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Abstract. We develop a new computational method for modeling and inverting fre-
quency domain airborne electromagnetic (EM) data. Our method is based on the con-
traction integral equation method for forward EM modeling and on inversion using
the localized quasi-linear (LQL) approximation followed by the rigorous inversion, if
necessary. The LQL inversion serves to provide a fast image of the target. These results
are checked by a rigorous update of the domain electric field, allowing a more accu-
rate calculation of the predicted data. If the accuracy is poorer than desired, rigorous
inversion follows, using the resulting conductivity distribution and electric field from
LQL as a starting model. The rigorous inversion iteratively solves the field and do-
main equations, converting the non-linear inversion into a series of linear inversions.
We test this method on synthetic and field data. The results of the inversion are very
encouraging with respect to both the speed and the accuracy of the algorithm, showing
this is a useful tool for airborne EM interpretation.
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1 Introduction

Modern computational methods have become widely used in exploration geophysics.
For many years, the basic model for interpretation in electromagnetic (EM) geophysics
was a one-dimensional (1-D) model of a layered earth or a two-dimensional (2-D) model
with the resistivity varying with the depth and along the profile of observation only.
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However, in recent years geophysicists more often use full three-dimensional (3-D) mod-
els for interpretation of practical data. This requires developing the corresponding math-
ematical methods of interpretation, based on the modern achievements of EM theory and
advanced computational methods of modeling and inversion. To date, this has not been
successfully accomplished for airborne electromagnetic data (AEM). In this paper we will
demonstrate how the recent advances in 3-D numerical modeling and inversion of EM
data help in developing effective methods for 3-D interpretation of AEM geophysical
data.

A typical frequency domain airborne EM survey is based on the same principles as a
ground inductive EM survey. In the airborne case, several transmitter and receiver coils
are attached to an aircraft. There are several configurations, but typically the transmitter-
receiver pairs are housed in a ‘bird’ towed behind the aircraft. The platform flies over the
survey area towing this bird and continuously transmits an electromagnetic field with
specific frequencies excited by transmitter coils. The EM field propagates into the ground
and reaches some geoelectrical target such as an ore body. The electric currents induced in
the ground and within the anomalous body generate a secondary electromagnetic field.
The receiver coils measure the total EM field (a superposition of the primary field gener-
ated by the transmitter and the secondary EM field) at the bird’s location. The goal of the
survey is to find the location and electrical parameters of the underground geoelectrical
formations. Note that the typical airborne EM system has several transmitter-receiver
pairs. For example, typical AEM systems have transmitter-receiver pairs forming copla-
nar arrays, where both the transmitter and receiver coils of which can transmit/measure
the vertical components of the EM field only, and coaxial arrays, with the transmitter and
receiver coils transmiting/measuring the horizontal components of the EM field only.

The airborne platform creates a very powerful tool for surveying large areas rapidly
and relatively inexpensively. Surveys may cover thousands of line kilometers with multi-
component and multi-frequency soundings every few meters. This enables collecting a
huge amount of data about the electrical properties of the earth. However, interpreting
the massive amounts of data gathered poses a significant challenge. Any 3-D inversion
must discretize the earth into thousands of cells representing the conductivity distribu-
tion. Computationally, this problem is exacerbated by the fact that for each sounding
point and channel, a new electric field is introduced into the earth. This requires solving
a large number of equations simultaneously for a full rigorous inversion.

These problems have been addressed in the past by attacking one single sounding
location at a time and assuming a 1-D earth, usually with conductivity depth transforms
(CDT) [6, 11, etc.] or layered earth inversions (LEI) (e.g., [2]). The CDT methods are ex-
tremely fast, but do not model the earth correctly in the sense that the theoretical EM
response for one dimensional earth recovered does not necessarily fit the observed data.
LEIs, while significantly slower than CDTs, produce the correct response of a 1-D layered
earth. Yet they do not take into account the true three dimensional nature of the sub-
surface. As shown by [1], even when the predicted 1-D model response is within a few
percent of the observed data, the resulting conductivity model may be a poor approxi-
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mation of the true model.
Over the last several years, the Consortium for Electromagnetic Modeling and Inver-

sion (CEMI) has developed methods and the corresponding software to quantitatively
interpret AEM data in 3-D. These methods are based on the localized quasi-linear (LQL)
approximation [15, 18]. This method provides a fast algorithm for 3-D imaging of con-
ductive targets. It can be treated as an effective reconnaissance tool, or accurate inversion
in the case of low conductivity contrasts. However, when this condition is not met, the
recovered conductivity of the target may be significantly underestimated, and the shape
of the inverse images may be distorted in comparison with the true model.

In the current paper, we attempt to overcome this limitation of the LQL method by
considering a more rigorous forward modeling technique in the framework of the regu-
larized inversion scheme. According to this approach, the solution of the AEM inverse
problem is formulated using two sets of integral equations: 1) a field equation connecting
the observed data in the receivers with the anomalous conductivity within the inversion
domain; 2) a domain equation with respect to the electric field inside the anomalous do-
main. The main difficulty in the solution of these equations arises from the fact that, in the
case of the AEM survey, we are dealing with multi-transmitter, multi-receiver data. This
requires simultaneous analysis of as many pairs of the field and domain equations as we
have transmitter positions. We solve a preconditioned form of the domain equation with
the complex generalized minimum residual method (CGMRES) to ensure convergence
of the domain equation. The field equation is solved using the re-weighted regularized
conjugate gradient (RRCG) method.

2 Computation methods

2.1 Basic integral equations of EM modeling

For completeness, we begin our paper with the formulation of the basic principles of the
integral electric (IE) equation.

We consider a 3-D geoelectrical model with a background (horizontally layered) con-
ductivity σb and a local inhomogeneous region, D, with an arbitrarily varying conductiv-
ity σ=σb+∆σ. The magnetic permeability of the media is equal to the free-space magnetic
permeability µ=µ0=4π×10−7 Henry/meter. In the framework of the AEM method, one
uses a moving transmitter-receiver system consisting of pairs of vertical magnetic dipoles
(horizontal coplanar coil pairs) and pairs of horizontal magnetic dipoles (vertical coax-
ial coil pairs). A frequency domain EM field is generated by a transmitter dipole and is
recorded by a receiver dipole. The goal is to find the anomalous conductivity distribu-
tion, ∆σ, based on the data collected by the AEM survey.

We can represent the EM field in this model as a sum of the background and anoma-
lous fields:

E=Eb+Ea, (2.1)

H=Hb+Ha, (2.2)
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where the background field is generated by the given sources in the model with the
background distribution of conductivity σb, and the anomalous field is produced by the
anomalous conductivity distribution, ∆σ.

According to the integral form of Maxwell’s equations [14], the anomalous field in the
frequency domain can be represented as an integral over the excess (anomalous) currents,
ja =∆σ E, in the inhomogeneous domain, D:

Ea
(
rj

)
=GE (∆σE)=

∫ ∫ ∫

D
ĜE

(
rj | r

)
∆σ(r)E(r)dv, (2.3)

Ha
(
rj

)
=GH (∆σE)=

∫ ∫ ∫

D
ĜH

(
rj | r

)
∆σ(r)E(r)dv, (2.4)

where ĜE,H

(
rj | r

)
stands for the electric or magnetic Green’s function defined for an un-

bounded conductive medium with normal conductivity σb. GE,H

(
rj | r

)
is corresponding

Green’s tensor.
Eq. (2.4), which connects the observed magnetic field at the receivers with the electric

field inside the anomalous domain, D, represents a field equation. Writing Eq. (2.3) for the
points within the anomalous domain, rj ∈D, we arrive at a domain equation.

2.2 Localized quasi-linear inversion background

We first solve the AEM inverse problem using the localized quasi-linear (LQL) method
[18]. This method is based on the assumption that the anomalous field, Ea, inside the in-
homogeneous domain is linearly proportional to the background field, Eb, through elec-

trical reflectivity tensor, λ̂, [16,17] which is assumed to be independent of the transmitter
position:

Ea
I (r)≈ λ̂(r) ·Eb

I (r), (2.5)

where Ea
I and Eb

I represent the anomalous and background electric fields at the Ith trans-
mitter position. In the framework of the localized quasi-linear (LQL) approximation

[14, 18], it is assumed that the electrical reflectivity tensor, λ̂, is source independent.
Substituting Eq. (2.5) into Eq. (2.1), the total electric field becomes:

EI =Eb
I +λ̂Eb

I =(̂I+λ̂)Eb
I . (2.6)

Following [16, 18], we introduce a new tensor function,

m̂(r)=∆σLQL (r)
(

Î+λ̂(r)
)

, (2.7)

which we call a modified material property tensor.
Substituting Eq. (2.6) into Eqs. (2.3) and (2.4), and using (2.7), we can write:

Ea
I

(
rj

)
=GE

[
m̂(r)·Eb

I (r)
]

, (2.8)

Ha
I

(
rj

)
=GH

[
m̂(r) ·Eb

I (r)
]

. (2.9)
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Following [4, 13], we can take into account that the Green’s tensor ĜE

(
rj | r

)
exhibits

either singularity or a peak at the point where rj=r. Therefore, the dominant contribution

to the integral GE

[
m̂(r) ·Eb

I (r)
]

in Eq. (2.8) is from some vicinity of point rj=r. Assuming

also that the background field Eb
I (r) is slowly varying within domain D, we can rewrite

Eq. (2.8) as

Ea
I

(
rj

)
≈GE [m̂(r)]·Eb

I

(
rj

)
, (2.10)

where the tensor Green’s operator GE [m̂(r)] is given by the formula

GE [m̂(r)]=
∫ ∫ ∫

D
ĜE

(
rj | r

)
·m̂(r)dv. (2.11)

Comparing Eqs. (2.5) and (2.10), we find that

Ea
I

(
rj

)
≈ λ̂

(
rj

)
·Eb

I

(
rj

)
≈GE [m̂(r)]·Eb

I

(
rj

)
.

Therefore, the electrical reflectivity tensor can be determined from the solution of the
minimization problem,

∥∥∥λ̂
(
rj

)
·Eb

I

(
rj

)
−GE [m̂(r)]·Eb

I

(
rj

)∥∥∥
L2(D)

=min. (2.12)

Noting that

∥∥∥λ̂
(
rj

)
·Eb

I

(
rj

)
−GE [m̂(r)]·Eb

I

(
rj

)∥∥∥
L2(D)

≤
∥∥∥λ̂

(
rj

)
−GE [m̂(r)]

∥∥∥
L2(D)

∥∥∥Eb
I

(
rj

)∥∥∥
L2(D)

,

we can substitute another problem,

∥∥∥λ̂
(
rj

)
−GE [m̂(r)]

∥∥∥
L2(D)

=min, (2.13)

for the minimization problem (2.12).

The solution of Eq. (2.13) gives us a localized electrical reflectivity tensor, λ̂(r), which is
obviously source independent.

Note that in the framework of the LQL method, we can choose different forms of the
reflectivity tensor. For example, we can introduce a scalar or diagonal reflectivity tensor.
The choice of electrical reflectivity tensor is related to the physics of the problem and
the accuracy and speed required in the computations. The interested reader can find the
detailed analysis of the selection of the different types of electrical reflectivity tensor and
related accuracy of the LQL approximation in [18].

We assume now that the anomalous parts of the electric, Ea
(
rj

)
, and/or magnetic,

Ha
(
rj

)
, fields (generated by a transmitter with one or multiple positions) are measured



L. H. Cox and M. S. Zhdanov / Commun. Comput. Phys., 3 (2008), pp. 160-179 165

at a number of observation points, rj. Using the LQL approximations (2.8) and (2.9) for
the observed fields, d, we arrive at the following equation:

d=Gd

[
m̂(r) ·Eb (r)

]
, (2.14)

which is linear with respect to the material property tensor, m̂(r). In the last equation,
d stands for the electric or magnetic field at the receivers, E or H, and Gd denotes the
Green’s operators, GE or GH, operating from the domain to the receivers.

We can solve the linear equation (2.14) with respect to m̂(r) , which is source indepen-
dent. This problem is solved by a standard least-squares optimization.

The reflectivity tensor, λ̂(r), is determined based on condition (2.13),which consti-

tutes an important step of the LQL inversion. Knowing λ̂(r) and m̂(r) , we can find
∆σLQL (r) from Eq. (2.7). Note that, in a general case, Eq. (2.7) should hold for any fre-
quency, because the electrical reflectivity and the material property tensors are functions

of frequency as well: λ̂ = λ̂(r,ω), m̂ = m̂(r,ω). In reality, however, it holds only approx-
imately. Therefore, the conductivity, ∆σLQL (r), can be found by using the least-squares
method of solving Eq. (2.7):

∥∥∥m̂(r,ω)−∆σLQL (r)
(

Î+λ̂(r,ω)
)∥∥∥

L2(ω)
=min. (2.15)

This inversion scheme can be used for a multi-source technique, because λ̂ and m̂

are source independent. It reduces the original nonlinear inverse problem to three linear

inverse problems: the first (quasi-Born inversion) for tensor m̂, the second for tensor λ̂,
and the third (correction of the result of the quasi-Born inversion) for the conductivity,
∆σLQL.

2.3 The regularized inversion method

We can rewrite Eq. (2.14) using matrix notations:

d = Gm. (2.16)

Here m is the vector-column of the modified material property tensor m̂, d is the vector-
column of the field data, and G is the matrix of the linear operator defined by Eq. (2.14).

The solution of the inverse problem is reduced to the inversion of linear system (2.16)

with respect to m and then to computing λ̂ using condition (2.13). After that, we find
∆σLQL as a least-squares solution of the optimization problem (2.15). Note that in the
case of a single frequency observations, we still have to solve the optimization problem
(2.15), if we consider the full electrical reflectivity and material property tensors. In a case
of single frequency observations and a scalar electrical reflectivity tensor, optimization
problem (2.15) is reduced to a simple algebraic equation.

Thus, by using the approximation in Eq. (2.5), one difficult non-linear inversion prob-
lem has been converted into three linear inversions. This approximation holds for low
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conductivity contrasts and can produce accurate results, but in the general case it may
introduce an unquantified error into the domain electric field which propagates into the
modeled response of the conductivity distribution. In field exploration, it is important to
know accurately where the errors between the predicted and observed data lie. Hence,
rapidly and accurately modeling the true response of the body is paramount.

We use the re-weighted regularized conjugate gradient method with image focusing
[10] for solving the system of the linear equations (2.16), which is based on the Tikhonov
regularization technique [14]. We introduce the following parametric functional:

Pα(m,d)=‖WdGm−Wdd‖2+α‖Wmm−Wmmapr‖2, (2.17)

where Wd and Wm are some real weighting matrices of data and model parameters; mapr

is some a priori model, and ‖···‖ denotes the Euclidean norm in the spaces of data and
models.

In the majority of practical applications, we assume that Wm = I, (where I is the iden-
tity matrix), but it also can be chosen arbitrarily. For example, it could be a matrix of first
order or second order finite-difference differentiation to obtain a smooth solution. In par-
ticular, it was demonstrated in [14] that the recommended choice of the model parameter
weighting matrix, Wm, is the square root of the integrated sensitivity matrix according to

Wm =diag(G∗G)1/4 , (2.18)

where the asterisk (∗) denotes a transposed complex conjugate matrix.
Following [14], we solve our problem in the space of weighted parameters. We intro-

duce a vector of weighted model parameters

mw =Wmm.

The original vector of model parameters is given by the inverse transformation

m=W−1
m mw.

We also introduce a weighted forward operator

Gw =GW−1
m .

Now we can rewrite the functional Pα(mw,d) with matrix notations

Pα(mw,d)=(W∗
dG∗

wm∗
w−Wdd∗)T(WdGwmw−Wdd)

+α(m∗
w−m∗

w,apr)
T(mw−mw,apr),

where superscript ‘T’ denotes transposition, and asterisk ∗ denotes a complex conjugate.
According to the basic principles of the regularization method, we have to find a

quasi-solution to the inverse problem for the model, mw,α, minimizing the parametric
functional,

Pα(mw,α,d)=min.
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The most common approach to minimization of the parametric functional Pα(m,d) is
based on using gradient-type methods. For example, the regularized conjugate gradient
(RCG) algorithm of the parametric functional minimization in the case of the minimum
norm stabilizer can be summarized as follows [18]:

rn =Gwmw,n−d, ln = l(mw,n)=Re(G
⋆

wW⋆

dWdrn)+α(mw,n−mw,apr),

βn =‖ln‖2/‖ln−1‖2 , l̃n= ln+βn l̃n−1, l̃0 = l0,

kn =
(
l̃n, ln

)
/

{∥∥∥WdGw l̃n

∥∥∥
2
+α

∥∥∥l̃n

∥∥∥
2
}

,

mw,n+1 =mw,n−kn l̃n,

(2.19)

where kn is a length of the iteration step, and ln is the gradient direction computed using
the adjoint operator, G⋆

w.
The regularization parameter α is determined from the misfit condition:

‖WdGwmw,α−Wdd‖=δ, (2.20)

where δ is some a priori estimation of the level of the “weighted” noise of the data:

‖Wdδd‖=δ. (2.21)

We apply the adaptive regularization method. The regularization parameter α is up-
dated in the process of the iterative inversion as follows:

αn =α1qn−1; n=1,2,··· ; 0<q<1. (2.22)

In order to avoid divergence, we begin with an initial value of α1, which can be obtained
as a ratio of the misfit functional and the stabilizer for an initial model, then reduce αn

according to Eq. (2.22) on each subsequent iteration and continuously iterate until the
misfit condition is reached:

rw
n0 =‖rw

n0‖=‖Wd (G (mαn0)−d)‖/‖Wdd‖=δ, (2.23)

where rw
n0 is the normalized weighted residual, and δ is the relative level of noise in the

weighted observed data.
Parameter q controls the rate of decrease of the regularization parameter αn in the

process of inversion. This parameter is usually selected within an interval [0.5; 0.9].

2.4 Solution to the domain equation

The rigorous stage of the inversion algorithm is based on the iterative solution of the
field and domain equations. Determining accurate predicted data once the electric field
is known is a straight forward process requiring only matrix multiplication. Rapidly
calculating the true domain electric field is more challenging. In order to ensure the
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convergence of the corresponding iterative process, we use the contraction form of the
domain equation [7]:

aEa+bEb =Gm
E

[
b(Ea+Eb)

]
, (2.24)

where

a=
2σb +∆σ

2
√

σb
, b=

∆σ

2
√

σb
, (2.25)

and modified Green’s operator Gm
E (x) is defined as a linear transformation of the original

electric Green’s operator:
Gm

E (x)=
√

σbGE(2
√

σbx)+x. (2.26)

The advantage of Eq. (2.24) over the conventional domain equation is that the L2 norm of
the modified Green’s operator is always less than or equal to one [9]:

‖Gm
E ‖≤1. (2.27)

Eq. (2.24) can be rewritten with respect to the product of a and the total electric field E,
using simple algebraic transformations:

Ẽ+(b−a)Eb = Ẽ−√
σbEb =Gm

E

[
ba−1Ẽ

]
, (2.28)

where Ẽ is the scaled electric field
Ẽ= aE. (2.29)

Finally, we can present Eq. (2.28) in the form

Ẽ=Cm
(

Ẽ
)

=Gm
E

[
ba−1Ẽ

]
+
√

σbEb. (2.30)

In this equation, operator Cm
(

Ẽ
)

is a contraction operator for any lossy medium [14]:

∥∥∥Cm
(

Ẽ(1)−Ẽ(2)
)∥∥∥≤ k

∥∥∥Ẽ(1)−Ẽ(2)
∥∥∥, (2.31)

where ‖···‖ is the L2 norm, k<1, and Ẽ(1)and Ẽ(2) are any two different solutions.
Substituting Eq. (2.26) into (2.30), we have:

Ẽ=
√

σbGE

(
2
√

σbba−1Ẽ
)
+ba−1Ẽ+

√
σbEb. (2.32)

Taking into account Eq. (2.25) for coefficients a and b, we can rewrite Eq. (2.32) in equiv-
alent form:

Ẽ=2
√

σbGE

[√
σbβẼ

]
+βẼ+

√
σbEb, (2.33)

where we have introduced a new parameter, β, as:

β=ba−1 =
∆σ

∆σ+2σb
.
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Eq. (2.33) is solved using the complex conjugate minimal residual (CGMRES) method
[14]. The only requirement for convergence of this algorithm is that the matrix must be
absolutely positively determined. In IE forward modeling, due to the energy inequality,
the matrix always has this property [7].

2.5 Rigorous inversion

We now apply the above solution to the domain equation for rigorous inversion. The first
step is to rigorously determine the electric field inside the domain from the LQL conduc-
tivity distribution. To accomplish this, we use the electric field from LQL (Eq. (2.6), with

λ̂ found during inversion) as an initial guess:

E=Ea
LQL+Eb≈

(
λ̂+ Î

)
·Eb

(
rj

)
.

A preconditioned form of the domain equation, which accelerates convergence, is
used to calculate the electric field [7]:

Ẽ
(0)
I =2

√
σbGE

[√
σbβẼ

(0)
I

]
+βẼ

(0)
I +

√
σbEb

I , (2.34)

where

β=
∆σLQL

∆σLQL+2σb
. (2.35)

The transformed electric field Ẽ
(0)
I is simply

Ẽ
(0)
I = aE

(0)
I , (2.36)

where

a=
2σb +∆σLQL

2
√

σb
. (2.37)

In this stage, Eq. (2.34) is solved to a relatively low accuracy (10%). This is much faster
than requiring the more common forward modeling accuracy of 10−6, yet still accurate
enough to gauge the error in the LQL inversion.

Once the electric field inside the domain has been attained, the true data predicted
from the LQL conductivity distribution is given by:

H
pr(LQL)
I

(
rj

)
=

∫ ∫ ∫

D
ĜH

(
rj | r

)
·∆σLQL (r)E

(0)
I (r)dv

= GH

[
∆σLQLE

(0)
I

]
. (2.38)

Note that the Green’s operator GH is the same as in Eq. (2.4). We can estimate the
accuracy of our LQL inversion by computing the normalized misfit:

δLQL =
||Hpred−Hobs||

||Hobs|| . (2.39)
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We finish the inverse process if the error is less than some predetermined amount.
Otherwise we can apply the inversion iteratively.

To begin the rigorous inversion, we use the updated field E
(0)
I (r) to find an updated

conductivity ∆σ(1) (r) from the equation:

Ha
I

(
rj

)
=

∫ ∫ ∫

D
ĜH

(
rj | r

)
·∆σ(1) (r)E

(0)
I (r)dv

= GH

[
∆σ(1)E

(0)
I

]
, I =1,2,··· ,N. (2.40)

We solve the inverse problem (2.40) using the re-weighted regularized conjugate gra-
dient (RRCG) minimization outlined in the previous section. This process is relatively
fast, since we assume the operator is linear and therefore there is no need to compute
a Jacobian (Frechet derivative matrix). However, as the model parameters change, the
electric field, and hence the operator, becomes approximate and we must update it. The
criteria for updating the electric field are two fold:

1. When the misfit in the inversion decreases a predetermined amount, or

2. When a certain number of RRCG iterations have been reached.

When one of these conditions is met, we use the new conductivity distribution, ∆σ(1), to
update the electric field, E(1)(r), with the integral expression using CGMRES:

Ẽ
(1)
I = βẼ

(1)
I +2

√
σbGE[

√
σbβẼ

(1)
I ]+

√
σbẼb, (2.41)

where

β=
∆σ(1)

∆σ(1)+2σb

. (2.42)

The initial guess for the electric field is E
(0)
I . Using the previous electric field as a

starting point greatly reduces the number of iterations needed to find the next electric
field to the required accuracy.

For the model with the conductivity ∆σ(1) (r) we can calculate the predicted anoma-

lous magnetic field H
pr(1)
I

(
rj

)
based on the equation:

H
pr(1)
I

(
rj

)
=GH

[
∆σ(1)E

(1)
I

]
. (2.43)

We also can estimate the accuracy of this solution by computing the normalized misfit.

This iterative process of updating the domain equation and then inverting the field
equation continues. The accuracy to which the electric field is computed depends on the
misfit of the inversion. Using this method, we require low accuracy in the initial iterations
to speed the process, but as the inversion converges the forward operator is calculated to
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greater accuracy. In step (k), we find an updated conductivity ∆σ(k) (r) from the equation
using the RRCG inversion:

Ha
I

(
rj

)
=

∫ ∫ ∫

D
ĜH

(
rj | r

)
·∆σ(r)E

(k−1)
I (r)dv

= GH

[
∆σE

(k−1)
I

]
, I =1,2,··· ,N. (2.44)

The field E
(k−1)
I (r) is precomputed using the equation

Ẽ
(k−1)
I = βẼ

(k−1)
I +2

√
σbGE[

√
σbβẼ

(k−1)
I ]+

√
σbẼb, (2.45)

where

βk−1 =
∆σ(k−1)

∆σ(k−1)+2σb

.

We use the updated conductivity ∆σ(k) to find the updated electric field E
(k)
I (r) from

Eq. (2.45). Then we compute the predicted anomalous magnetic field H
pr(k)
I

(
rj

)
at itera-

tion k :
H

pr(k)
I

(
rj

)
=GH

[
∆σ(k)E

(k)
I

]
. (2.46)

The iterative process continues until we reach a predetermined error or number of
iterations. The next sections show applications of this method to both synthetic and field
data.

3 Inversion of synthetic AEM data

To test the inversion, we simulate the low frequency channels from a typical DIGHEM air-
borne survey [3] over two test bodies that are electromagnetically coupled. The synthetic
model and survey are shown in Fig. 1. Six flight lines in the x direction are synthesized
at 30 m bird height with 100 m line spacing and data collected every 50 m along line. The
responses of two coplanar (7200 and 900 Hz) channels and one coaxial (900 Hz) channel
with 8 m transmitter-receiver separations are calculated.

The inversion domain was divided into 27 cells in the x and y directions and 7 in
the z direction, yielding approximately 5100 cells. We simultaneously invert all three
channels for a total of 198 sounding locations. The AEM data were computed by the IE
forward modeling code INTEM3D and contaminated by Gaussian noise with a standard
deviation of 1.5 ppm, which is a typical value for an AEM survey. This corresponds to
between 5% and 50% noise, depending on the channel.

The inversion was run initially with LQL method to obtain a fast image of the body
(see Fig. 2). The resistivity is overestimated, especially for the lower body, but the general
locations of the bodies are delineated. At the completion of the LQL inversion, a fast
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Figure 1: The geoelectric model with two conductive bodies and AEM survey design. The upper body is 10
ohm-m, and the lower body is 2 ohm-m. They are imbedded in a 100 ohm-m halfspace. The flight lines are
shown as blue lines with circles for sounding locations.

Figure 2: LQL inversion results. The resistivity values greater than 60 ohm-m are removed from the view. The
locations of the bodies are evident, but the resistivity is overestimated. Note also that the lateral extents of
this figure are greater than that of the figure showing the true bodies. This reflects padding at the edges of the
inversion domain.

check is performed on the accuracy of the solution by rigorously calculating the domain
electric field. The LQL predicted data matches the observed data well, but the rigorously
predicted data to the LQL inverse solution shows there is still room for improvement
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Figure 3: Predicted and observed data for a synthetic AEM survey. The data shown are along a profile at
y=300 m. The curve “Rigorously Pred LQL” corresponds to the rigorously predicted data for the LQL solution.
“LQL Predicted” curve is the approximately predicted data to the LQL solution. The line marked as “Rig Pred
Rig Inv” shows the final predicted data. Also shown are the synthetic data. Note the large error introduced
into the observed data of the coaxial channel using 1.5 ppm error.

in the conductivity distribution (Fig. 3). The true response of the 7200 Hz quadrature
channel differs significantly from the approximate solution, but the rest of the channels
are in reasonable agreement.

The rigorous inversion uses a reweighted conjugate gradient scheme starting with
the LQL result as the initial model. The error level is set to 1.5 ppm for all data points.
The rigorous inversion result is shown in Fig. 5. This inverse image is much improved
over the LQL inversion, and the true normalized misfit is 13% (see Fig. 4). The bodies
are shown to be separated and in their proper positions. The conductivity of the lower
body is slightly underestimated and a hole appears in the center. The rigorous predicted
data properly fits the observed data to the given noise levels (see Fig. 3). One can see this
inversion is accurate and robust in the presence of noisy data.
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Figure 4: Normalized misfit and electric field updates as a function of iteration. Note the LQL inversion runs
until it reaches the noise level in the data at iteration 20. The rigorous inversion then continues through the
remaining iterations.

Figure 5: Rigorous inversion results for a synthetic airborne survey. The resistivity values greater than 20 ohm-m
are removed from the view. The conductive bodies are now in the proper location and the resistivity is estimated
much better than in the LQL result.

4 Inversion of AEM over a kimberlite pipe

4.1 Geologic setting

The survey data we have applied our inversion algorithm to is from the Ekati Diamond
Mine, Canada. The target is a kimberlite pipe, which is the most common diamond bear-
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Table 1: Data channels used for inversion.

Frequency (Hz) Component Estimated Error (ppm)

871 Coplanar 2.5

5834 Coaxial 10

7166 Coplanar 5

ing ore. Kimberlite pipes are an ultrabasic intrusion which are nearly circular and narrow
with depth. The kimberlite material typically weathers into clays more rapidly than the
surrounding rock. These clays are conductive and provide a target for EM methods [8].
The location in question has been glacially scoured, which has preferentially removed
part of the weathered clay cap and left behind a lake.

4.2 Survey and inversion parameters

This survey was performed with the DIGHEM system consisting of 5 channels. We select
three frequencies (see Table 1) for the test of our inversion code. The error in each chan-
nel was assigned after [5]. The original survey had very dense measurements, but for our
inversion we used only every 100th data point giving a total of 34 soundings per chan-
nel. The flight height was approximately 25 m above ground level, and the transmitter-
receiver separation was 7.98 m. The observed and predicted data are shown in Fig. 6.

The inversion domain contained 116 cells in the x direction, 108 in the y direction
and 24 in the z direction, all linearly spaced, for approximately 300,000 total cells. The
inversion domain extended from -200 m to 1200 m in the x, -200 m to 1100 m in the y,
and 0 m to 300 m in the z direction. The model discretization was chosen after running
multiple inversions with varying cell sizes. These sizes varied from 50×50×25 m3 to the
12×12×12 m3 we have chosen to show. Once the cells were smaller than 20×20×20 m3,
the results of the inversion did not vary appreciable with decreasing cell size.

4.3 Inversion results

First, a one dimensional inversion was performed to find a layered earth background
model. The best simple 1-D model was a homogenous halfspace with a resistivity of 3500
ohm-m. This model was used for the 3-D inversion scheme, as outlined above. The LQL
inversion was run first to obtain a fast image. The final misfit in the predicted data from
LQL after 17 iterations is 25%, but the true error in the solution as rigorously calculated
using the scheme is 110%. Note that the geometry of the kimberlite was well resolved
with the LQL inversion, but the conductivity distribution was highly overestimated in
this case, causing a very large response and the large misfit.

We then use the LQL result as a starting model and followed the rigorous inversion
algorithm to further delineate the model. The rigorous inversion runs for an additional
740 iterations giving a final rigorous misfit of 25%.
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Figure 6: Observed and predicted AEM data over a kimberlite pipe. The observed data are on the left, and
the predicted are on the right. The circles indicate data sounding locations used for the inversion. The various
channels used are as labeled. Notice that the coaxial channel visually has the poorest fit, but the noise level in
this channel was set to 10 ppm and the total anomaly is around 25 ppm. All other channels show a very good
fit between the observed data and the data predicted from the inverse model.

The results from this rigorous inversion, along with the true kimberlite position,
provided by BHP Billiton are shown in Fig. 7. This position is derived from extensive
drilling, the lake bathymetry, and other geophysical methods (Dr. R. Ellis, personal com-
munication). Our inversion result compares very favorably to this model. The model
is strictly geometric; we do not have conductivity information. We should emphasize,
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Figure 7: The result of rigorous inversion for practical AEM data collected over a kimberlite pipe. The true
kimberlite position provided by BHP Billiton is overlain as the green mesh.

Table 2: Inversion times and misfits.

Green’s LQL Checking Rigorous Total
Tensors LQL Inversion

Time 15 min 3 min 25 min 8.25 hours 9 hours

Number of Iterations NA 17 NA 740 757

Percent Misfit NA 25 110 25 25

however, that we did not have and we did not use information about the true position
of the kimberlite pipe in our inversion. Notice the top of the kimberlite is very well re-
solved, with both the depth and diameter close to the true model. The conductivity is
also assumed to be accurate, as wet clays typically have values around to 20 Ohm-m [12].
The model becomes slightly more diffuse at depth due to a lack of resolution. In addi-
tion, the resistivity becomes larger below the 150 m cross-section. This is most likely a
combination of decaying resolution and the kimberlite becoming less weathered at depth
and hence less conductive. There are also some artifacts below each transmitter position
indicating the noise level in the data may have been slightly underestimated and some
noise was fit.

The total inversion time on a 2.4 GHz AMD 64 processor with 4 Gb of RAM was 9
hours. The times of each stage are broken down in Table 2. The maximum ram used was
2.5 Gb.

The method presented here provides a rigorous solution allowing an accurate fit to
the data, while still being reasonably fast.
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5 Conclusion

In this paper we have demonstrated that the contraction integral equation method of
solving Maxwell’s equations can be successfully used for interpretation of geophysical
EM data in complex geoelectrical structures. We have extended the method of AEM data
interpretation based on the LQL approximation by adding a rigorous stage of inversion.
This rigorous stage includes a rapid and stable solution to electric field equation by using
the complex generalized minimum residual to solve a preconditioned form of the domain
equation. Using the electric field from the previous inversion iteration reduces the num-
ber of CGMRES iterations needed to accurately calculate a new field and greatly speeds
the inversion process. The rigorous 3-D solution to the AEM interpretation problem now
is feasible on a single PC.
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