
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 3, No. 1, pp. 250-270

Commun. Comput. Phys.
January 2008

Retrieval of Elastic Green’s Tensor near a Cylindrical

Inhomogeneity from Vector Correlations
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Abstract. Multiple scattering of elastic waves in realistic media makes that average
field intensities or energy densities follow diffusive processes. In such regime the suc-
cessive P to S energy conversions by distributed random inhomogeneities give rise to
equipartition which means that in the phase space the available elastic energy is dis-
tributed in average with equal amounts among the possible states of P and S waves. In
such diffusive regime the P to S energy ratio equilibrates in an universal way indepen-
dent of the particular details of the scattering. It has been demonstrated that averaging
the cross correlations at any two points of an elastic medium subjected to diffuse elas-
tic wavefields leads to the emergence of the Green function, which is the wave field
that would be observed at one position if an impulsive load is applied at the other. In
this work we study the problem of the retrieval of the 2D tensor elastodynamic Green
function in an infinite elastic space containing a circular cylinder inclusion. We illumi-
nate isotropically the elastic space with plane waves. We assume the spectra for both P
and S waves uniform but such that the energy ratio ES/EP =(α/β)2, which is the one
predicted by equipartition theory in two-dimensions. We then show that the Fourier
transform of azimuthal average of the cross-correlation of motion between two points
within an elastic medium is proportional to the imaginary part of the exact Green ten-
sor function between these points. The numerical results presented here point out the
possibility of detection and imaging of diffractors and resonant diffractors by cross
correlation even in presence of attenuation exists.
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1 Introduction

The use of correlations of seismic noise and coda waves is becoming a subject of inter-
est as it is now becoming clear that there is valuable information in these waves. We
may track various previous developments that lead to the concept of diffuse wave fields.
However, the pioneering approach of Aki (1957) is without any doubt crucial to under-
stand the roles of seismic noise and coda. Aki studied descriptions that ranged from
single and multiple scattering to radiative transfer ideas that he explored in order to ex-
plain coda envelopes (see Sato and Fehler, 1998).

The elastodynamic Green function has been recovered from the averaging of cross
correlation of the isotropic elastic wavefield generated by either multiple scattering or by
a large number of sources (such as microseisms) or microtemor as well (see Campillo and
Paul, 2003; Shapiro and Campillo, 2004, Sabra et al., 2005; Shapiro et al., 2005, Chávez-
Garcı́a and Luzón, 2005). These experimental results have demonstrated the role of long
range correlation. The Green function between two points is the wave field that would be
observed at one position if an impulsive load is applied at the other. The accuracy of the
reconstructed Green function depends critically on the duration of the signals processed.
Theoretically the cross-correlations should be applied to equipartitioned fields (that are in
a diffusive regime in which the net energy flux is null). This takes place after sufficiently
long time to allow multiple scattering (and thus diffusion) of the wave field. Equiparti-
tion means that in the phase space the available energy is equally distributed, with fixed
average amounts, among all the possible states. Extending these ideas of thermodynam-
ics, equipartition has been introduced in acoustics and elastic wave propagation. When
multiple scattering take place the energy ratios of the various modes tends to stabilize to
a constant value, independent of the details of the scattering (see Ryzhik et al., 1996). The
ratio of S and P energies in the equipartition regime ratio for the full elastic space in 2D
and 3D has been obtained by Weaver (1982). It can be obtained using different arguments
(see the Appendix in Sánchez-Sesma and Campillo, 2006).

In a recent work (Sánchez-Sesma and Campillo, 2006) the case of the full homoge-
neous elastic medium was studied both in 2D and 3D. In such study isotropic illumi-
nation and equipartition was assumed and it was demonstrated that the Fourier trans-
form of the azimuthal average of the cross-correlation between the vector motions at two
points within an infinite elastic space is proportional to the imaginary part of the exact
Green tensor function between these points. This elastic case shows that both equiparti-
tion and isotropy of the field are necessary conditions to retrieve the exact Green function
from correlations of the elastic field.

For horizontally layered medium Claerbout (1968) showed that the autocorrelation
of the transmission response leads to reflection seismograms together with their time-
reversed part. The source in the underground may be transient or noisy. In any case, the
source signature in the reconstructed surface response is related to the autocorrelation
of the source signal. Claerbout derivation was one dimensional but the idea has been
applied to micro earthquake data (Daneshvar et al., 1995).
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Sánchez-Sesma et al., (2007) used a representation theorem to retrieve the Green func-
tion of inhomogeneous, anisotropic elastic medium by averaging correlations of motions
from diffuse, equipartitioned fields. These authors observed that the boundary of a 2D
half-space produces in its interior fluctuations of energy densities that are considered
as local effects of the diffuse field. Before Rickett and Claerbout (1999) conjectured for
the 3D situation that ”by cross-correlating noise traces recorded at two locations on the
surface, we can construct the wave field that would be recorded at one of the locations
if there was a source at the other”. A numerical approach was followed to confirm this
(Rickett and Claerbout, 1996). It was proven by Wapenaar (2003) explaining the empirical
observations of the numerical modeling studies.

With the aim of studying a heterogeneous medium Wapenaar (2004) developed a rela-
tionship between the elastodynamic Green function and the cross correlation of observed
wave fields that holds at the free surface of heterogeneous medium. The basis for that
derivation was a reciprocity theorem of the correlation type, which relates two indepen-
dent elastodynamic states (wave fields and sources) in the studied medium. Wapenaar
(2004) expressions show that uncorrelated point sources at the boundary of the consid-
ered heterogeneous region may suffice to retrieve the Green function. The finite differ-
ences approach of Van Manem and Robertsson (2005) exploits this result for a 2D scalar
medium.

On the other hand, Wapenaar et al., (2005) showed that in the recovering of the Green
function problem, the time-reversal approach can be obtained as an approximation of
the result of the reciprocity approach using a single point diffractor in a full space and
acoustic scalar waves. Recently, Sánchez-Sesma et al., (2006) retrieved analytically by
cross-correlation the imaginary part of the exact 2D Green function of a cylindrical inclu-
sion for scalar SH waves. In order to compute the time response in this type of resonant
diffractors, Sánchez-Sesma et al., (2006) used the Hilbert transform to generate the real
part of this Green function. At the same time the experiments of Larose et al., (2006) in
a medium with a cylindrical hole showed the feasibility of imaging small details of the
medium by means of a passive time-correlation technique. The detection and imaging of
diffractors and resonant diffractors is of special interest for geophysicists and engineers.
For example the excitation and resonance of volcanic fluids inclusions are believed to be
the origin of the long-period (LP) waves observed at many stages in volcanic activity (Fu-
jita and Ida, 2003). The employment of the cross-correlations of seismic waves generated
by long-period events for volcano monitoring is discussed by Sabra et al., (2006) who
used the LP waves recorded during the Mount St. Helens 2004 eruption. Brenguier et al.,
(2007) using seismic noise correlations found a high velocity body following a preferen-
tial direction when constructing the 3D tomography of the Piton de la Fournaise volcano.
They interpreted this observed orientation as an evidence of the preferential paths of
magma injections. As resonators, volcanic magma inclusions may take various forms
that can be simplified to simple geometrical inclusions as a plane, cylinder or a sphere
(Hurst, 1992; Fujita and Ida, 2003).

In the present communication we deal with the problem of an inhomogeneous elastic
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medium with a 2D circular cylindrical elastic inclusion subjected to a uniform random
distribution of plane waves. The cross-correlation of the fields produced at two points
by generic plane waves is computed, and then azimuthally averaged. We show that the
average of the cross-correlation of the vector motion between two points is proportional
to the imaginary part of the Green tensor between these points. Moreover, in the P-SV
case the energy densities for S and P waves (ES, EP, respectively) must satisfy the rela-
tionship ES/EP =(α/β)2, where α,β=wave propagation velocities. This ratio, evaluated
for the diffraction problem shown here, is the one predicted by equipartition in the full
space too. At last, although our analytical solutions are obtained considering isotropy
and equipartition of the background field, a recent work by Wapenaar (2006) shows that
under very specific conditions the full Green function can be retrieved even when the
illumination is one-sided.

2 The Green function for 2D P-SV case with a cylindrical

inclusion

Let’s start this case dealing with P and SV waves in a homogeneous, isotropic, elastic
medium (see e.g. Aki and Richards, 1980). Propagation takes place in the x1-x3 (or x-
z) plane. Therefore, the in-plane displacements ui(x1,x3,t), where i = 1,3, fulfils Navier
equation

β2 ∂2ui

∂xj∂xj
+(α2−β2)

∂2uj

∂xi∂xj
=

∂2ui

∂t2
, (2.1)

where α=compressional wave velocity, β=shear wave velocity and t=time. In Eq. (2.1) the
Einstein summation convention is used.

Assume now the presence of a cylindrical inclusion of radius a centered at the origin
as show Fig. 1. In what follows the Green function for the in-plane or P-SV case is ob-
tained. Let us remember the form of the Green’s function in a homogeneous unbounded
medium (e.g. Sánchez-Sesma and Campillo, 1991):

Gij(x,y)=
1

i8ρ

{

Aδij−B(2γiγj−δij)
}

i, j=1,3, (2.2)

where ρ=mass density,

A=
H

(2)
0 (qr)

α2
+

H
(2)
0 (kr)

β2
andB=

H
(2)
2 (qr)

α2
−

H
(2)
2 (kr)

β2
, (2.3)

with H
(2)
m (•)= Jm(•)−iYm(•)=Hankel function of the second kind and order m expressed

in terms of the Bessel functions of the first and second kind. The S and P wavenumbers
are given by k=ω/β and q=ω/α, respectively.

Eq. (2.2) will be specialized to be the displacement field produced by a vertical or
horizontal unit harmonic line load at y1 =d, y3 =0. Let’s call y the source location point.
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In order to solve the problem for a cylindrical inclusion it is necessary to obtain the tensor
Green function in polar coordinates using Graf’s addition theorem to obtain the incident
waves from a line force away from the origin in the reference system of the inclusion, as
well as the waves scattered away by the inclusion and trapped inside it, if any (see Fig. 1).

Figure 1: Configuration for the elastic circular cylinder within an infinite space. The source and receiver are
located at y and x, respectively.

In order to consider the waves scattered out and refracted within the cylinder, it is
possible to use the potentials Φ and Ψ for both cases: the potentials for a horizontal
force and in the case of a vertical force. Several authors have studied this problem in
this sense, doing interesting contributions. Following to Pao and Mow (1973) or more
recently to Mercerat et al., (2006), the displacement at point x produced by source at y

is calculated, via use the Graf’s addition theorem (see Abramowitz and Stegun, 1972) to
modify the Hankel functions presented in potentials.

These expansion let us expressed the previous potentials for a horizontal and verti-

cal force dependent on the coefficient B
(x1)(0)
m , C

(x1)(0)
m and B

(x3)(0)
m , C

(x3)(0)
m respectively.

Then the potential can be used to calculate the displacements u and stresses σ in polar
coordinates.

To obtain the Green functions when the cylindrical inclusion Γ is filled with an elastic
material is necessary applying the continuity conditions to displacements and tractions at
the boundary ∂Γ of the inclusion r= a. Then the scattered and refracted elastic waves are
computed using the classical coefficients by Pao and Mow (1973). The needed coefficients

B
(xj)
n , C

(xj)
n , D

(xj)
n , E

(xj)
n for both expansions are obtained from fulfillment of boundary con-

ditions of continuity of displacements and tractions at the interface. For a recent revision
and validation see (Mercerat et al., 2006). The resolution of the generated equations’ sys-
tems supplies the needed coefficients to obtain the displacements in polar coordinates.
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For a horizontal point force at the region E, it is possible obtained

u
(x1)
rE

= u
(x1)(0)
r +u

(x1)(d)
r

=
∞

∑
n=0

[(

B
(x1)(0)
n F J,E

1 +C
(x1)(0)
n F J,E

10

)

+
(

B
(x1)
n FH,E

1 +C
(x1)
n FH,E

10

)]

cosnθ, (2.4)

u
(x1)
θE

= u
(x1)(0)
θ +u

(x1)(d)
θ

=
∞

∑
n=0

[(

B
(x1)(0)
n F J,E

11 +C
(x1)(0)
n F J,E

2

)

+
(

B
(x1)
n FH,E

11 +C
(x1)
n FH,E

2

)]

sin(−nθ) , (2.5)

and at the region Γ,

u
(x1)
rΓ

=u
(x1)(r)
r =

∞

∑
n=0

[(

D
(x1)
n F J,Γ

1 +E
(x1)
n F J,Γ

10

)]

cosnθ, (2.6)

u
(x1)
θΓ

=u
(x1)(r)
θ =

∞

∑
n=0

[(

D
(x1)
n F J,Γ

11 +E
(x1)
n F J,Γ

2

)]

sin(−nθ). (2.7)

When solve the problem for a vertical point force at the region E lead to,

u
(x3)
rE

= u
(x3)(0)
r +u

(x3)(d)
r

=
∞

∑
n=0

[(

−B
(x3)(0)
n F J,E

1 +C
(x3)(0)
n F J,E

10

)

+
(

−B
(x3)
n FH,E

1 +C
(x3)
n FH,E

10

)]

sin(−nθ), (2.8)

u
(x3)
θE

= u
(x3)(0)
θ +u

(x3)(d)
θ

=
∞

∑
n=0

[(

B
(x3)(0)
n F J,E

11 −C
(x3)(0)
n F J,E

2

)

+
(

B
(x3)
n FH,E

11 −C
(x3)
n FH,E

2

)]

cosnθ, (2.9)

and at the region Γ,

u
(x3)
rΓ

=u
(x3)(r)
r =

∞

∑
n=0

[(

−D
(x3)
n F J,Γ

1 +E
(x3)
n F J,Γ

10

)]

sin(−nθ), (2.10)

u
(x3)
θΓ

=u
(x3)(r)
θ =

∞

∑
n=0

[(

D
(x3)
n F J,Γ

11 −E
(x3)
n F J,Γ

2

)]

cosnθ. (2.11)

Now, a simple change of coordinates leads to the Green functions of this problem,

G11(x,y;ω)=u
(x1)
r cosθ−u

(x1)
θ sinθ, (2.12)

G31(x,y;ω)=u
(x1)
r sinθ+u

(x1)
θ cosθ, (2.13)

G13(x,y;ω)=u
(x3)
r cosθ−u

(x3)
θ sinθ, (2.14)

G33(x,y;ω)=u
(x3)
r sinθ+u

(x3)
θ cosθ, (2.15)
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where the references to regions E or Γ are omitted as these equations are valid at both

regions. Now we can introduce the previous expressions for u
(x1)
r ,u

(x1)
θ ,u

(x3)
r ,u

(x3)
θ in the

transformed Green functions, obtaining for the region E, for example, the next expres-
sions

G11(x,y;ω)=
∞

∑
n=0

[(

B
(x1)(0)
n F J,E

1 +B
(x1)
n FH,E

1

)

+
(

C
(x1)(0)
n F J,E

10 +C
(x1)
n FH,E

10

)]

cosθcosnθ

+
∞

∑
n=0

[(

B
(x1)(0)
n F J,E

11 +B
(x1)
n FH,E

11

)

+
(

C
(x1)(0)
n F J,E

2 +C
(x1)
n FH,E

2

)]

sinθsinnθ, (2.16)

G31(x,y;ω)=
∞

∑
n=0

[(

B
(x1)(0)
n F J,E

1 +B
(x1)
n FH,E

1

)

+
(

C
(x1)(0)
n F J,E

10 +C
(x1)
n FH,E

10

)]

sinθcosnθ

−
∞

∑
n=0

[(

B
(x1)(0)
n F J,E

11 +B
(x1)
n FH,E

11

)

+
(

C
(x1)(0)
n F J,E

2 +C
(x1)
n FH,E

2

)]

cosθsinnθ, (2.17)

G13(x,y;ω)=
∞

∑
n=0

[(

B
(x3)(0)
n F J,E

1 B
(x3)
n FH,E

1

)

−
(

C
(x3)(0)
n F J,E

10 +C
(x3)
n FH,E

10

)]

cosθsinnθ

−
∞

∑
n=0

[(

B
(x3)(0)
n F J,E

11 +B
(x3)
n FH,E

11

)

−
(

C
(x3)(0)
n F J,E

2 +C
(x3)
n FH,E

2

)]

sinθcosnθ, (2.18)

G13(x,y;ω)=
∞

∑
n=0

[(

B
(x3)(0)
n F J,E

1 B
(x3)
n FH,E

1

)

−
(

C
(x3)(0)
n F J,E

10 +C
(x3)
n FH,E

10

)]

sinθsinnθ

+
∞

∑
n=0

[(

B
(x3)(0)
n F J,E

11 +B
(x3)
n FH,E

11

)

+
(

C
(x3)(0)
n F J,E

2 C
(x3)
n FH,E

2

)]

cosθcosnθ, (2.19)

where the coefficients B and C correspond to the contribution of P and S waves respec-
tively.

3 Cross-correlation in two-dimensional vector case

We proceed further to calculate the cross-correlation of the motion recorded in both
points x and y, due to the incidence of P and SV plane waves from all possible inci-
dence angles. Our aim is to show we can retrieve the previously derived Green function
from averaging correlations. For this purpose, now the illumination is provided by in-
coming plane P and SV waves which are expanded in cylindrical coordinates and the
corresponding scattered and refracted fields are obtained.

With reference to Fig. 2a, e.g. for incidence of P waves consider the incoming plane

wave u
(0)
x3

=exp(−iqx3)exp(iωt), u
(0)
x1

=0. It can be shown that the corresponding scalar
potential is simply ΦP = i

q exp(−iqx3)exp(iωt), which can be expanded using a Neum-

man’s expansion in series of Bessel functions which are series of solutions of the elastic
equation. Let’s then resort to the potentials for each case, in order to considerer the waves
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Figure 2: a) scheme of incidence of P plane wave, b) scheme of incidence of S plane wave.

scattered out and refracted within the cylinder. Now we use the potential Φ for P waves
and Ψ for S waves. In the first case the potential is

ΦP =
i

q

∞

∑
n=0

(−i)n εn Jn (qr)cosnθ. (3.1)

When an S wave is propagated, the potential has the form

ΨS =
−i

k

∞

∑
n=0

(−i)n εn
n

r
Jn (kr)sinnθ. (3.2)

Now it is possible determinate the displacements and stresses from these potentials. Af-
ter some algebra we achieve the follow expressions for the free field in the P wave case,

u
P(0)
r =

∞

∑
n=0

B
P(0)
n J′n (qr)cosnθ, (3.3)

u
P(0)
θ =

∞

∑
n=0

B
P(0)
n

n

r
Jn (qr)sin(−nθ), (3.4)
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and these other expressions for the free field in the S wave case,

u
S(0)
r =

∞

∑
n=0

C
S(0)
n

n

r
Jn (kr)sin(−nθ), (3.5)

u
S(0)
θ =

∞

∑
n=0

C
S(0)
n J′n (kr)cosnθ, (3.6)

where the coefficients B
P(0)
n and C

P(0)
n are defined as

B
P(0)
n =

i

q
(−i)n εn, (3.7)

C
S(0)
n =

−i

k
(−i)n εn. (3.8)

Again it is necessary to apply the conditions of continuity of displacements and stresses
in order to work out the value of the coefficients needed to calculate the diffracted and
refracted fields. This leads to a linear system of order 4 for each n (for n =0 the order is
2, which means there are only P waves for n = 0) to retrieve the expansion coefficients
BT

n , CT
n , DT

n , ET
n , as in the previous punctual force section, but in this case T represent the

kind of the wave P or S. When the P plane wave is treated this system let to express the
complete solution for P wave at the region E as

uP
rE

=u
P(0)
r +u

(d)
r =

∞

∑
n=0

[(

B
P(0)
n F J,E

1

)

+
(

BP
n FH,E

1 +CP
n FH,E

10

)]

cosnθ, (3.9)

uP
θE

=u
P(0)
θ +u

(d)
θ =

∞

∑
n=0

[(

B
P(0)
n F J,E

11

)

+
(

BP
n FH,E

11 +CP
n FH,E

2

)]

sin(−nθ), (3.10)

and at the region Γ as

uP
rΓ

=u
(r)
r =

∞

∑
n=0

[(

DP
n F J,Γ

1 +EP
n F J,Γ

10

)]

cosnθ, (3.11)

uP
θΓ

=u
(r)
θ =

∞

∑
n=0

[(

DP
n F J,Γ

11 +EP
n F J,Γ

2

)]

sin(−nθ), (3.12)

where the functions F are presented in Appendix A. On the other hand, when the S plane
wave is treated the solution for S plane wave at the region E is

uS
rE

=u
S(0)
r +u

(d)
r =

∞

∑
n=0

[(

C
S(0)
n F J,E

10

)

+
(

−BS
nFH,E

1 +CS
n FH,E

10

)]

sin(−nθ), (3.13)

uS
θE

=u
S(0)
θ +u

(d)
θ =

∞

∑
n=0

[(

−C
S(0)
n F J,E

2

)

+
(

BS
nFH,E

11 −CS
n FH,E

2

)]

cosnθ, (3.14)
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Figure 3: Detail of the illumination of the cylindrical inclusion for plane waves.

and at the region Γ as

uS
rΓ

=u
(r)
r =

∞

∑
n=0

[(

−DS
nF J,Γ

1 +ES
n F J,Γ

10

)]

sin(−nθ), (3.15)

uS
θΓ

=u
(r)
θ =

∞

∑
n=0

[(

DS
n F J,Γ

11 −ES
n F J,Γ

2

)]

cosnθ. (3.16)

Let’s hereafter the reference to region E or Γ be omitted, it is supposed to be in the interest
region. In order to assure the illumination from all angles we express the displacements
as (see Fig. 3)

ur = P∑
n

uP
r cosn(θ−ϕ)+S∑

m

uS
r (−sinm(θ−ψ)), (3.17)

uθ = P∑
n

uP
θ (−sinn(θ−ϕ))+S∑

m

uS
θ cosm(θ−ψ), (3.18)

where the contribution of P and S waves are jointly considered. Here P or S are the
complex waveform F(ω,χ), being χ the incident angle ϕ or ψ depending on case. Let
us assume F(ω,χ) independent of incoming angle to become simply F(ω). This choice
means we assume isotropy of the background illumination.

It is convenient to change of coordinates to come back to Cartesian axis via

ux1
=ur cosθ−uθ sinθ, (3.19)

ux3 =ur sinθ+uθ cosθ. (3.20)

Expressions for the cross-correlations are then obtained. For this aim we need the dis-



260 J. A. Pérez-Ruiz, F. Luzón and F. J. Sánchez-Sesma / Commun. Comput. Phys., 3 (2008), pp. 250-270

placements at the point x(r,θ)

ux1 (r,θ) = P∑
n

[

uP
r cosθcosn(θ−ϕ)+uP

θ (sinθsinn(θ−ϕ))
]

+S∑
m

[

uS
r (−cosθsinm(θ−ψ))+uS

θ (−sinθcosm(θ−ψ))
]

, (3.21)

ux3 (r,θ) = P∑
n

[

uP
r sinθcosn(θ−ϕ)+uP

θ (−cosθsinn(θ−ϕ))
]

+S∑
m

[

uS
r (−sinθsinm(θ−ψ))+uS

θ (cosθcosm(θ−ψ))
]

, (3.22)

and the complex conjugate of the displacements at the point y(d,0)

u∗
x1

(d,0)= P∗∑
n

[

uP∗
r cosnϕ

]

+S∗∑
m

[

uS∗
r sinmψ

]

, (3.23)

u∗
x3

(d,0)= P∗∑
n

[

uP∗
θ sinnϕ

]

+S∗∑
m

[

uS∗
θ cosmψ

]

. (3.24)

Now we are in conditions to do the cross-correlation of these displacements. We have
assumed an isotropic field. This allows to do the azimuthal average over these angles.
This average implicates several integrals which lead to

2π
∫

0

cosmxcosnxdx=

(

1

εn

)

δmn,

2π
∫

0

sinmxsinnxdx=

(

εn−1

εn

)

δmn

(no summation), and then after some algebra, we have:

〈

ux1 (r,θ)·u∗
x1

(d,0)
〉

=

(

P2∑
n

uP
r uP∗

r

(

1

εn

)

+S2∑
n

uS
r uS∗

r

(

εn−1

εn

)

)

cosθcosnθ

+

(

P2∑
n

uP
θ uP∗

r

(

1

εn

)

−S2∑
n

uS
θ uS∗

r

(

εn−1

εn

)

)

sinθsinnθ, (3.25)

〈

ux3 (r,θ)·u∗
x1

(d,0)
〉

=

(

P2∑
n

uP
r uP∗

r

(

1

εn

)

+S2∑
n

uS
r uS∗

r

(

εn−1

εn

)

)

sinθcosnθ

−

(

P2∑
n

uP
θ uP∗

r

(

1

εn

)

−S2∑
n

uS
θ uS∗

r

(

εn−1

εn

)

)

cosθsinnθ, (3.26)

〈

ux1 (r,θ)·u∗
x3

(d,0)
〉

=

(

P2∑
n

uP
r uP∗

θ

(

εn−1

εn

)

−S2∑
n

uS
r uS∗

θ

(

1

εn

)

)

cosθsinnθ

−

(

P2∑
n

uP
θ uP∗

θ

(

εn−1

εn

)

+S2∑
n

uS
θ uS∗

θ

(

1

εn

)

)

sinθcosnθ, (3.27)



J. A. Pérez-Ruiz, F. Luzón and F. J. Sánchez-Sesma / Commun. Comput. Phys., 3 (2008), pp. 250-270 261

〈

ux3 (r,θ)·u∗
x3

(d,0)
〉

=

(

P2∑
n

uP
r uP∗

θ

(

εn−1

εn

)

−S2∑
n

uS
r uS∗

θ

(

1

εn

)

)

sinθsinnθ

+

(

P2∑
n

uP
θ uP∗

θ

(

εn−1

εn

)

+S2∑
n

uS
θ uS∗

θ

(

1

εn

)

)

cosθcosnθ. (3.28)

We found that the integrals involving the products of the factors P by S are null.
Remember the previous expressions (2.16) to (2.19) for Green functions; it is possible
to observe the similitude among these expressions and cross-correlation (3.25) to (3.28).
Developing the expressions (3.25) to (3.28), for region E or Γ, the real character of the
cross-correlation is easy to find. Then, computing both tensor quantities, the Green func-
tion and the cross-correlation of the displacements register at the two chosen points, we
find a relation among imaginary part of Green functions and the cross-correlation. This
allows checking the relation developed by Sánchez-Sesma et al. (2006). In this work the
ratio between the Green function and cross-correlation is presented as

〈

ui(y,ω)u∗
j (x,ω)

〉

=−8ESk−2Im
[

Gij(x,y,ω)
]

, (3.29)

where the equipartition theory is assumed, that is assuming the spectra for both P and
S uniform and such that the energy ratio is ES/EP = α2/β2. Here ES = ρω2S2/2 and
EP=ρω2P2/2. The result is the extension of the scalar SH case Sánchez-Sesma et al. (2006)
and is also identical to the result reported by Sánchez-Sesma and Campillo (2006) for the
2D vector case in the full homogeneous space for P and S waves.

In order to illustrate this identity, we consider with various examples and retrieve the
Green functions by means of the methodology presented herein.

4 Computational procedure

By means of the methodology here presented, in next epigraph we deal with various
examples testing the relation (3.29). The suitable implementation of the theory presented
in previous section is necessary. In this way, the needed computational time to compute
the cross-correlation is comparable to necessary time to calculate the analytical solution.
In order to achieve this aim, the Fortran language is used. Next, the algorithm employed
to compute the cross-correlation of the planar wave contribution is presented.

With Algorithm 4.1, only a few terms of the series are needed to achieve a reliable
result. When the velocity contrast between the inclusion and the surrounding medium
is high, approximately ∼60 series terms are needed. Nevertheless, when a homogeneous
medium is computed only ∼25 series terms are necessary. The cross-correlation proce-
dure is a low cost subroutine, and it is much faster than other numerical algorithms as
finite differences method or finite element method.
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Algorithm 4.1: xcorr

C COMPUTING THE PLANE WAVE CONTRIBUTION

Define qe, ke, qr, kr

for series expansion from 1 to end series limit
call functions Fe

call functions Fr

prepare the equation system to P-waves
call solve the system
prepare the equation system to S-waves
call solve the system

end

C COMPUTING THE RESPONSE IN RECEIVERS 1 AND 2

for receivers from 1 to 2
define r
if r> ra
P-wave field = P-free field + diffracted field
else if r< ra
P-wave field = refracted field
if r> ra
S-wave field = S-free field + diffracted field
else if r< ra
S-wave field = refracted field
total contribution = P-wave field + S-wave field

end

C COMPUTING THE CROSS-CORRELATION BETWEEN x AND y

initialize data
for series expansion from 1 to series limit

Compute xcorr11 Eq. (3.25)
Compute xcorr31 Eq. (3.26)
Compute xcorr13 Eq. (3.27)
Compute xcorr33 Eq. (3.28)

end

C WRITING THE RESULTS

This process allows deal with real data easily. Recent works, as Brenguier et al. (2007),
show the use of this technique in order to make velocity maps by tomography with real
data. Other interesting application of this procedure is the volcano monitoring, as it is
shown in the work of Sabra et al. (2006).
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Figure 4: Solid black lines depict the imaginary parts of the tensor Green function (Gij). The dashed gray lines

are the average cross-correlations (XCij) between the displacements recorded at points x and y. For numerical
reasons both quantities are represented divided by the square of the wave velocity.

5 Numerical examples

In the previous sections the analytical solution for the Green function retrieval from cor-
relations was made explicit for a classical problem of dynamic elasticity in 2D. Now, we
want to show the relationship between the tensor Green function in frequency domain
and the Fourier transform of the azimuthal average of the tensor cross-correlation of the
motion at two points in an inhomogeneous medium. This domain is formed by a cylin-
drical inclusion embedded in an infinite elastic space. The motion is consequence of
uniform illumination of plane waves.

Consider the in-plane P-SV case and refer to Fig. 1, with a stiffer inclusion at the
medium. We assumed the exterior E with S-wave velocity βE =0.4km/s, P-wave velocity
αE = 0.8km/s and mass density ρE = 2.1g/cm3, while the cylindrical inclusion Γ has a
radius a = 0.5km and S-wave velocity βΓ = 0.7km/s, P-wave velocity αΓ = 1.2km/s and
mass density ρΓ = 2.4g/cm3. Two receivers are placed in this model at the points x and
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Figure 5: The solid traces are the synthetic seismograms from the analytical Green function while dashed gray
lines depict the synthetic seismogram from cross-correlations and their Hilbert transforms.

y. The point y is separated a distance d=1.0km from the origin with zero azimuth. The
point x is placed at r = 0.75km and θ = 60 degrees. In Fig. 4 both members of Eq. (3.29)
divided by the square of wave velocity are depicted. The black solid line represents
the right member, and the dashed gray line depicts the left member of the equation.
Calculations were done for 128 frequencies up to 6.4 Hz and the number of terms in
the wave functions expansions varies linearly with frequency from 15 to 55 terms. It is
possible to observe an excellent agreement. The effects of heterogeneity are clearly visible
in the faint oscillations of Im[Gij], which reveals the resonances of the energy trapped
within the inclusion.

Fig. 5 displays synthetic seismograms. They are computed from convolving a Ricker
wavelet (with characteristic period tp=1.0s) with the analytic Green tensor and the cross-
correlations, respectively. The traces are superimposed and we can observe a very good
agreement between both sets of synthetics. We have used the Hilbert transform to gen-
erate the real parts of the tensor Green function which comes from the average of cross-
correlations.

Now the same geometry with a softer inclusion is considered. In this model the ex-
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Figure 6: Solid black lines depict the imaginary parts of the tensor Green function (Gij). The dashed gray lines

are the average cross-correlations (XCij) between the displacements recorded at points x and y. For numerical
reasons both quantities are represented divided by the square of the wave velocity.

terior region E has a S-wave velocity βE = 1.5km/s, P-wave velocity αE = 2.0km/s and
mass density ρE = 2.3g/cm3, whereas the cylindrical inclusion Γ has a radius a = 0.5km
and S-wave velocity βΓ =0.7km/s, P-wave velocity αΓ =1.0km/s and mass density ρΓ =
2.1g/cm3. In this case the point x is placed at r = 0.75km and θ = 90 degrees while the
point y is separated a distance d = 1.0km from the origin with zero azimuth. In order to
analyze the effects of the attenuation, in this example the region E has a quality factor
QP = 200 and QS = 150, whereas the region Γ has a quality factor QP = 100 and QS = 80.
In Fig. 6 the imaginary part of the four components of the tensor Green function are pre-
sented together with the real part of the average cross-correlation of the displacements
recorded at both receivers. In this case, some differences appear in the results. The aver-
aging cross-correlation does not retrieve exactly the tensor Green function, nevertheless
the level of misfits is very low. This is in agreement with the recent results by Snieder et
al. (2007) that the Green function can be retrieved from the response to random forcing
for a variety of conditions, including the extreme case of the diffusion equation.
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Figure 7: The solid traces are the synthetic seismograms from the analytical Green function while dashed gray
lines depict the synthetic seismogram from cross-correlations and their Hilbert transforms.

Fig. 7 show synthetic seismograms generated from convolution of a Ricker wavelet
(with characteristic period tp = 0.75s) with the analytic Green tensor and the cross-
correlations, respectively. As in the model within a stiffer inclusion, although in this case,
the attenuation is taken into account, it is possible observe a good agreement between the
traces generated by Green functions and those computed by real part of cross-correlations
and its Hilbert transform.

It is interesting to test the misfit between both traces in a quantitative way. For this
aim the formulation of Kristekova et al. (2006) is employed. This formulation presents
the envelope and phase misfit separately. Using these magnitudes to evaluate the misfits,
we find the misfits presented in Table 1.

These results for the Green tensor show the generality of our result. Inclusive when
the attenuation is taken into account the cross-correlation retrieves the Green function
with an agreement larger than 96-97 %. It is a very important result, since the real media
present attenuation, and this procedure is suitable to retrieval approximately the com-
ponents of the Green tensor in this kind of the media. For an unbounded elastic space
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Table 1: Envelope and phase misfits corresponding to Green tensor components and the cross-correlations for
the stiffer inclusion problem.

Envelope Misfit (%) Phase Misfit (%)

G11 2.98 0.83

G31 2.75 1.02

G13 2.26 0.59

G33 3.42 1.37

it is well-known that the Green function Gij(x,y) is a symmetric tensor. However, the
elastodynamic Green tensor for a heterogeneous medium or for a homogeneous body
with boundaries is no longer symmetric. In fact, for our heterogeneous problem we have
verified that Gij(x,y,ω) 6= Gji(x,y,ω) and, as a consequence of reciprocity, the identity
Gij(x,y,ω)≡Gji(y,x,ω), i 6= j, is fulfilled as well.

6 Conclusion

The retrieval of 2D heterogeneous Green function of an elastic cylindrical inclusion em-
bedded in an infinite homogeneous, elastic medium which is illuminated by isotropic
random wavefield that satisfies the equipartition ratio (in the P-SV case) has been ob-
tained. The equipartition of the energy carried by diffuse elastic waves in 2D is given by
the relationship ES =(α/β)2EP, where ES and EP are the S and P spatial energy densities,
and α and β are the P and S wave speeds, respectively.

In order to thoroughly validate this important finding for the P-SV inplane problem
the computations are done numerically over the analytical expressions. We used the
Graf’s addition theorem to translate the line forces’ potentials (given by expressions of

the form H
(2)
1 (kR)cosΘ and H

(2)
1 (kR)sinΘ at the point of load application) into expan-

sions at the cylinder origin. The Pao and Mow (1973) coefficients for all the displacements
and stresses in cylindrical coordinates have to be used and the fields numerically com-
puted. In developing the codes sometimes certain calculations were done numerically
for verification purposes. With this procedure, for this composite medium we retrieve,
from the correlations of the field produced by the isotropic and equipartitioned elastic
background, the exact Green function. The results presented in the present communica-
tion for a cylindrical inclusion verify and extend the validity of our previous results for
the homogeneous, unbounded elastic space.

The usefulness of correlations is not confined to the retrieval of the Green function. In-
deed, correlations do provide significant, useful information even in cases where the dif-
fuse nature of the fields is not at all obvious. An implication of the present findings is that
being the cylindrical inclusion embedded in a full space the equipartitioned, isotropic
illumination (a background radiation) is independent of the scatter but the local equipar-
titioned regime already includes its effects. The numerical results presented here point
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out also the possibility of detection and imaging of diffractors and resonant diffractors
by cross correlation of real records even if attenuation exists.
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Appendix A

Function’s catalogue follows the expressions based on Pao and Mow (1973). In these ex-
pressions Z represents the corresponding Bessel J or Hankel H functions. L corresponds
to the region (E or Γ) where the displacement is calculated, and the S and P wavenumbers
are given by kL =ω/βL and qL =ω/αL, respectively.

FZ,L
1 =

n

r
Zn (qLr)−qLZn+1(qLr),

FZ,L
2 =

n

r
Zn (kLr)−kLZn+1(kLr),

FZ,L
3 =

(

n2−n

r2
−q2

L

)

Zn (qLr)−
qL

r
Zn+1(qLr),

FZ,L
4 =

(

n2−n

r2
−k2

L

)

Zn(kLr)−
kL

r
Zn+1(kLr),

FZ,L
5 =−q2

LZn(qLr),

FZ,L
6 =

1

r2

[(

n2−n−
k2

Lr2

2

)

Zn (kLr)−kLrZn+1(kLr)

]

,

FZ,L
7 =

1

r2

[(

n2−n
)

Zn (qLr)−nqLrZn+1(qLr)
]

,

FZ,L
8 =

1

r2

[(

n2−n
)

Zn (kLr)−nkLrZn+1(kLr)
]

,

FZ,L
9 =Zn(qLr),

FZ,L
10 =

n

r
Zn (kLr),

FZ,L
11 =

n

r
Zn (qLr),

FZ,L
13 =

1

r2

[(

n2−n−
α2

2β2
q2

Lr2

)

Zn (qLr)−qrZn+1(qLr)
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.
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[6] F. Chávez-Garcı́a and F. Luzón, On the correlation of seismic microtremors, J. Geophys. Res.,
110 (2005), doi:10.1029/2005JB003671.

[7] J. F. Claerbout, Synthesis of a layered medium from its acoustic transmission response, Geo-
physics, 33 (1968), 264-269.

[8] M. R. Daneshvar, C. S. Clay and M. K. Savage, Passive seismic imaging using mi-
croearthquakes, Geophysics, 60 (1995), 1178-1186.

[9] E. Fujita and Y. Ida, Geometrical effects and low-attenuation resonance of volcanic fluid in-
clusions for the source mechanism of long-period earthquakes, J. Geophys. Res., 108 (2003),
doi:10.1029/2002JB001806.

[10] A. W. Hurst, Stochastic simulation of volcanic tremor from Ruapehu, J. Volcanol. Geoth.
Res., 51 (1992), 185-198.

[11] M. Kristekova, J. Kristek, P. Moczo and S. M. Day, Misfit criteria for quantitative comparison
of seismograms, Bull. Seism. Soc. Am., 96 (2006), 1836-1850.

[12] E. Larose, O. I. Lobkis and R. L. Weaver, Passive correlation imaging of a buried scatterer
(L), J. Acoust. Soc. Am., 119(6) (2006), 3549-3552.

[13] E. D. Mercerat, J.-P. Vilotte and F. J. Sánchez-Sesma, Triangular spectral element simulation
of 2D elastic wave propagation using unstructured triangular grids, Geophys. J. Int., 166
(2006), 679-698.

[14] Y.-H. Pao and C.-C. Mow, Diffraction of Elastic Waves and Dynamics Stress Concentrations,
Crane Russak/Adam Hilger, 1973.

[15] J. Rickett and J. Claerbout, Passive seismic imaging applied to synthetic data, Stanford Ex-
ploration Project, 92 (1996), 83-90.

[16] J. Rickett and J. Claerbout, Acoustic daylight imaging via spectral factorization: Helioseis-
mology and reservoir monitoring, The Leading Edge, 18 (1999), 957-960.

[17] L. V. Ryzhik, G. C. Papanicolau and J. B. Keller, Transport equations for elastic and other
waves in random media, Wave Motion, 24 (1996), 327-370.

[18] K. G. Sabra, P. Gerstoft, P. Roux, W. A. Kuperman and M. C. Fehler, Extracting time-
domain Green’s function estimates from ambient seismic noise, Geophys. Res. Lett., 32
(2005), L03310.

[19] K. G. Sabra, P. Roux, P. Gerstoft, W. A. Kuperman and M. C. Fehler, Extracting coherent coda
arrivals from cross-correlations of long period seismic waves during the Mount St. Helens
2004 eruption, Geophys. Res. Lett., 33 (2006), L06313.

[20] F. J. Sánchez-Sesma and M. Campillo, Diffraction of P, SV and Rayleigh waves by topo-
graphic features: a boundary integral formulation, Bull. Seism. Soc. Am., 81 (1991), 2234-
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