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Engineering, Břehová 7, 115 19 Prague 1, Czech Republic.
2 Theoretical Division, Group T-7, MS-B284, Los Alamos National Laboratory, Los
Alamos, NM 87545, USA.

Received 29 June 2007; Accepted (in revised version) 18 September 2007

Available online 11 December 2007

Abstract. The maximum principle is a basic qualitative property of the solution of
second-order elliptic boundary value problems. The preservation of the qualitative
characteristics, such as the maximum principle, in discrete model is one of the key
requirements. It is well known that standard linear finite element solution does not
satisfy maximum principle on general triangular meshes in 2D. In this paper we con-
sider how to enforce discrete maximum principle for linear finite element solutions for
the linear second-order self-adjoint elliptic equation. First approach is based on repair
technique, which is a posteriori correction of the discrete solution. Second method
is based on constrained optimization. Numerical tests that include anisotropic cases
demonstrate how our method works for problems for which the standard finite ele-
ment methods produce numerical solutions that violate the discrete maximum princi-
ple.
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1 Introduction

In this paper we consider two approaches to enforce discrete maximum principle for lin-
ear finite element solution of the linear second-order self-adjoint elliptic equation without
lower-order terms.
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It is well known that standard finite element methods can for some problems produce
numerical solutions violating a discrete maximum principle (DMP) which is the discrete
analog of the maximum principle, see, e.g., [1–7]. In the classical paper [8] Ciarlet and
Raviart show that for the case of scalar isotropic diffusion coefficient the standard linear
finite element method applied to Poisson equation satisfies the DMP on weakly acute
triangular meshes. The weakly acute geometric condition is a typical condition under
which some numerical methods produce solutions satisfying the DMP. The uniform con-
stant anisotropic diffusion tensor can be transformed to the isotropic tensor (or the scalar
diffusion coefficient) by rotating and scaling the coordinate system, so that one can use
the acute conditions in the transformed coordinates. However, often one cannot choose
the computational mesh or the anisotropy ratio is too big to provide a practical compu-
tational acute mesh in the transformed coordinates.

The issues related to the DMP have been studied by many researches. Here we try
to review the recent contributions in the issues. The DMP for stationary heat conduc-
tion in nonlinear, inhomogeneous, and anisotropic media is analyzed by Krizek and Liu
in [9, 10]. The dependence of DMP on mesh properties for finite element solutions of el-
liptic problems with mixed boundary conditions is considered by Karatson and Korotov
in [11, 12]. Burman and Ern [13] have developed a nonlinear stabilized Galerkin approx-
imation of the Laplace operator whose solutions satisfy the DMP without the need to
satisfy the acute condition. However, this requires solving a nonlinear system of equa-
tions instead of a standard linear one. Le Potier has proposed a finite volume scheme
for highly anisotropic diffusion problems on unstructured meshes [2] and improved it
to the nonlinear version [3] which is monotone for a parabolic problem with sufficiently
small time step. It has been further improved by Lipnikov et al. in [6], resulting in a non-
linear monotone finite volume scheme for elliptic problems which keeps positivity of the
solution, however, can still violate the DMP. Mlacnik and Durlofsky [5] perform mesh op-
timization to improve the monotonicity of the numerical solution for highly anisotropic
problems. A new mixed finite volume scheme for anisotropic diffusion problems has
been developed by Droniou and Eymard in [4], however, it does not satisfy the DMP
for highly anisotropic problems. The DMP has been investigated by means of discrete
Green’s function positivity by Draganescu et al. in [1]. The DMP for 1D problems with
discontinuous coefficients is studied by Vejchodsky and Solin in [14]. The criteria for the
monotonicity of control volume methods on quadrilateral meshes are derived by Nord-
botten et al. in [7]. The elliptic solver on Cartesian grids for interface problems by Deng
et al. [15] uses the standard scheme away from the interface, and a positive scheme at the
interface is derived by using constrained optimization techniques. Hoteit et al. [16] study
how to avoid violation of the DMP by the mixed-hybrid finite-element method (MH-
FEM) applied to a parabolic diffusion problem and propose two techniques reducing the
MHFEM to finite difference methods obeying the DMP.

Our first approach to enforce discrete maximum principle is based on repair tech-
nique, [20–22], which is a posteriori correction of the discrete solution. Second method
is based on constrained optimization. The quadratic optimization problem is related to
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variational formulation of elliptic boundary value problem and linear constraints are ex-
plicitly introduced to satisfy discrete maximum principle.

In Section 2, we introduce the discrete maximum principle for the second-order el-
liptic equation with Dirichlet boundary conditions. In Section 3 we describe two new
methods for enforcing discrete maximum principle. We start with addressing an issue
of keeping the solution conservative in Section 3.1. The we describe a repair technique
in Section 3.2. Method based on constrained optimization is described in Section 3.3.
Several problems (most with strong anisotropy), for which the standard linear finite ele-
ment method violates the DMP while our approach gives numerical solution satisfying
the DMP, are presented in Section 4 for homogeneous elliptic equations and in Section 5
for non-homogeneous equations. Some future plans are described in Section 6.

2 Linear self-adjoint second-order elliptic boundary value

problem: Maximum principle and discrete maximum

principle

We will consider linear self-adjoint second-order elliptic boundary value problem with-
out low order terms:

−Lu=−div(A·gradu(x))= f (x), x∈Ω,

u(b)=ψ(b), b∈∂Ω,
(2.1)

where the matrix A(x)

A=

(

a11 a12

a12 a22

)

(2.2)

is a symmetric positive definite diffusion matrix:

∑
α,β=1,2

aα,β(x,y)ξα ξβ >0, ∀ ξ =(ξ1,ξ2) with |ξ| 6=0, and ∀ (x,y)∈Ω, (2.3)

and f (x) is given function. We will assume that a11, a12, a22 , f are bounded functions from
L2(Ω),ψ∈C(∂Ω), and Ω⊂R2 is bounded domain with Lipschitz-continuous polygonal
boundary ∂Ω.

The maximum principle for an elliptic differential operator L is an important notion
for elliptic problems. It states, see, e.g. [17], that if a function u(x) satisfies Lu(x)≥0 for
x in a bounded domain Ω then u(x) has the maximum value on the boundary ∂Ω of Ω

and vise versa. If f (x)≤0 for all x∈Ω, then the maximum principle states that u(x) has
the maximum on the boundary, so that

∀x∈Ω, u(x)≤max
b∈∂Ω

ψ(b). (2.4)
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If f (x)≥0 for all x∈Ω, then the maximum principle states that u(x) has the minimum on
the boundary, so that

∀x∈Ω, u(x)≥ min
b∈∂Ω

ψ(b). (2.5)

For the homogeneous equation, i.e., zero source f (x)=0, the maximum principle implies
that the value of the solution of problem (2.1) u(x) at any internal point x of Ω is bounded
by extremal boundary values ψ, so that

∀x∈Ω, min
b∈∂Ω

ψ(b)≤u(x)≤max
b∈∂Ω

ψ(b). (2.6)

When the source f changes the sign inside the domain Ω then the solution of the elliptic
equation (2.1) might have local extrema inside the domain Ω.

We will consider discretization of (2.1) on triangular mesh in 2D domain Ω, where the
functions u(x), f (x) have discrete values Un,Fn at the mesh nodes n, and coefficients of
the matrix A are defined at triangles, for example, a11,T . We will use standard linear finite
element method (FEM). It is well known that under some assumptions about mesh reg-
ularity the solution of the standard linear FEM converges to the solution of the Dirichlet
problem (2.1) with mesh refinement [19].

The discrete version of the maximum principle (2.4) for non-positive sources (∀n,Fn≤
0) states that for all nodes n

∀n, Un≤ max
xj∈∂Ω

Ψj, (2.7)

where for the boundary nodes bj ∈ ∂Ω the discrete Dirichlet boundary conditions are
given by Ψj=ψ(bj). The discrete version of the maximum principle (2.5) for non-negative
sources (∀n,Fn ≥0) states that for all nodes n

∀n, Un≥ min
xj∈∂Ω

Ψj . (2.8)

Finally, the discrete version of the maximum principle (2.6) for the homogeneous case
states that for all nodes n

∀n, min
xj∈∂Ω

Ψj ≤Un≤ max
xj∈∂Ω

Ψj. (2.9)

As will be seen below, in the numerical tests there exist problems for which the un-
bounded solution Uu does not satisfy one of the discrete maximum principles.

3 Enforcing the discrete maximum principle

In this section we describe two methods to enforce discrete maximum principle. First
approach is based on repair technique, [20–22], which is a posteriori correction of the dis-
crete solution. The repair procedure allows to correct discrete solution in such a way that
discrete energy of the solution is preserved. Second method is based on constrained op-
timization. The quadratic optimization problem is related to the variational formulation
of the elliptic boundary value problem and appropriate linear constraints (2.7), (2.8), or
(2.9) are explicitly introduced to satisfy discrete maximum principle.
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3.1 Notion of the conservation

Elliptic equation can be interpreted as a stationary heat equation with u being tempera-
ture. In this case, the total heat energy

∫

Ω
udV is in the discrete case approximated by

E[U]=∑
n

UnVn , (3.1)

where the summation goes over all nodes of the computational mesh, and Vn is the vol-
ume associated with the node n defined as one third of the sum of areas of all triangles
which have node n as one of their vertices (this definition is the same as if we add from
each triangle the area of quadrilateral created by the node, triangle center, and centers of
two corresponding edges). In some application it maybe important to have some notion
of preservation of total energy when modifying discrete solution to satisfy maximum
principle. In this paper, we define the total energy which we want to preserve using
linear finite element solution. It is denoted by Uu, where the superscript stands for un-
bounded, because it can violate bounds defined by the discrete maximum principle. One
can choose also another sample solution obtained, e.g., by some other higher order nu-
merical method. The total energy is E[Uu], and we require that the modified solution Ũ
has the same total energy, i.e.,

E[Ũ]=E[Uu]=∑
n

Uu
nVn , (3.2)

where Uu
n is the value of the unbounded solution at the node n.

3.2 Repair

We repair the nodal values of Uu violating the given discrete maximum principle by
redistributing the heat energy to or from their neighbors so that (3.2) remains valid.

Let us assume that the unbounded solution at node n violates the minimum constraint
(2.8), so that

Un <Umin = min
xm∈∂Ω

Ψm

(in the description of the repair we drop the superscript u denoting the unbounded solu-
tion). To correct this violation of lower bound, we need to add the needed energy

∆E=(Umin−Un)Vn

to the node n. We denote by N(n) the set of nodes neighboring the node n (each neigh-
boring node defines one edge connecting this node with the node n). For all neighboring
nodes m∈N(n), the available energy Ea

m at node m which can be taken out of this node
and given to the node n (without violating the minimum constraint (2.8) at node m) is

Ea
m =max(0,(Um−Umin)Vm)
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and it is positive if Um >Umin. The total available energy in all the neighboring nodes is

Ea = ∑
m∈N(n)

Ea
m.

Now, if the total available energy is greater than the needed energy, i.e., Ea ≥∆E, we
have enough available energy to correct the temperature in the node n to its minimal
value Umin. We set Ur

n=Umin (superscript r refers to ”repaired” value of the temperature)
and take out the needed energy ∆E from neighbors in proportion to what they can give,
which leads to the following formula

Ur
m :=

UmVm−Ea
m(∆E/Ea)

Vm
, ∀m∈N(n),

so that the total energy (3.2) remains constant (see [20] for detail).

On the other hand if the total available energy is less than the needed energy, we
extend the neighborhood N(n) by the neighbors of all nodes from N(n) and repeat the
outlined procedure. The repair procedure is applied to all nodes violating the lower
bound (2.8).

When the upper bound on the solution (2.7) is not valid, the repair of temperature at
nodes violating the upper bound proceeds in a similar way as the repair of temperature
at nodes violating the lower bound (2.8) described above. The solution obtained by repair
is called repaired solution and is denoted by Ur.

3.3 Constrained optimization

Under some assumptions about smoothness of the coefficients and right-hand side func-
tion, problem (2.1) is equivalent to minimization of the energy functional

F [u]=
∫

Ω
(gradu·(A·gradu)−2 f (x)u(x)) dV ,

u(b)=ψ(b), b∈∂Ω.
(3.3)

Standard linear finite element solution can be obtained by minimizing discrete analog
of optimization problem (3.3). For discrete approximation of the gradient gradu in the
triangle T defined by three counter-clockwise numbered nodes (xT

1 ,yT
1 ),(xT

2 ,yT
2 ),(xT

3 ,yT
3 )

we use, see [18],

GRADx
T(U)=

1

2VT

(

(UT
1 +UT

2 )(yT
2 −yT

1 )+(UT
2 +UT

3 )(yT
3 −yT

2 )+(UT
3 +UT

1 )(yT
1 −yT

3 )
)

,

GRAD
y
T(U)=− 1

2VT

(

(UT
1 +UT

2 )(xT
2 −xT

1 )+(UT
2 +UT

3 )(xT
3 −xT

2 )+(UT
3 +UT

1 )(xT
1 −xT

3 )
)

,
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where VT is the area of the triangle T and UT
1 ,UT

2 ,UT
3 are discrete values of u(x) at corre-

sponding nodes of the triangle T. The discrete energy functional is now given by

Fh[U]=∑
T

[(

a11,TGRADx
T(U)+a12,TGRAD

y
T(U)

)

GRADx
T(U)+(a12,TGRADx

T(U)

+a22,TGRAD
y
T(U)

)

GRAD
y
T(U)− 2

3
FT

3

∑
j=1

UT
j

]

VT , (3.4)

where the summation is over all mesh triangles covering the computational region Ω and
FT = f (xT,yT) is the value of the source f at the center

(xT,yT)=
1

3

3

∑
j=1

(xT
j ,yT

j )

of the triangle T.
It is well known that the discrete function which delivers minimum to the functional

(3.4) coincides with linear finite element solution of Eq. (2.1). We call this solution un-
bounded, since it is computed without imposing bounds on Un, and denote it by Uu.

To enforce discrete maximum principle and to conserve the energy we suggest to min-
imize the discrete energy functional (3.4) under constraints corresponding to appropriate
bounds (2.7) or (2.8) or (2.9) and the total energy constraint (3.2). This solution is called
constrained-bounded solution and denoted by Ucb.

The discrete energy functional (3.4) is quadratic functional (with respect to {Un}) with
positive definite Hessian matrix, the maximum principle constraints (2.7) or (2.8) or (2.9)
are just the interval for all discrete values Un, and the total energy constraint (3.2) is linear
in Un, so we need to solve a convex quadratic programming problem. In our numerical
experiments we are using Schittkowski convex quadratic programming package QL [23–
25].

4 Numerical experiments for Laplace equation

In this section we present several numerical tests for the Laplace equation, i.e., for the
Dirichlet problem for the Poisson equation (2.1) with zero source f (x)=0. The maximum
principle for the Laplace equation is (2.6) and its discrete analogue is (2.9).

4.1 Two very simple problems

Here we present two very simple problems for Laplace equation with only two internal
nodes, so the problems have only two unknowns U1 and U2 and their solutions can be il-
lustrated in 2D U1×U2 space, so that one can easily see the features of different solutions.
The first example produces the unbounded solution which violates the maximum prin-
ciple (2.9), nevertheless, the constrained-bounded and repaired solutions do exist. The
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second example also produces unbounded solution violating the maximum principle,
however, this unbounded solution cannot be repaired. The repaired and constrained-
bounded solutions (both conserving energy) do not exist.

The mesh for the first problem is presented in Fig. 1(a). The computational domain is
the unit square Ω =[0,1]×[0,1]. The boundary conditions are specified as follows: ψ =0
everywhere except ψ=4 for y=0∧x∈(0.1,0.9) (so that the value ψ=4 is set only for two
central nodes on the lower edge). Different solutions of the first problem are plotted in
Fig. 1(b) and the zoomed region of interest in Fig. 1(c). The solid line shows the box for
U1,U2 unknowns given by the discrete maximum principle (2.9); the dashed line shows
the total energy constraint (3.2). The unbounded solution

Uu =(Uu
1 ,Uu

2 )
.
=(1.35,−0.11)

violates the minimum constraint U2 ≥ 0 for the unknown U2, and as the unbounded
solution defines the total energy, the unbounded solution Uu lies on the total energy
constraint. The bounded solution Ub .

=(1.38,0) lies on the boundary U2 = 0 of U2 lower
constraint U2≥0. The constrained-bounded solution Ucb .

=(1.23,0) which coincides with
the repaired solution Ur = Ucb is at the intersection of the total energy constraint with
the boundary U2 =0 of U2 lower constraint U2≥0. The discrete Dirichlet functional (3.4)
values of the unbounded, bounded, repaired and constrained-bounded solutions are

Fh[U
u]

.
=44.41,Fh[U

b]
.
=44.51, Fh[U

r]=Fh[U
cb]

.
=44.62.

The total energy (3.1) of the unbounded, repaired, constrained-bounded and bounded
solutions are

E[Uu]=E[Ur]=E[Ucb]
.
=1.15, E[Ub]

.
=1.18.

The mesh for the second problem is presented in Fig. 2(a). The computational domain
again is unit square Ω=[0,1]×[0,1], and the boundary conditions are specified as follows:
ψ=0 everywhere except ψ=40 for y=0∧x∈(0.1,0.9) (so that the value ψ=40 is set only
for two central nodes on the lower edge). Different solutions of the second problem are
plotted in Fig. 2(b) and the zoomed region of interest in Fig. 2(c). The solid line shows the
box for U1,U2 unknowns given by the discrete maximum principle (2.9), and the dashed
line shows the total energy constraint (3.2). The total energy constraint does not intersect
the maximum principle bounding box, which implies that the repaired and constrained-
bounded solutions do not exist; so for this problem we have only the unbounded and
bounded solutions. The unbounded solution

Uu =(Uu
1 ,Uu

2 )
.
=(0.53,−0.83)

violates the minimum constraint U2 ≥ 0 for the unknown U2, and as the unbounded
solution defines the total energy, the unbounded solution Uu lies on the total energy
constraint. The bounded solution Ub .

=(0.49,0) lies on the boundary U2 = 0 of U2 lower
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Figure 1: The first simple problem which does have constrained-bounded solution: (a) computational mesh;
(b) bounds for two unknowns U1,U2, unbounded, bounded, constrained-bounded solutions and total energy
constraint in U1×U2 space; (c) zoom of (b) around solutions.
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Figure 2: The second simple problem for which repaired and constrained-bounded solution do not exist: (a)
computational mesh; (b) bounds for two unknowns U1,U2, unbounded, bounded, solutions and total energy
constraint in U1×U2 space; (c) zoom of (b) around solutions.
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constraint U2 ≥ 0. The discrete Dirichlet functional (3.4) values of the unbounded and
bounded solutions are

Fh[U
u]

.
=5439, Fh[U

b]
.
=5449.

The total energies (3.1) of the unbounded and unbounded solutions are

E[Uu]
.
=14.16, E[Ub]

.
=14.35.

This problem demonstrates that for some very special problems the repaired and
constrained-bounded solutions might not exist. However, such problems are really
very special and we believe that in real practical simulations repaired and constrained-
bounded solutions will always exist.

4.2 Problem with non-smooth anisotropic solution

This problem originates in presentation [26], and its modified version has been used in
[6]. The computational region is the unit square with a square hole with size 1/15×1/15
(the hole is the square (7/15,8/15)2) in the center shown in Fig. 3(a).

We solve the homogeneous elliptic equation (2.1) with boundary conditions ψ=0 on
the outer boundary and ψ = 2 on the inner boundary along the hole. The anisotropic
conductivity matrix A is created by the rotation of the diagonal matrix

B=

(

1 0
0 k

)

, (4.1)

where k is a parameter, by the orthogonal matrix R

R=

(

cosΘ −sinΘ

sinΘ cosΘ

)

(4.2)

with angle Θ=−π/3, so that

A=R·B·R′. (4.3)

We use three values of the parameter k, which defines anisotropy ratios 1/k of heat con-
ductivity in two orthogonal directions, namely ratios 1/k=1/25,1/100 and 1/1000.

4.2.1 Uniform meshes

The computational region with the coarsest uniform triangular computational mesh is
shown in Fig. 3(b). The triangles are rectangular with the length of their cathetus be-
ing equal to ∆x=1/15. The finer computational meshes are created by uniform refining
of the mesh shown in Fig. 3(b) by splitting each triangle into four triangles with ver-
tices at centers of edges of the original triangle. The meshes with the triangles catheti
∆x=(1/15,1/30,1/60,1/120,1/240,1/480) have (448,1 792,7 168,28 672,114 688,458 752)
triangles respectively.
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Figure 3: The computational domain (a) and the coarsest uniform computational mesh (b) for problem with
non-smooth anisotropic solution.

Table 1: Problem with non-smooth anisotropic solution: minimal values of unbounded numerical solution Uu

on the computational domain Ω, L1 norm of Uu on area Ω(Uu
<0) where Uu

<0 is negative, and the relative
size of the area Ω(Uu

<0) with negative solution in % ; for three anisotropy ratios 1/k=1/25,1/100,1/1000;
and for refining computational mesh. ∆x is the length of the cathetus of one triangle.

ratio 1/k=1/25 ratio 1/k=1/100 ratio 1/k=1/1000

∆x minΩ(Uu) L
Ω(Uu

<0)
1(Uu)

|Ω(Uu<0)|
|Ω| minΩ(Uu) L

Ω(Uu
<0)

1(Uu)

|Ω(Uu<0)|
|Ω| minΩ(Uu) L

Ω(Uu
<0)

1(Uu)

|Ω(Uu<0)|
|Ω|

1/15 −0.0089 0.00077 13% −0.029 0.0033 20% −0.039 0.0047 22%
1/30 −0.0011 0.000069 14% −0.025 0.0030 28% −0.048 0.0062 31%
1/60 −7.0·10−6 1.3·10−7 4.3% −0.011 0.0012 33% −0.053 0.0061 38%

1/120 −4.5·10−8 2.1·10−10 3.0% −0.0004 2.7·10−5 28% −0.050 0.0047 41%

1/240 −3.3·10−10 3.9·10−13 0.28% −1.0·10−8 2.0·10−10 7.5% −0.039 0.0028 43%

1/480 −2.5·10−12 7.3·10−16 0.07% −5.9·10−13 2.9·10−15 1.9% −0.020 0.0011 43%

The numerical solutions of these anisotropic problems are shown in Fig. 4 for the
anisotropy ratio 1/k=1/25, and in Fig. 5 for 1/k=1/1000. We present in these figures the
unbounded solutions; however, in this style of figures one cannot distinguish different
numerical solutions which will be distinguished later. Heat conductivity along the line
y = x/

√
3 obtained by rotating y axis by the angle Θ =−π/3 is k-times greater than the

heat conductivity in the orthogonal direction given by the line y=−
√

3x. This explains
the general outlook of the solution decreasing from the boundary value 2 at the hole
boundary much faster in direction y=−

√
3x than in the orthogonal y= x/

√
3 direction.

For the ratio 1/k=1/1000 the solution along the line y=−
√

3x is much steeper than that
for the ratio 1/k=1/25.

The unbounded solutions of this problem for all three anisotropy ratios 1/k =
1/25,1/100,1/1000 have some negative values, thus they are violating the discrete max-
imum principle (2.8). The minimal negative values of unbounded solutions on refined
meshes are presented in Table 1. To quantify how badly the solutions violate the maxi-



864 R. Liska and M. Shashkov / Commun. Comput. Phys., 3 (2008), pp. 852-877

(a) 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−0.5

0

0.5

1

1.5

2

x
y

U

(b)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k = 1/25 ratio on mesh with
60 edges on unit boundary: (a) surface of unbounded solution; (b) colormap of unbounded solution.
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Figure 5: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k=1/1000 ratio on mesh with
120 edges on unit boundary: (a) surface of unbounded solution; (b) colormap of unbounded solution.

mum principle, we include in Table 1 also L1 norms of the negative part of solutions, i.e.,
L1 norm of the unbounded solutions Uu over the area Ω(Uu

<0) where the unbounded
solution Uu

<0 is negative and relative size in % of this area Ω(Uu
<0). The L1 norms of

the unbounded solutions on the whole domain Ω (to compare with L
Ω(Uu

<0)
1(Uu)

in the table)

are L1(Uu)=0.220 for the anisotropy ratio 1/k=1/25, L1(Uu)=0.168 for 1/k=1/100 and
L1(Uu)=0.138 for 1/k=1/1000.

Inspecting the table, we notice that for the ratios 1/k = 1/25,1/100 the unbounded
solutions seem already to converge to a solution which violates the maximum principle
only negligibly. For the ratio 1/k=1/100, the convergence of the unbounded to a solution
violating the maximum principle only negligibly starts later at much finer meshes.
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Table 2: Problem with non-smooth anisotropic solution: convergence for the anisotropy ratio 1/k = 1/25: L1
norm of error (difference from the reference unbounded solution on mesh with ∆x = 1/480) and ratios of two
successive error norms for the unbounded, bounded, constrained-bounded and repaired solutions.

unbounded bounded constrained- repaired
bounded

∆x Lerr
1 ratio Lerr

1 ratio Lerr
1 ratio Lerr

1 ratio

1/15 0.0925 1.95 0.0921 1.95 0.0909 1.93 0.0914 1.93
1/30 0.0474 2.20 0.0473 2.20 0.0472 2.20 0.0474 2.30
1/60 0.0215 2.40 0.0215 2.40 0.0215 2.40 0.0215 2.40

1/120 0.0090 0.0090 0.0090 0.0090

Table 3: Problem with non-smooth anisotropic solution: convergence for the anisotropy ratio 1/k=1/100: L1
norm of error (difference from the reference unbounded solution on mesh with ∆x = 1/480) and ratios of two
successive error norms for the unbounded, bounded, constrained-bounded and repaired solutions.

unbounded bounded constrained- repaired
bounded

∆x Lerr
1 ratio Lerr

1 ratio Lerr
1 ratio Lerr

1 ratio

1/15 0.1428 1.66 0.1419 1.68 0.1374 1.71 0.1363 1.70
1/30 0.0858 1.96 0.0844 1.98 0.0804 1.95 0.0804 1.89
1/60 0.0437 2.35 0.0427 2.30 0.0412 2.23 0.0426 2.29

1/120 0.0186 0.0185 0.0185 0.0186

The exact solution for this problem is not known, so for the convergence study we use
the reference unbounded solution computed on the finest mesh with triangles cathetus
∆x = 1/480. The convergence for the unbounded, bounded, constrained-bounded, and
repaired solutions for meshes with ∆x = 1/15,1/30,1/60,1/120 is presented in Table 2
for the anisotropy ratio 1/k=1/25 and in Table 3 for 1/k=1/100. The unbounded solu-
tions providing the same results as standard linear FEM is known to converge from the-
ory [19], and the convergence tables also show that the bounded, constrained-bounded
and repaired solutions do converge. So the imposed constraints do not destroy the con-
vergence. As the solution is non-smooth, the convergence is only first order. Strictly
speaking of course the solution of the elliptic problem is smooth; by non-smooth we mean
here that the gradient of the solution in the low conductivity direction changes very fast
from very steep to flat. We have not made the convergence study for the anisotropy ratio
1/k=1/1000, as the unbounded solution on our finest mesh has still rather large error of
the order 1% (the relative L1 norm of negative part of the solution), see Table 1.

To understand the difference in behavior of the solutions for two different ratios 1/k,
we present in Fig. 6 the areas where the unbounded solutions are negative for ratio 1/k=
1/25, and the same in Fig. 7 for ratio 1/k=1/1000. In both cases for the first four refined
meshes with the triangles cathetus ∆x=1/15,1/30,1/60,1/120. The areas with a negative
solution are presented by colormaps showing only negative values by different colors
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Figure 6: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k = 1/25, colormaps of un-
bounded solution showing areas where the solution is negative (areas where the solution is non-negative are
white) on: (a) mesh with 15 edges on unit boundary; (b) mesh with 30 edges on unit boundary; (c) mesh with
60 edges on unit boundary; (d) mesh with 120 edges on unit boundary.

and with all positive values presented in white. In Fig. 6 the lower end of the interval for
the colormap is given by the minimal negative value presented in Table 1, and the upper
end of the interval is zero. The minimal values are increasing towards zero with mesh
refinement, and the area where the unbounded solution is negative is getting smaller
with refinement. On the other hand, the color map interval for all refinement levels in
Fig. 7 for ratio 1/k = 1/1000 remains (-0.05,0) the regions of negative solutions move
towards the solution ridge with refinement creating oscillations. However, the areas of
these regions are not getting smaller. It seems that we would need much higher resolution
for the unbounded solution to violate less the maximum principle.

To see the differences between different numerical solutions, we have chosen to
present 1D cuts of the solutions along the line y = 7/15, which is the line defining the
lower boundary of the square hole in the solution domain. The 1D cuts are presented for
the ratio 1/k =1/1000 for which the differences are more visible. Fig. 8 (a),(b) compares
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Figure 7: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k = 1/1000, colormaps of
unbounded solution showing areas where the solution is negative (areas where the solution is non-negative are
white) on: (a) mesh with 15 edges on unit boundary; (b) mesh with 30 edges on unit boundary; (c) mesh with
60 edges on unit boundary; (d) mesh with 120 edges on unit boundary.

1D cuts of unbounded, bounded, constrained-bounded, and repaired solutions on the
finest mesh with 120 cell edges on the outer unit boundary. The unbounded solution is
negative in some regions of x. The repaired solution is not smooth with a jump in its gra-
dient which is clearly bad as the solution of the Laplace equation should have a smooth
gradient. The best seem to be the bounded and constrained-bounded solutions which are
quite close to each other. They are smooth and positive, i.e., satisfy the maximum princi-
ple. To show the oscillations (from the positive to negative values) of the solution along
the diagonal y=1−x visible in the solution on the finest mesh in Fig. 7(d), in Fig. 8(c) we
present the 1D cut of this solution on the finest mesh with 120 edges on unit boundary.
In Fig. 8(c) the solid line presents the unbounded solution Uu plotted in the standard lin-
ear scale and the dashed line presents absolute value |Uu| of the unbounded solution in
the logarithmic scale. Each sharp local minimum on this logarithmic plot corresponds to
one change of the sign of Uu where its value passes through zero and the absolute value
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Figure 8: Problem with non-smooth anisotropic solution with the anisotropy ratio 1/k = 1/1000 on the mesh
with 120 edges on unit boundary: (a) full view and (b) view zoomed, scaled in y direction of 1D cuts along
the line y=7/15, comparison of unbounded, bounded, constrained-bounded and repaired solution; (c) 1D cut
of unbounded solution Uu along the diagonal y = 1−x, the solid line is Uu with the right linear axis and the
dashed line is |Uu| with the left logarithmic axis.
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Figure 9: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k=1/1000, 1D cuts along the
line y = 7/15, convergence with 15, 30, 60 and 120 edges on unit boundary of: (a) unbounded; (b) zoomed
view of unbounded, scaled in y direction; (c) bounded; (d) repaired solutions.

(necessary for logarithmic scale) introduces discontinuity in the first derivative. Fig. 9
presents convergence of 1D cuts for unbounded, zoomed unbounded, bounded, and re-
paired solutions with mesh refined from 15 to 120 cell edges on the outer unit boundary.
The constrained-bounded solutions are very close to the bounded solutions, so that one
is unable to distinguish them on such 1D cuts plots. The solutions are not converged yet;
for converged solution we would need higher resolution. We might notice an incorrect
inflection point in the finest resolution (120 cells in red) of repaired solution in Fig. 9(d).

4.2.2 Non-uniform meshes

To show that our approach works also on non-uniform meshes, we have chosen two non-
uniform triangulations of the computational domain shown in Fig. 3(a). The first mesh is
created by random movements of the nodes (by r∆x/2 where ∆x is the length of cathetus
of uniform triangles and r ∈ (0,1) is a random number) of the uniform mesh (and its
uniform refinements) shown in Fig. 3(b). The second non-uniform mesh is the unstruc-
tured mesh generated by PLTMG [27] package for the computational domain shown in
Fig. 3(a).
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Figure 10: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k = 1/1000, colormaps of
unbounded solution showing areas where the solution is negative (areas where the solution is non-negative are
white) on: (a) randomly perturbed uniform mesh with 15 edges on unit boundary; (b) randomly perturbed
uniform mesh with 30 edges on unit boundary; (c) PLTMG generated mesh.
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Table 4: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k = 1/100 on unstructured
meshes: minimal values of unbounded numerical solution Uu on the computational domain Ω, L1 norm of Uu

on area Ω(Uu
<0) where Uu

<0 is negative, and the relative size of the area Ω(Uu
<0) with negative solution

in % ; for refining computational meshes. The L1 norm of the unbounded reference solution (with ∆x=1/480)

on the whole domain Ω on the uniform mesh (to compare with L
Ω(Uu

<0)
1(Uu)

in the table) is L1(Uu)=0.168.

Nr. of triangles minΩ(Uu) L
Ω(Uu

<0)
1(Uu)

|Ω(Uu<0)|
|Ω|

112 −0.001 2.1·10−5 5.9 %
448 −0.011 3.8·10−4 27 %

1792 −0.0033 2.3·10−4 31 %
7168 −0.0003 1.1·10−5 25 %

28672 −1.8·10−6 2.1·10−8 7.1 %

Again, the unbounded solutions on such meshes violate the maximum principle
while the bounded, constrained-bounded, and repaired do not violate the maximum
principle. The general shape of solution remains the same and corresponds approxi-
mately (depending on mesh resolution) to that for the uniform mesh presented in Figs. 4
and 5. We present here only the colormaps of areas with negative solution (violating the
maximum principle) for two randomly perturbed uniform meshes and for one unstruc-
tured PLTMG mesh in Fig. 10 for the anisotropy ratio k=1/1000.

The minimal negative values of unbounded solutions on refined unstructured meshes
for the anisotropy ratio 1/k=1/100 are presented in Table 4. To quantify how badly the
solutions violate the maximum principle, we included in Table 4 also L1 norms of neg-
ative part of solutions, i.e., L1 norm of unbounded solutions Uu over area Ω(Uu

< 0)
where Uu

< 0 is negative and relative size in % of the area Ω(Uu
< 0) where the so-

lution is negative. As the unstructured meshes have more smaller triangles around
the central hole, the unbounded solutions on these meshes violate the maximum prin-
ciple less than that on uniform meshes with the same number of triangles, compare
with Table 1 for uniform triangulations, where the meshes with uniform triangle catheti
∆x=(1/15,1/30,1/60,1/120) have (448, 1 792, 7 168, 28 672) triangles, respectively.

5 Numerical experiments for non-homogeneous equation

In this section we will present several numerical tests solving the Poisson equation (2.1)
with non-negative sources f ≥ 0 and zero Dirichlet boundary conditions ψ = 0. The
maximum principle for f ≥ 0 (2.5) and ψ = 0 implies that the solution has to be non-
negative u≥0 everywhere. The presented tests violate this maximum principle for the un-
bounded solution which is exactly the same as the standard linear finite element solution.
Below, we present only numerical results of the unbounded solutions. The bounded,
constrained-bounded, and repaired solutions for all the presented problems satisfy the
discrete maximum principle (2.8), i.e., are non-negative everywhere.
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5.1 Simple isotropic problem

This is simple isotropic problem taken from [13]. Matrix A is identity A= I. Compu-
tational domain is Ω = [0,1]×[0,0.3]. The source is defined as follows f (x,y) = 1 for
(x,y)∈ [0,0.5]×[0,0.075] and f (x,y) = 0 elsewhere. The zero Dirichlet boundary condi-
tions are specified on the boundary. The mesh is created by putting a uniform 4×4 rect-
angular mesh on the domain Ω and splitting each rectangle into four triangles along its
two diagonals, see Fig. 11(b). The triangulation is not acute. The solution of this problem
is not known, but as −divgradu = f ≥ 0 everywhere, then the maximum principle (2.5)
implies that the minimum of the solution is on the boundary; so due to zero Dirichlet
boundary conditions the solution has to be non-negative everywhere. The unbounded
solution of this problem has values in the interval (−4.21·10−5, 2.24·10−3) violating the
maximum principle in 3 nodes (12 % of the domain), with L1 norm of the negative part
of the solution being 6.04·10−7 (L1 norm of the unbounded solution is 1.30·10−4).

5.2 Strong uniform anisotropy with central source

In this problem computational domain is unit square Ω = [0,1]2. The anisotropic diffu-
sion matrix A is the same as in the problem with non-smooth anisotropic solution (4.3)
with Θ=−π/3 and the anisotropic ratio 1/k =1/100. The source f (x,y) is f (x,y)=105

inside the central region (x,y)∈ [0.45,0.55]2 and zero outside the central region. The zero
Dirichlet boundary conditions are applied on the boundary.

We use the mesh with the same structure as the mesh for the problem with non-
smooth anisotropic solution (presented in Section 4.2) shown in Fig. 3(b), but just without
the hole, with 60 triangle catheti on one [0,1] side, see Fig. 12(b). The shape of the solution
of this problem presented in Fig. 12(a) is close to the shape of the solution of the problem
with non-smooth anisotropic solution shown in Fig. 5. The maximum principle implies
that the solution has to be non-negative, however, the unbounded solution Uu produces
a negative solution in quite a large area, as shown in Fig. 12(b). The values of unbounded
solution are from interval Uu ∈ (−0.097,18), the unbounded solution is negative in 1262
nodes (36 %) out of the total 3481 internal nodes, and the L1 norm of the negative part
of the unbounded solution L1(Uu)Ω(Uu<0) is 0.01 (L1 norm of the unbounded solution
is 1.7). These data, which characterize how much the DMP has been violated, for this
problem solved on both coarser and finer meshes are presented in Table 5.

5.3 Non uniform anisotropy

This problem is taken from [3]. Computational domain is the square Ω = [0,0.5]2. The
anisotropic diffusion matrix A(x,y) depends here on the position (x,y) and is given by

A(x,y)=

(

y2+ǫx2 −(1−ǫ)xy
−(1−ǫ)xy x2+ǫy2

)

(5.1)
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Figure 11: Simple isotropic Poisson equation problem: (a) surface of unbounded solution; (b) colormap of
unbounded solution showing areas of negative solution.
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Figure 12: Strong uniform anisotropy 1/k = 1/100 ratio, central source Poisson equation problem on uniform
mesh with 60 edges on unit boundary: (a) surface of unbounded solution; (b) colormap of unbounded solution
showing areas of negative solution.

Table 5: Strong uniform anisotropy 1/k = 1/100 ratio, central source Poisson equation problem on refined
uniform meshes: minimal values of unbounded numerical solution Uu on the computational domain Ω, L1 norm
of Uu on area Ω(Uu

<0) where Uu
<0 is negative, and the relative size of the area Ω(Uu

<0) with negative
solution in % ; for refining computational meshes. The L1 norm of the unbounded reference solution (with

∆x=1/240) on the whole domain Ω (to compare with L
Ω(Uu

<0)
1(Uu)

in the table) is L1(Uu)=1.65.

∆x minΩ(Uu) maxΩ(Uu) L
Ω(Uu

<0)
1(Uu)

|Ω(Uu<0)|
|Ω|

1/15 −0.070 4.8 −0.0079 23%
1/30 −0.17 15 −0.0214 31%
1/60 −0.097 18 −0.0106 35%

1/120 −0.0031 21 −2.4·10−4 29%
1/240 −8.4·10−8 22 −1.610−9 7.9%
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with ǫ=10−3 which gives the anisotropy ratio. The source f (x,y) is f (x,y)=1 for (x,y)∈
[0.125,0.375]2 and zero otherwise. The zero Dirichlet boundary conditions are applied on
the boundary.

For this problem we use the triangular mesh obtained from the uniform orthogonal
mesh of 30×30 squares by splitting each square cell into four triangles by two diagonals
of the square, see Fig. 13(b). The surface plot of the unbound solution to this problem
is shown in Fig. 13(a). The maximum principle (2.5) implies that the solution has to be
non-negative, however the unbounded solution Uu produces a negative solution in quite
a large area, as shown in Fig. 13(b). The values of unbounded solution are from interval
Uu ∈ (−2.010−3,0.26), the unbounded solution is negative in 209 nodes (12 %) out of the
total 1741 internal nodes, and the L1 norm of the negative part of the unbounded solution
L1(Uu)Ω(Uu<0) is 8.1·10−6 (L1 norm of the unbounded solution is 0.019).

5.4 Non uniform rotating anisotropy

For this problem computational domain is unit square Ω = [0,1]2. The anisotropic dif-
fusion matrix A(x,y) depends on the position (x,y) and is given by the rotation of the
diagonal matrix (4.1) around the origin by the angle ϕ which is the angular polar coordi-
nate of the point (x,y):

A(x,y)=

(

cosϕ −sinϕ
sinϕ cosϕ

)

·
(

1 0
0 k

)

·
(

cos ϕ sinϕ
−sinϕ cos ϕ

)

(5.2)

with k=1000 which gives the anisotropy ratio and

cosϕ= x/r, sinϕ=y/r, r=
√

x2+y2.

The source f (x,y) is f (x,y) = 105 for (x,y)∈ (0.7,0.8)×(0,0.1) and zero elsewhere. The
zero Dirichlet boundary conditions are applied on the boundary.

For this problem we use the triangular mesh obtained from the uniform orthogonal
mesh of 20×20 squares by splitting each square cell into four triangles by two diagonals
of the square, see Fig. 14(b). The surface plot of the unbounded solution to this problem
is shown in Fig. 14(a). The maximum principle implies that the solution has to be non-
negative, however, the unbounded solution Uu produces a negative solution in quite a
large area, as shown in Fig. 14(b). The values of unbounded solution are from interval
Uu ∈ (−0.015,0.47), the unbounded solution is negative in 354 nodes (46 %) out of the
total 761 internal nodes, and the L1 norm of the negative part of the unbounded solution
L1(Uu)Ω(Uu<0) is 1.310−3 (L1 norm of the unbounded solution is 0.031).

6 Conclusion

We have proposed two new methods for enforcing discrete maximum principle for linear
finite element solutions on 2D triangular mesh of the linear second-order self-adjoint
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Figure 13: Non uniform anisotropy Poisson equation problem: (a) surface of unbounded solution; (b) colormap
of unbounded solution showing areas of negative solution.
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Figure 14: Non uniform rotating anisotropy Poisson equation problem on uniform mesh: (a) surface of un-
bounded solution; (b) colormap of unbounded solution showing areas of negative solution.

elliptic equation without lower-order terms.

First approach is based on repair technique, which is a posteriori correction of the
discrete solution. Second method is based on constrained optimization.

Numerical experiments demonstrate the ability of the new methods to produce nu-
merical solutions satisfying the discrete maximum principle, contrary to the standard
linear finite element method.

Numerical experiments also show that convergence rate of new methods is about the
same as for original linear finite element method.

In the future we plan to analyze method using constrained optimization with respect
to its performance. We hope that we will be able to develop more practical method taking
into account that we are solving very special quadratic optimization problem with very
simple constraints. We also planning to extend optimization method to the case of mixed
finite element [29] and mimetic discretizations [28].
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