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Abstract. The WKBJ solution for the one-way wave equations in media with smoothly
varying velocity variation with depth, c(z), is reformulated from the principle of en-
ergy flux conservation for acoustic media. The formulation is then extended to general
heterogeneous media with local angle domain methods by introducing the concepts of
Transparent Boundary Condition (TBC) and Transparent Propagator (TP). The influ-
ence of the WKBJ correction on image amplitudes in seismic imaging, such as depth
migration in exploration seismology, is investigated in both smoothly varying c(z) and
general heterogeneous media. We also compare the effect of the propagator ampli-
tude compensation with the effect of the acquisition aperture correction on the image
amplitude. Numerical results in a smoothly varying c(z) medium demonstrate that
the WKBJ correction significantly improves the one-way wave propagator amplitudes,
which, after compensation, agree very well with those from the full wave equation
method. Images for a point scatterer in a smoothly varying c(z) medium show that
the WKBJ correction has some improvement on the image amplitude, though it is not
very significant. The results in a general heterogeneous medium (2D SEG/EAGE salt
model) show similar phenomena. When the acquisition aperture correction is applied,
the image improves significantly in both the smoothly varying c(z) medium and the
2D SEG/EAGE salt model. The comparisons indicate that although the WKBJ compen-
sation for propagator amplitude may be important for forward modeling (especially
for wide-angle waves), its effect on the image amplitude in seismic imaging is much
less noticeable compared with the acquisition aperture correction for migration with
limited acquisition aperture in general heterogeneous media.
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1 Introduction

Full wave equation based modeling methods (e.g., finite-difference, finite-element) can
model all wave phenomena and provide accurate amplitudes of the wavefield, but are
computationally expensive, especially for the 3D case. Asymptotic theory based meth-
ods, such as the ray method, have been widely used in industry due to their efficiency,
straightforward implementation and flexibility in target-oriented imaging. The high-
frequency approximation limits their application in complicated regions. One-way wave
equation (parabolic wave equation) based propagators provide powerful and fast tools
for forward modeling and migration. They are much faster than full wave methods and
can handle complex velocity models better than ray-based methods. The original one-
way wave equations, introduced to exploration geophysics by Claerbout [1, 2], do not
provide accurate amplitudes even at the level of leading order asymptotic WKBJ or ray-
theoretical amplitudes [3].

The conventional one-way wave equation based migration can offer reflector
maps consistent with real subsurface structures, but may provide unreliable reflec-
tion/scattering strength (or image amplitude) of the reflectors/scattering objects. True-
reflection (or true-amplitude) imaging tries to give not only correct location but also cor-
rect image amplitude of the reflectors. This can bridge the gap between the conventional
imaging and direct inversion of the medium parameters. There are many factors which
may influence the image amplitude, including propagator errors (e.g., focusing and de-
focusing by heterogeneity, geometrical spreading, path absorption and path scattering
loss, numerical dispersion and numerical anisotropy), acquisition aperture effects, imag-
ing conditions, etc.

The amplitude errors in the conventional one-way wave propagators have been stud-
ied by different approaches for a long time [3–10]. The WKBJ correction can be introduced
into the one-way wave equations to compensate the amplitude of the propagators. Tradi-
tionally, the WKBJ solution is derived by asymptotic approximation in smoothly varying
c(z) media [11–14]. It has also been obtained by approximately factorizing the full-wave
operator into one-way wave operators in heterogeneous media [4]. With an extra ampli-
tude term introduced to the conventional one-way wave equations, the first-order trans-
port equation of the one-way wave equation will be the same as that from the full-wave
equation in the sense of high-frequency approximation. In this sense, they are called
”true-amplitude” one-way wave equations [3].

Understanding the reciprocity properties of (forward and inverse) one-way propa-
gators is relevant for the design of true-amplitude migration schemes [7]. The usual
one-way propagators are pressure-normalized: the sum of the downgoing and upgoing
waves equals the acoustic pressure of the total wavefield, and they do not obey reci-
procity [7]. The so called flux-normalized [5–7,15–17] one-way propagators, in which the
transmission coefficients at an interface for downgoing and upgoing waves are identical,
on the other hand, do obey reciprocity [7]. For horizontally layered media there is a vast
amount of literature that makes use of the flux-normalized decomposition [15–17]. It can
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be generalized for applications in arbitrarily inhomogeneous media [5, 6].

Recently, a multi-one-way method [8] has been proposed to improve the estimation
of amplitudes in conventional one-way propagators. It is based on an iterative solution
of the factorized full wave equation with a right-hand side incorporating the informa-
tion about medium heterogeneities using the perturbation theory, which assumes small
velocity contrasts. This approach takes into account vertical and horizontal velocity vari-
ations of the medium and allows modeling of reflected waves. The scheme consists of a
succession of several classic one-way wave propagations, but with a right-hand side that
is constructed from the error (correction) operator. These make it five times more compu-
tationally expensive than the classic one-way scheme. Numerical results for several 2D
examples with smoothly varying and rough velocity contrasts show that this scheme sig-
nificantly reduces the error in the amplitude estimates of the wavefield when compared
with the conventional one-way propagators.

With the WKBJ corrected ”true-amplitude” one-way wave equations, better image
amplitude is obtained in common-shot migration in some smoothly varying models
[3, 18]. Based on the multi-one-way modeling method, a true-amplitude multi-one-way
migration method is proposed to retrieve the true reflectivity [19], which is based on a
small reflection angle hypothesis.

The limited data acquisition aperture in reality combined with complex overburden
structures often results in strongly non-uniform dip-dependant illumination of some sub-
surface structures. Wu et al. [20] proposed an amplitude correction method in local an-
gle domain for acquisition aperture correction. Numerical examples showed significant
improvement in both the total strength of the images and angle-dependent reflection
amplitudes. This demonstrated the significance of aperture correction in true-reflection
imaging.

Different from the ray-based methods, usually there is no local angle information in
wave equation based migration methods. Recently developed methods, such as local
plane wave analysis based on window Fourier Frame theory [21, 22] or local slant stack
[23,24], can decompose the wavefield into localized beamlets bearing angle information,
which make it possible to form images in the local angle domain.

Most amplitude compensation schemes of one-way propagators are formulated and
implemented in the space domain. The localized WKBJ correction for general heteroge-
neous media proposed in [9] is in the local angle (wavenumber) domain. For general
heterogeneous media, the global wavenumber does not have the same meaning as for
laterally homogeneous media and cannot be related to the propagation direction of lo-
cal plane waves. The beamlet method [25], which contains localized wavenumber and
location information, could be used to implement the localized WKBJ correction [10].

In this paper, the WKBJ solution is reformulated from the conservation of energy flux
in smoothly varying c(z) media and then extended to general heterogeneous media in
the local angle domain using a beamlet propagator. The imaging condition in the space
and space-local angle domain and the formula for the acquisition aperture correction are
then given. In the numerical examples, the one-way wave amplitudes before and after the
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WKBJ correction are compared with the results from the full-wave method in a smoothly
varying c(z) medium. Finally we apply the WKBJ-corrected one-way propagator to the
seismic imaging (depth migration) and compare the influence of the propagator ampli-
tude correction with that of the acquisition aperture correction on the image amplitude
in both the smoothly varying c(z) and general heterogeneous media.

2 Amplitude WKBJ compensation for the conventional one-way

propagator

2.1 WKBJ solution from energy flux conservation in smoothly varying c(z)
media

The WKBJ solution can be derived from energy flux conservation. Energy flux rate is the
amount of energy transmitted per unit time across unit area normal to the direction of
propagation [12]. In general elastic media, the strain energy density is

1

2
τ : ε=

1

2 ∑
i,j

τijε ij, (2.1)

where τ,ε is the stress and strain tensor. It can be shown that for plane waves the strain
energy equals the kinetic energy. In the case of acoustic media, the kinetic energy density
of plane waves is 1

2 ρu̇2, where ρ,u and u̇ = v are media density, particle displacement
and particle velocity, respectively. This means, for plane waves, energy flux rate is ρcv2,
where c is the wave propagation speed.

For acoustic media, Newton’s Law in the frequency domain is

−∇P=−iωρ
⇀

v. (2.2)

For the vertical direction, we have

∂P

∂z
= iωρvz, (2.3)

vz =
1

iωρ

∂P

∂z
. (2.4)

For the plane wave pressure field

P= P0exp[i(kx x+kzz−ωt)], (2.5)

we have
∂P

∂z
= ikzP= ik0 cosθiP, (2.6)

where k0 = ω/c; θi is the propagation angle with respect to the vertical direction (see
Fig. 1). Substituting (2.6) into (2.4), we have

P=
ρcvz

cosθi
=ρcv. (2.7)
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Figure 1: Diagram showing the wave propagation and energy flux conservation across the boundary of a two-
layered medium.

With (2.7), we can get the energy flux incident on a unit area of the horizontal interface
per unit time (see Fig. 1)

ρcv2 cosθi =
P2cosθi

ρc
.

For laterally homogeneous media, the energy flux conservation (see Fig. 1) leads to

P2
1 cosθ1

ρ1c1
=

P2
2 cosθ2

ρ2c2
. (2.8)

We can recognize that ρ1c1/cosθ1 = Z1 is the local impedance of the media to a plane
wave with propagation angle θ1. From (2.8) we can get the pressure field change along
the z-direction across the media boundary

P2

P1
=

√

cosθ1

cosθ2

ρ2c2

ρ1c1
=

√

ρ2

ρ1

√

kz(c1)

kz(c2)
. (2.9)

Eq. (2.9) agrees with the WKBJ solution for smoothly varying media (e.g., in [14]).

2.2 WKBJ solution extended to general heterogeneous media

The amplitude of the conventional one-way propagators can be compensated by using
either the transmission coefficient correction or the WKBJ correction. The former correc-
tion can give the correct amplitude of the wavefield by taking into account the loss of
reflected energy during propagation in non-smoothly varying media. For the WKBJ cor-
rection, there is no energy loss during propagation due to the smoothly varying media
assumption. We can generalize the WKBJ solution for smoothly varying c(z) media to
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a transparent (or energy-conservative) propagator for general c(z) media. For c(z) me-
dia with discontinuities, the solution (2.9) corresponds to a TBC at each interface and the
propagator becomes a TP, which neglects all of the scattered/reflected energy loss when
the waves cross the boundary. The energy flow is thus continuous and conserved in both
the smoothly varying media and the media with sharp boundaries. Although the TBC
for the media with discontinuities does not represent physical reality, it could be useful
and preferred for some inversion procedures or true-reflection imaging because we can
conserve all of the energy collected by the receiver array. This could be the best strat-
egy for imaging, since we do not want to lose any more energy from the already weak
signals [20].

Along this line, the concept of TP of the wavefield can be extended to general het-
erogeneous media in the local angle domain [9], which can be called the localized WKBJ
correction. The concept of the TP is similar to the flux-normalized propagator for general
heterogeneous media. It can be implemented using a Local Cosine Basis (LCB) beam-
let propagator [10]. Here we give a summary of the theory. At each depth level, the
space-domain wavefield for a given frequency can be decomposed into beamlets as [25]

u(x,z,ω)=∑
n

∑
m

u(x̄n, ξ̄m,z,ω)·bmn(x), (2.10)

where bmn is the decomposition basis vector (beamlet) and u(x̄n, ξ̄m) is the coefficient of
the decomposed beamlet. The basis element bmn can be characterized by the window
position x̄n, window interval (the nominal length of the window) Ln = x̄n+1− x̄n, and
wavenumber ξ̄m as follows

bmn (x)=

√

2

Ln
Bn(x)cos

(

ξ̄m(x− x̄n)
)

,

ξ̄m =
π

(

m+ 1
2

)

Ln
, (2.11)

where Bn(x) is a smooth bell (window) function.
According to the global WKBJ correction in smoothly varying c(z) media (2.9), the

localized WKBJ correction in general heterogeneous media based on the beamlet propa-
gator can be symbolically written as

u(x̄n, ξ̄m,z+∆z,ω)

u(x̄n, ξ̄m,z,ω)
=

√

ρ(x̄n,z+∆z)

ρ(x̄n,z)

√

kz(x̄n,z)

kz(x̄n,z+∆z)
, (2.12)

k2
z(x̄n,z)=ω2

/

v2(x̄n,z)− ξ̄2
m, (2.13)

where kz(x̄n,z) is the window-position dependent local vertical wavenumber at depth
z, and v(x̄n,z) is the reference velocity for window at x̄n. In comparison, the vertical
wavenumber, kz(z), in (2.5) and the reference velocity are lateral-position independent
for the global WKBJ correction (2.9) in the laterally homogeneous media.
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3 Imaging condition in the space and space-local angle domain

Since we implement the one-way propagator in the frequency domain here, we focus
on the imaging condition in the frequency domain only. In common shot migration, the
source wavefield for each shot is forward-propagated, and the corresponding recorded
data are back-propagated to the imaging space. At each depth, the conventional space-
domain imaging condition for single frequency [26] can be used to construct the single-
shot image, and the final image is obtained by summing up all of the single-shot images
together

I(x)=∑
xs

I(x;xs)=∑
xs

2G∗
I (x;xs)·

∫

A(xg)
dxg

∂G∗
I (x;xg)

∂z
us(xg;xs), (3.1)

where I(x;xs) is the single-shot image from the shot at xs; GI is the Green’s function
used in the imaging process, which could be different from the Green’s function used
in the forward modeling; ”*” stands for complex conjugate; and the integral is a back
propagation Rayleigh integral of the recorded data, in which A(xg) is the spatial receiver
aperture and us(xg;xs) is the recorded scattered wavefield at the receiver xg from the
source at xs.

Seismic imaging should provide us an estimate of the subsurface reflectiv-
ity/scattering strength, which is reflection/scattering angle dependent. Therefore the
imaging condition in the space domain (3.1) needs to be extended to the space-local an-
gle domain (or beamlet domain) [21, 27]. Then the image obtained at each imaging point
is no longer a scalar value but a matrix, called the local image matrix (LIM) L(x̄, θ̄s, θ̄g),
where x̄ = (x̄,z) is the window position at depth z and lateral location x̄, θ̄s and θ̄g are
the source and receiving angles, respectively. The LIM is a distorted estimate of the local
scattering matrix (LSM) due to the acquisition aperture limitation and the propagation
path effects. LSM is the intrinsic property of the scattering medium and is independent
of the acquisition system and free from propagation effects and contains information of
the local structure and elastic properties [20]. The task of true-reflection imaging is to re-
store the true LSM from the distorted LIM by applying amplitude corrections. Note that
the source direction here is defined as the direction from the imaging point to the source,
so it is opposite to the incident direction. The (single frequency) imaging condition in the
space-local angle domain can be written as

L(x̄, θ̄s, θ̄g)=2∑
xs

G∗
I (x̄, θ̄s;xs)·

∫

A(xg)
dxg

∂G∗
I (x̄, θ̄g;xg)

∂z
us(xg;xs), (3.2)

where GI(x̄, θ̄s;xs) is the incident wavefield in the local angle domain at the imaging point
x̄ from the source at xs, and the integral is the back-propagated wavefield in the local
angle domain from the recorded data.
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Figure 2: Diagram for extracting the amplitude along the radial direction for different angle θ. The star
represents the source and the dots represent the receivers.

4 Acquisition aperture correction in the local-angle domain

Wu et al. [20] proposed an amplitude correction method in the local angle domain for the
acquisition aperture correction. The relevant amplitude correction factor matrix, Fa, for
above imaging condition (3.2) is

∣

∣Fa(x̄, θ̄s, θ̄g)
∣

∣=2∑
xs

∣

∣G∗
I (x̄, θ̄s;xs)GF(x̄, θ̄s;xs)

∣

∣·

{

∫

A(xg)
dxg

∣

∣GF(x̄, θ̄g;xg)
∣

∣

2
}1/2

, (4.1)

where GF is the Green’s function in forward modeling (for details on the amplitude cor-
rection factor, see Appendix). The final acquisition aperture corrected image can be ob-
tained by applying the amplitude correction factor to the migration image in the local
angle domain.

5 Effect of the WKBJ correction on the amplitude of the one-way

propagator in smoothly varying c(z) media

We will first test the effect of the WKBJ correction on the amplitude of the one-way prop-
agator by comparing it with that from the full-wave finite-difference (FD) method. A
point source is put in a smoothly varying c(z) (=3.0+0.36z (km/s)) medium. The source
time function is a Ricker wavelet with a dominant frequency of 15Hz. To directly com-
pare the amplitudes, we draw the curves of amplitude vs. distance from the source along
radial directions for different angles θ (see Fig. 2). Fig. 3 shows the curves for angles
θ = 0◦,15◦,30◦,45◦,60◦,75◦. Fig. 3(a) is for the conventional one-way propagator without
the WKBJ correction and Fig. 3(b) is for the new propagator with the WKBJ correction.
Comparison with the results from the full-wave method shows that the one-way propa-
gator without the WKBJ correction cannot give the correct amplitudes even in smoothly
varying c(z) media. The larger the angle is, the larger the error of the amplitude is. For
the angle θ =75◦, a very wide angle, the amplitude obtained from the conventional one-
way propagator without the WKBJ correction is only about half of the true amplitude.
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Figure 3: Effect of the WKBJ correction on the amplitudes of the one-way propagator in a smoothly varying
c(z)(=3.0+0.36z km/s) medium. Lines with different colors are for different angles θ=0◦,15◦,30◦ ,45◦,60◦ ,75◦.
Solid lines are results from the full-wave FD method. Dashed lines are results from the one-way method. The
inset figures are zoomed in versions of the main figures. (a) is for the conventional one-way propagator without
the WKBJ correction and (b) is for the new one-way propagator with the WKBJ correction.

However, with the WKBJ correction, the one-way propagator can give almost the same
amplitudes as the full-wave method. Even for very large angle wave (e.g. θ=75◦), the dif-
ference is very small. Fig. 4 shows the seismograms obtained from the WKBJ-corrected
one-way propagator and full-wave propagator along the radial direction θ = 60◦. The
waveforms from these two methods agree very well. These demonstrate that the one-
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way propagator with the WKBJ correction can give satisfactory wavefield amplitude in
this smoothly varying medium. It should be noted that all of our above implementations
include the contribution from evanescent waves. In our previous research [9], we found
that the evanescent waves have a significant influence on the wave amplitude, especially
for near-field waves.
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Figure 4: Seismograms obtained from the one-way propagator with the WKBJ correction (dashed blue lines) and
the full-wave FD method (solid red lines) along the radial direction θ=60◦ in a smoothly varying c(z)(=3.0+0.36z
km/s) medium.

6 Effect of the WKBJ correction in one-way propagators on the

image amplitude

Having seen the effect of the WKBJ correction on the amplitude of one-way propagators
in smoothly varying c(z) media, here we will study the effect of the WKBJ correction in
one-way propagators on the image amplitude in smoothly varying c(z) media and also
in general heterogeneous media.

6.1 Image amplitude comparison for a point scattering problem in smoothly
varying c(z) media

First, a simplified example is designed to illustrate the general idea in which a point
scatterer is put in a smoothly varying c(z) medium and the data are recorded at the
surface (see Fig. 5). Theoretically, it should have the same scattering amplitude in all
directions at the scattering point. To avoid possible numerical errors during generation
of the dataset by directly putting the source and receivers at the surface, which may
cause an anisotropic scattering pattern at the scattering point, we obtain the dataset in
an indirect way. First, data are generated by a point source at the location of the point
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Figure 5: Diagram for the point scattering problem, in which a point scatterer (yellow dot) illuminated by
a source (red star) is put in a smoothly varying c(z) medium and the data are recorded by receivers (green
triangles) at the surface.
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Figure 6: Single-shot data for the point scattering problem in Fig. 5. The source time function is a Ricker
wavelet with a dominant frequency of 30Hz.

scatterer with the full-wave FD method and then a time delay is added corresponding to
the time traveling from the real source location at the surface to the point scatterer. The
velocity model used is c(z)=1.5+0.36z (km/s). The receivers span an aperture of 10 km
at the surface, the receiver spacing is 25 m and the source is at the center of the receiver
array. The point scatterer is 2 km below the source. The source time function is a Ricker
wavelet with a dominant frequency of 30Hz. The input data for the migration are shown
in Fig. 6.

Because the true reflectivity (or scattering coefficient) depends on the reflection (or
scattering) angle, we use the imaging condition in the local angle domain to obtain the
local image matrix. Since there is only one incident angle θs = 0◦ for the example here,
we investigate the image L(x0,0, θ̄g) at the scattering point x0 only in the receiving angle
θg domain and compare it with the theoretical prediction. Fig. 7 shows the image am-
plitude at the scattering point in the local scattering angle domain. For the migration
with the WKBJ-corrected one-way propagator and full 10 km-aperture data (solid line in
Fig. 7a), the image amplitude curve within ±30◦ is flat, which agrees with the theoretical
prediction. Without the WKBJ correction, the image amplitude (dashed line in Fig. 7a)
is smaller. Results for the 6 km aperture data are similar (Fig. 7b), but the improvement
after the WKBJ correction is less significant than that for the 10 km aperture data, because
the WKBJ correction is more significant at wide angles.
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Figure 7: Comparison of the image amplitude for the WKBJ-corrected and original one-way propagators. The
solid lines are the results with the WKBJ-corrected propagator, and the dashed lines are the results without
the WKBJ correction. (a) Full 10km-aperture with receivers on both sides; (b) 6km-aperture with receivers on
both sides (The thick solid line is the result for the full 10km-aperture with the WKBJ-corrected propagator in
(a) as the reference curve).
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Figure 8: Comparison of the influence of the WKBJ correction and acquisition aperture correction on the image
amplitude for the 6km-aperture data with receivers on both sides. Dash-dot line: original image without any
correction; dotted line: result after the aperture correction only; dashed line: result with the WKBJ correction
only; solid line: image with both the WKBJ and aperture correction; and the thick solid line is the result for
the full-10km aperture with the WKBJ-corrected propagator as a reference curve.

From the image for 10 km and 6 km aperture data in Fig. 7b, we can see that the
acquisition aperture has significant influence on the image amplitude. The acquisition
aperture correction is then applied to the shorter (6 km) aperture data to minimize this
effect. Fig. 8 shows that the image amplitude after aperture correction (dotted line) is
significantly improved for the large scattering angle compared with that before the aper-
ture correction (dash-dot line) for the original propagator. The aperture correction has
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Figure 9: 2D SEG/EAGE salt model with dx=dz=40 feet.

a stronger effect on the image amplitude compared with the WKBJ correction (dashed
line). The result with both the WKBJ and aperture corrections (solid line) gives the best
amplitude distribution among them.

6.2 Image amplitude comparison for 2D SEG/EAGE salt model

In this section, we will apply the LCB beamlet propagator with the localized WKBJ cor-
rection to post- and pre-stack migration for the 2D SEG/EAGE salt model (Fig. 9) to study
the influence of the localized WKBJ correction on the image amplitude.

Post-stack migration is a wave back-propagation process, which can directly show the
effect of the localized WKBJ correction on the amplitude of the propagator. Fig. 10 shows
the post-stack migration results before and after the localized WKBJ correction (dx=dz=
40 feet). The image amplitude after correction is significantly stronger throughout the
model, especially for the steep faults in the sediment, the salt boundary and the subsalt
structures. The WKBJ correction also increases the amplitudes of the artifacts, especially
within the salt dome and in the subsalt area.

Fig. 11 shows the pre-stack migration results (dx=dz=80 feet) before and after the lo-
calized WKBJ correction with the imaging condition (3.1). Similar to the post-stack case,
the image amplitude is stronger throughout the model and also has stronger artifacts. To
make the image amplitude after correction more closely represent the reflection strength,
the image is normalized with the square of the incident wave amplitude in the local dip
angle domain, which removes the dip effect from the source. The normalized images
with and without the localized WKBJ correction give very similar amplitudes (Fig. 12).
The small-offset acquisition (maximum offset = 14000 feet) and relatively steep dipping
structures in the SEG/EAGE salt model may be the reason for the relatively weak effect
of the WKBJ correction on the image amplitude. The small-offset acquisition can only
acquire reflected waves with small reflection angles from the steeply dipping reflectors.
The top layer is water and is laterally homogeneous. Therefore the effects of the WKBJ
correction for the incident and reflected waves are similar, which makes the image am-
plitude improvement less significant.
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(b) After the localized WKBJ correction

Figure 10: Post-stack migration image for the 2D SEG/EAGE salt model before and after the localized WKBJ
correction. Here, dx=dz=40 feet.
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Figure 11: Pre-stack image for the 2D SEG/EAGE salt model before and after the localized WKBJ correction.
Here, dx=dz=80 feet.

The acquisition aperture correction is also applied to the imaging. Compared with
the image before the acquisition aperture correction (Fig. 11a), the image after acquisi-
tion aperture correction (Fig. 13a) is improved significantly throughout the model. The
images of the steep faults in the sediment are sharper and more continuous. For sub-
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Figure 12: Pre-stack image for the 2D SEG/EAGE salt model before and after the localized WKBJ correction.
The image is normalized with the square of the incident wave amplitude in the dip angle domain. Here,
dx=dz=80 feet.
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Figure 13: Pre-stack image with the acquisition aperture correction for the 2D SEG/EAGE salt model before
and after the localized WKBJ correction. Here, dx=dz=80 feet.

salt structures, the images along the steep structures and the baseline are much more
uniformly distributed after the aperture correction. The artifacts in the subsalt region
caused by salt body related multiples are also reduced. The result with both corrections
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(Fig. 13b) shows an image similar to that with only the acquisition aperture correction,
though with stronger artifacts in the subsalt area due to the WKBJ correction (Fig. 13a).
These results show that the acquisition aperture correction has a stronger effect on the im-
age amplitude for the 2D SEG/EAGE salt model. This agrees with the result for smoothly
varying c(z) media.

7 Conclusion

The WKBJ solution for one-way wave equations in smoothly varying c(z) media is refor-
mulated from the principle of energy flux conservation for acoustic media. Furthermore,
the WKBJ solution for smoothly varying c(z) media is extended to general heterogeneous
media with local angle domain methods by introducing the concepts of ”transparent
boundary conditions” and ”transparent propagators”. Through numerical examples and
theoretical analysis we demonstrated the following: 1. In smoothly varying c(z) media
the WKBJ correction for amplitudes is important to one-way wave propagators and its ef-
fect is significant for wide angle waves. 2. For seismic imaging such as depth migration,
the WKBJ correction for propagators shows some improvements on image amplitudes,
but not very significant. For example, the results from the 2D SEG/EAGE salt model
indicate that the less-significant improvement on the image amplitude may be due to
the small-offset acquisition of the data. A side-effect of the WKBJ correction in our im-
plementation is the amplification of artifacts. 3. Comparisons between the effects of the
WKBJ correction for propagators and the acquisition aperture correction show that the
acquisition aperture correction has a much stronger influence on the image amplitudes,
especially for the steep structures in the illumination shadow.

Acknowledgments

We greatly appreciate valuable comments and suggestions from Bjørn Ursin and another
anonymous reviewer, and the guest editors Lianjie Huang and Michael Fehler. We grate-
fully thank Xiao-Bi Xie for helpful discussions and offering the original FD code, and
thank Mingqiu Luo for helpful discussions and the help on LCB code. We also thank
Alexander Hutko for proofreading the manuscript. This research is sponsored by the
WTOPI (Wavelet Transform On Propagation and Imaging for seismic exploration) Re-
search Consortium and the DOE/BES Project at University of California, Santa Cruz.

Appendix: Acquisition aperture correction in the local-angle

domain

Wu et al. [20] proposed an amplitude correction method in the local angle domain for
calculating the acquisition aperture correction. The imaging condition (for a single fre-
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quency) in the space-angle domain to obtain the local image matrix (LIM) can be written
as

L(x̄, θ̄s, θ̄g)=2∑
xs

G∗
I (x̄, θ̄s;xs)·

∫

A(xg)
dxg

∂G∗
I (x̄, θ̄g;xg)

∂z
us(xg;xs). (A.1)

If there is a scatterer at x0 characterized by the local scattering matrix (LSM) R(x0, θ̄s, θ̄g),
the received scattered wave at xg can be modeled as

us(xg,xs;x0, θ̄s, θ̄g)=GF(x0, θ̄s;xs)R(x0, θ̄s, θ̄g)GF(xg, θ̄g;x0), (A.2)

where GF is the forward-modeling Green’s function which should be as close as possible
to the point-source response (Green’s function) of the acquisition process (field experi-
ment, numerical simulations, etc.). Note that the Green’s function here has been decom-
posed into the local angle domain at the scattering point x0, with θ̄s and θ̄g as the incident
angle and receiving angle, respectively.

Substituting (A.2) into (A.1) we get a relation between the LIM and the LSM. The LIM
is distorted from the LSM due to the acquisition aperture limitation and the propagation
path effects. The task of true-reflection imaging is to restore the true LSM by amplitude
corrections in the local angle-domain. The LIM and LSM are related by

L(x̄, θ̄s, θ̄g)= Fa(x0,x̄, θ̄s, θ̄g)R(x0, θ̄s, θ̄g), (A.3)

where Fa(.) is the amplitude correction factor for each element:

Fa(x0,x̄, θ̄s, θ̄g)=∑
xs

G∗
I (x̄, θ̄s;xs)GF(x0, θ̄s;xs)BA(x0, θ̄g), (A.4)

with

BA(x0, θ̄g)=2
∫

A(xg)
dxgGF(xg, θ̄g;x0)

∂G∗
I (x̄, θ̄g;xg)

∂z
. (A.5)

We see that even GF and GI can have different dynamic behavior; however the kinematic
structures of the two should be kept the same, at least to certain ranges of propagation
angle (wide-angle performance). Therefore when x̄ coincides with x0, the image L(.) in
(A.3) gives a maximum value due to coherent interference. At this point, the back prop-
agation integral represents a refocusing process for the scattered wavefield recorded by
the receiver array. From an energy (amplitude) point of view, we can use a ”transparent”
Green’s function, or precisely defined, energy-conserved Green’s function GE for back
propagation. In this case, all of the energy loss that occurs during refocusing, due to
boundary reflection, P-S conversion, scattering, anelastic attenuation and other effects,
will be neglected. This way we can conserve all the energy collected by the receiver ar-
ray to the maximum degree. This could be the best strategy for imaging and inversion
since we do not want to lose any more energy from the already weak signals. Energy is
conserved if we use GE for GI

|BA(x0, θ̄g)|
2 =2

∫

A(xg)
dxg|GF(xg, θ̄g;x0)|

2 (A.6)
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except for some edge beamlets. By reciprocity, the beamlet Green’s function in (A.6) can
be calculated as radiated from a point source at xg and received by a beamlet antenna at x0

with the same angle and beam-width. Therefore the receiver aperture effect can be simply
calculated using the acquisition aperture response [21, 22]. Stacking LIMs obtained from
all shots, as in (A.1), we can calculate the amplitude correction factor matrix Fa,

Fa(x̄, θ̄s, θ̄g)=∑
xs

G∗
I (x̄, θ̄s;xs)GF(x̄, θ̄s;xs)BA(x̄, θ̄g). (A.7)

According to the imaging principle, the stack of the contributions from all the sources
should be a coherent stack at the imaging point, resulting in

|Fa(x̄, θ̄s, θ̄g)|=∑
xs

|G∗
I (x̄, θ̄s;xs)GF(x̄, θ̄s;xs)||BA(x̄, θ̄g)|. (A.8)
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