2.19)

where (x(tn),pxe,i(tn)) is the point where the characteristic is originating at tn (not neces-
sarily a grid point). Put

∆xe,i =
xjx −x(tn)

2
; ∆pxe,i

=
pxe,ijp

−pxe,i(tn)

2
. (2.20)

Eqs. (2.18)-(2.19) can be rewritten as:

∆xe,i =
∆t

2
Vxe,i(xjx −∆xe,i,pxe,ijp

−∆pxe,i
), (2.21)

∆pxe,i
=

∆t

2
Vpxe,i

(xjx −∆xe,i,pxe,ijp
−∆pxe,i

), (2.22)

which are implicit equations for ∆xe,i and ∆pxe,i
and are solved by iteration. This iteration

is effected as follows. We rewrite (2.21)-(2.22) in the vectorial form

∆Xe,i
=

∆t

2
Ve,i(Xe,i−∆Xe,i

,tn+1/2), (2.23)

where Xe,i is the two dimensional vector Xe,i =(x,pxe,i), and ∆Xe,i
=(∆xe,i,∆pxe,i

) is the two
dimensional vector in (2.23) and

Ve,i =(Vn+1/2
xe,i ,Vn+1/2

pxe,i
).
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Eq. (2.23) for ∆Xe,i
is implicit and is solved iteratively:

∆
k+1
Xe,i

=
∆t

2
Ve,i(Xe,i−∆

k
Xe,i

,tn+1/2),

where we start the iteration with ∆
0
Xe,i

= 0 for k = 0. Usually two or three iterations are

sufficient to get a good convergence. The shifted values in (2.21), (2.22) are calculated by
a two-dimensional interpolation using a tensor product of cubic B-splines [13, 14]. We
now write that the distribution function is constant along the characteristics. Then f n+1

e,i
is calculated from f n

e,i from the relation:

f n+1
e,i (xjx ,pxe,ijp

)= f n
e,i

(

x(tn),pxe,i(tn)
)

= f n
e,i

(

x−2∆xe,i,pxe,i−2∆pxe,i

)

. (2.24)

Again the shifted values in (2.24) are calculated with a two-dimensional interpolation
using a tensor product of cubic B-splines. Details have been presented in [11, 13, 14].

3 Results

A generous number of grid points has been used in the simulation, to reproduce accu-
rately the fine details which develop in the phase-space. The fine structure of the accel-
erated beam requires a fine resolution in the phase-space. For all the results we present ,
Nx =10000 is the number of grid points in space, for a length Lx =40.355. Npxe =1600 is
the number of grid points in momentum for the electrons, and for the ions Npxi=256. The
code is executed on a single Opteron 2218 processor at 2.6 Ghz and 8 Gb of main memory.
The memory required by the code was 1.6 Gb, and required a CPU time for the execution
of about 300 hours up to t = 40.355. Parallelization can certainly accelerate this perfor-
mance , the code is about 2000 lines, however in view of the relatively moderate memory
required, several codes with different parameters can be executed simultaneously. (Note
that for the results in Fig. 11 for instance, where pmaxe can be reduced to 7, the code was
run with Npxe =800 in only 80 hours CPU time, with very little differences in the results).

We assume the frequency of the laser pulse ω0/ωp ≫ 1 (ω0/ωp = 10 in the present
calculation), and the envelope of the laser pulse changes on a time-scale which is long
compared to the wave period. The spatial length of the envelope of the laser pulse is L=
λp=2πc/ωp,much longer than the laser field wavelength λ. The model is similar to what
has been presented in [1, 2] with the addition that in the present simulation we include
a 1D kinetic relativistic Vlasov equation, and this is done for both electrons and ions.
The evolution of the laser pulse is calculated self-consistently with Maxwell’s equations.
We assume that the laser beam transverse dimension r≫λp, which is necessary for the
validity of the 1D model. The system is initially neutral (ne = ni). The density in our
normalized units is equal to 1 in the flat central part, with steep gradients and vacuum
at both ends. The length of the vacuum region is 1.18 on each side, and the length of the
transition region for the zero density to the flat density of 1 is 1.41, hence this transition
region is about 2.6 on each side.



710 M. Shoucri / Commun. Comput. Phys., 4 (2008), pp. 703-718

Figure 1: Laser pulse (broken curve) and the wake field Ex (full curve) at t=38.33.

Figure 2: Plot of a⊥=
√

a2
y+a2

z at t=38.33 for the circularly polarized wave.

3.1 The case of a circularly polarized electromagnetic wave

The electrons and ions have initially a Maxwellian distribution. Two cases will be stud-
ied. A case with a temperature Te =0.4keV for the electrons and Ti =0.1keV for the ions,
and a case with a temperature Te=3keV for the electrons and Ti=1keV for the ions. In both
cases we have for the electrons (pxmaxe =15, pxmine =−15), and for the ions (pxmaxi =10.8,
pxmini =−10.8.).

The forward propagating circularly polarized laser pulse is penetrating from the vac-
uum at the left boundary, and propagate towards the right, and is written in our normal-
ized units as:

E+ =2E0sin(πξ/L)sin(k0ξ), (3.1)

F−=2E0sin(πξ/L)cos(k0ξ), (3.2)

for 2.6< t<2π+2.6, and for −L≤ ξ≤0, ξ = x−t. And E0 =0 otherwise. 2.6 is the length
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Figure 3: Phase-space contour plot of the electron distribution function at t=24.21 for the case with Te=0.4keV,
and a circularly polarized wave.

Figure 4: Phase-space contour plot of the electron distribution function at t=38.33 for the case with Te=0.4keV,
and a circularly polarized wave.

of the vacuum and transition region, as mentioned in the previous section. This allows
the pulse to develop on the flat part of the density profile. L is the length of the pulse
envelope. In vacuum we have for the electromagnetic (EM) wave k0 =ω0 =10 (so in our
normalized units the wavelength λ=2π/k0 =0.628). We have ten oscillations of the EM
wave in the length L = 2π of the pulse envelope. We choose for the amplitude of the
potential vector α0 = 1, so that E0 = ω0α0 = 10. Since the envelope is slowly varying, we
can write for the corresponding vector potential for 2.6< t<2π+2.6:

αy =−α0sin(πξ/L)cos(k0ξ), αz =α0sin(πξ/L)sin(k0ξ).

At t = 2π+2.6, the entire envelope of length L = 2π of the forward propagating pulse
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Figure 5: Phase-space contour plot and 3D view of the electron distribution function at t = 38.33, and at the
position of the first accelerated beam at the right of Fig. 4. The 3D view concentrates on the top of the beam
tail, and show a very well localized beam structure at the top.

has developed on the flat density part, and is left to evolve self-consistently using (2.13),
where~α⊥ is calculated as indicated in the previous section.

Fig. 1 shows the results for the laser pulse at t = 38.33 (broken curve), after crossing
the domain and reaching the right boundary, which is followed by the wake field Ex (full
curve), for the case with a temperature Te = 0.4keV for the electrons and Ti = 0.1keV for
the ions. For the present set of parameters, the pulse has propagated through the plasma
with little deformation. The quantity

α⊥=
√

α2
y+α2

z

which appears in (2.10) is shown in Fig. 2. There is little deformation of the EM pulse
for the present set of parameters (see Fig. 1), and since sin2(k0ξ)+cos2(k0ξ)=1, then α⊥
defined above is essentially the envelope of the pulse. Figs. 3 and 4 show the phase-space
plots for the electrons at t=24.21 and t=38.33. Bunches of electrons detach from the bulk
and are accelerated as beams around the peaks of the electric field. Note that the contour
level of the accelerated tail is emphasized in Figs. 3 and 4, in order to make it more visible.
Fig. 5 shows a contour plot of the first peak at the right of Fig. 4 without emphasizing the
accelerated tail. The 3D view in Fig. 5 concentrates on the top of the long tail and shows
clearly a very localized beam at the top of the long tail.

We plot in Figs. 6 and 7 the wake field obtained at Te = 0.4keV (full curves, same as
in Fig. 1), and the wake field obtained at a higher temperature, with Te = 3keV (broken
curves). The ion temperature for the case with Te = 3keV is Ti = 1keV. The small bump
at the right in Figs. 6 and 7 indicates the position of the EM pulse (see Fig. 1 at t=38.33).
Just behind the position of the pulse the full curve and the broken curve give essentially
the same peaks. The amplitude of Ex reaches, since the beginning of the simulation, a
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Figure 6: Plot at t=24.21 of the axial wake field Ex (full curve for Te =0.4keV and broken curve for Te =3keV),
for the circularly polarized wave.

Figure 7: Plot at t=38.33 of the axial wake field Ex (full curve for Te =0.4keV and broken curve for Te =3keV),
for the circularly polarized wave.

maximum peak of about 0.63 just behind the pulse (see Fig. 6 at t=24.21). This is close to
the projected theoretical value for saturation for cold plasma [1, 2] given by

Exmax =(γ2
0−1)/γ0 =0.717,

where γ0 =
√

1+α2
0 =

√
2. However, towards the left boundary, the two curves show a

small difference in the decreasing peaks and the position of the peaks. The decrease in
the peaks is a temperature effect, this decrease seems to be less pronounced when the
temperature is reduced. Indeed the results reported for a cold plasma [1, 2] showed the
electric field reaching a constant amplitude throughout the domain. The present decay
of the amplitude of the electric field agrees however with the results reported in [7] for
the plasma wake-field accelerators. Note the electric field Ex shows a slightly steeper
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Figure 8: Plot at t=38.33 of the electron density (full curve Te =0.4keV and broken curve for Te =3keV), and
the ion density (dash-dot curve) for the circularly polarized wave.

Figure 9: Plot at t=38.33 of the axial wake field Ex (full curve for Te=0.4keV and broken curve for Te=0.2keV),
for the linearly polarized wave.

variation at the right of Fig. 6 compared to the profile at the left. The electron density
(initially equal to 1 in the flat region of the profile) is forming spikes surrounded by
depleted regions (full curve in Fig. 8 for the case Te=0.4keV and broken curve for the case
Te =3keV), and the electric field Ex is rapidly changing sign at these spikes. The dash-dot
curve in Fig. 8 is the result obtained for the ions, this profile is essentially unchanged.
The density peak just behind the pulse at the right of Fig. 8 is reaching a value of 2.4
for the full curve, and 2.1 for the broken curve. These peak values are reached since the
beginning of the simulation, the shape of the density and of the wake field just behind
the pulse remain constant during the propagation of the pulse. So the front peaks for
both wake field and density seem to be following the laser pulse with little deformation
along the flat top of the density profile.
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Figure 10: Plot at t=38.33 of the electron density (full curve for Te =0.4keV and dotted curve for Te =0.2keV),
and the ion density (dash-dot curve).

3.2 The case of a linearly polarized electromagnetic wave

In this case only E+ in (3.1) is excited as before and F− = 0. Only αy is excited initially,
then α2

⊥ = α2
y, and α0 is still the amplitude of the vector potential, except that in this case

α⊥ is modulated in time. Fig. 9 shows the wake fields for the case Te =0.4keV (full curve),
and the case Te =0.2keV (broken curve) at t=38.33, and Fig. 10 shows the corresponding
curves for the density (the dash-dot curve is for the ions density, essentially unchanged).
The extrema of the momentum are ±15 for the first case, and ±10 for the second case.
There is no difference between the full curves and the broken curves in Figs. 9 and 10,
and the peaks remain essentially constant behind the pulse, with the exception of those
close to the left boundary. The peak electric field is 0.38 (it was 0.63 for the circularly
polarized case in Section 3.1). At the right of Fig. 10 the fine scale structure is the result
of the quiver motion of the electrons. This fine scale structure due to the quiver motion is
also visible in the contour plot of the electron distribution function at the right of Fig. 11,
for the linearly polarized case with Te = 0.4keV. The first accelerated beam in Fig. 11
appears only at the third peak and is less developed with respect to the one in Fig. 4 for
the circularly polarized case (also calculated for Te = 0.4keV), at the same time t = 38.33.
The peaks behind the pulse in Figs. 9 and 10 appear more uniform than those in Figs. 7
and 8. Fig. 12 give the contour plot of the ion distribution function at t = 38.33 for the
linearly polarized case with Te =0.4keV (Ti is 0.1keV for this case). It shows a modulation
with the same wavelength as for the electron distribution function. However the ion
density remained flat in the central region, as indicated in Fig. 10. Finally a simulation
with Te =0.05keV and Ti =0.01keV gave the same results as in Figs. 9 and 10. The wake
field Ex and the density appear to depend little on the temperature. The phase-space
plot for this case was also close to what is presented in Fig. 11 showing the presence of
accelerated beams preceded by fine filament tails.
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Figure 11: Phase-space contour plot of the electron distribution function at t=38.33 for the case with Te=0.4keV,
and a linearly polarized wave.

Figure 12: Phase-space contour plot of the ion distribution function at t=38.33 for the case with Te =0.4keV,
and a linearly polarized wave.

4 Conclusion

Simulations for the laser wake-field acceleration have been carried out using a 1D rel-
ativistic Vlasov-Maxwell equations. Both electrons and ions have been included in the
present simulations. The method used for the numerical solution consists of integrating
the Vlasov equation in two dimensions along its characteristics, using for interpolation a
tensor product of cubic B-splines. This method has shown in previous applications to be
accurate, to have little numerical diffusion, and to give accurate results in the low density
region of the phase space [5, 10, 12, 13]. This is important since the physics of interest in
the present problem is associated with localized low density beam structures which de-
tach from the bulk and are accelerated in the low density regions of the phase-space. The
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results in Section 3.1 for the circularly polarized wave show that the peak of the wake
field immediately behind the laser pulse is in good agreement with the value calculated
using the nonlinear relativistic cold plasma equations [1, 2], and that the wake electric
field peaks and the electron density peaks have a tendency to decrease away from the
pulse, in contrast with the results of a cold plasma [1,2] where the peaks remain constant.
This decrease appears to be caused by a finite temperature effect and is in agreement with
the results reported in [7]. So even for rather high temperatures, the fields immediately
behind the laser pulse are quite close to those of the cold fluid. For the cases studied with
linear polarization, the density peaks behind the pulse as well as the wake fields peaks
appear to be more uniform than the ones obtained for the circular polarization case. For
the present set of parameters and time considered, we observe little deformation in the
shape of the laser pulse as it propagates.
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