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Abstract. Electrostatics interactions play a major role in the stabilization of
biomolecules: as such, they remain a major focus of theoretical and computational
studies in biophysics. Electrostatics in solution is strongly dependent on the nature of
the solvent and on the ions it contains. While methods that treat the solvent and ions
explicitly provide an accurate estimate of these interactions, they are usually compu-
tationally too demanding to study large macromolecular systems. Implicit solvent
methods provide a viable alternative, especially those based on Poisson theory. The
Poisson-Boltzmann equation (PBE) treats the system in a mean field approximation,
providing reasonable estimates of electrostatics interactions in a solvent treated as con-
tinuum. In the first part of this paper, we review the theory behind the PBE, including
recent improvement in which ions size and dipolar features of solvent molecules are
taken into account explicitly. The PBE is a non linear second order differential equa-
tion with discontinuous coefficients, for which no analytical solution is available for
large molecular systems. Many numerical solvers have been developed that solve a
discretized version of the PBE on a mesh, either using finite difference, finite element,
or boundary element methods. The accuracy of the solutions provided by these solvers
highly depend on the geometry of their underlying meshes, as well as on the method
used to embed the physical system on the mesh. In the second part of the paper, we
describe a new geometric approach for generating unstructured tetrahedral meshes as
well as simplifications of these meshes that are well fitted for solving the PBE equation
using multigrid approaches.
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1 Introduction

Electrostatics interactions are central in physics, chemistry and biology: without them,
molecules would not hold together. Understanding electrostatics is especially important
in biology: biomolecules are usually considered as large polyelectrolytes, whose prop-
erties depend on their own charge distribution as well as on their interactions with sur-
rounding charged neighbors. In the case of proteins for example, Kauzmann [1] foresaw
the importance of electrostatics for stability, proposing that polar (charged) groups would
either compensate for each other, or be solvated by water. Later, Perutz [2] confirmed
these predictions based on information deduced from the first high resolution protein
structures, and further emphasized the role of electrostatics in biomolecular interactions.
Electrostatics is even more important for nucleic acids. RNA and DNA are polyanions
that bind water and cations in order to acquire a three-dimensional structure. It is well
known that in the absence of metal ions, RNA and DNA form most of their secondary
structures, but only a fraction (if any) of their tertiary contacts [3]. Accurate theoretical
and subsequent numerical treatments of electrostatics has therefore always been a major
concern in structural biology.

Theoretical modeling of electrostatics interactions is deceptively simple and, as such,
has been and remains the subject of development by both the physics and the scientific
computing communities. As a first ’classical’ approximation, the interaction between two
charges can be described by Coulomb’s law. When more than two charges interact, the
total electrostatic energy of the system is derived as the sum of all pairwise Coulomb
interactions (superposition principle). Applications of these simple principles imply that
the positions of all charges are known. While this seems to be a simple requirement, it is
unfortunately difficult to meet when modeling large molecular systems. This is mostly
due to the inherent difficulties in accounting for the solvent that surrounds the molecules
and the ions this solvent may contain. Explicit representation of the solvent provides an
accurate treatment of electrostatics, but it increases the size of the system under study
by orders of magnitude [4]. In addition, interactions involving solvent need to be aver-
aged over relatively long time intervals before results become meaningful. As a response
to these problems, there has been a continuous effort in the physics community to de-
velop simplified models that are computationally tractable and that remain physically
accurate. Most of these models include the solvent implicitly, reducing the solute-solvent
interactions to their mean field characteristics, which are expressed as functions of the
solute degrees of freedom alone. These approaches treat the solvent as a dielectric con-
tinuum and are therefore referred to as a continuum dielectric model. Many of these
approaches use the Poisson-Boltzmann equation to describe the electrostatic potential
of a system, and rely on numerical methods to solve this non linear elliptic equation.
This paper is designed around two distinctive parts. Firstly, it provides an overview of
the recent methodological developments in designing fast and accurate solvers of the
Poisson-Boltzmann equation. We also cover recent theoretical models that modify the
Poisson-Boltzmann equation to better represent the physics of the system under study.
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We show how one of these modified Poisson-Boltzmann formalisms that introduce ex-
plicit solvent dipoles can be used to predict binding sites on proteins. Secondly, we focus
on the geometric components of these solvers, and present our own recent developments
in this field.

The review part of this paper is far from exhaustive, and the reader is referred to
several recent review articles on this and related areas, including overviews of protein
electrostatics [5, 6], implicit [7–10], and explicit [4] solvent models, electrostatics in force
fields [11], and applications of electrostatics calculations to membrane proteins [12, 13].

2 Continuum electrostatics: Poisson equations

The Poisson-Boltzmann model is the most commonly used model to account for electro-
statics interactions between charged objects. It assumes point-like charges immersed in
a continuum dielectric media and treats the system in a mean-field approximation. The
medium is modeled by a homogeneous dielectric constant. Here we briefly describe the
theory behind the Poisson-Boltzmann model, we list some of its limitations, as well as
the current solutions to circumvent these problems.

2.1 The Poisson-Boltzmann model

The fundamental equation of electrostatics is given by Gauss’s law:

∇·~D(r)=4πρ(r), (2.1)

which relates spatial variation of the displacement field ~D with position r to the charge
density distribution ρ. In general, the displacement field is defined as:

~D=ǫ0~E+~P, (2.2)

where ~E is the electric field, ǫ0 is the vacuum permittivity and ~P is the polarization density
of the material considered.

In free space, ~P=0, and Eq. (2.1) reduces to

∇·~E(r)=
4πρ(r)

ǫ0
, (2.3)

or, expressing ~E as the gradient of the electrostatic potential φ,

∇2φ(r)=−
4πρ(r)

ǫ0
, (2.4)

which is the Poisson equation. When the charge distribution can be described in terms of
N point charges, the solution to Eq. (2.4) becomes Coulomb’s law:

φ(r)=
N

∑
i=1

qi

r−ri
, (2.5)
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where ri is the position, and qi the magnitude of the ith point charge. In any particular
problem if all charges are known and represented explicitly, Eq. (2.5) applies rigorously.
If however it is not possible to define the charge density explicitly (such as in a complex
medium), it is necessary to go back and rewrite the Gauss law in a more convenient form.

In a region of material with uniform susceptibility, χ, the polarization density ~P is
given by ~P=χ~E. Defining ǫ=χ+ǫ0, the dielectric constant or permittivity of the medium,
Eq. (2.1) is rewritten in the form

∇2φ(r)=−
4πρ(r)

ǫ
. (2.6)

In general, the permittivity varies through space, and the Poisson equation becomes:

∇·
(

ǫ(r)~∇φ(r)
)

=−4πρ(r), (2.7)

where ǫ is now a function of position.
The charge density is the sum of the charges of the solute and of the ions in the sol-

vent. The positions ri and magnitudes qi of the M charges of the solute are known: they
represent the fixed, or ”source” charges:

ρs(r)= ec

M

∑
i=1

qiδ(r−ri), (2.8)

where ec is the charge of the electron, and δ(x) is the delta function such that δ(x−y)=1
if x=y, and 0 otherwise.

Mobile ions in the solvent are not represented explicitly. Instead, the chemical po-
tential of each ion is assumed to be uniform in the solvent (mean field approximation),
yielding a Boltzmann distribution for the ion charge distribution:

ρion(r)= ec

m

∑
i=1

cizie
−ziecφ(r)/kBT, (2.9)

where ci and zi are the bulk concentration and valence of ion specie i respectively, kB

is the Boltzmann constant, and T the temperature. In the case of a one-to-one electrolyte
(solution with one positive and one negative ion species, both of valence 1, such as NaCl),
Eq. (2.9) reduces to

4πρion(r)=−κ̄2(r)sinh

(

ecφ(r)

kBT

)

, (2.10)

where κ̄, the position dependent modified Debye-Hückel coefficient is related to the ionic
strength I by:

κ̄2(r) = c(r)κ2

= c(r)

(

8πNAe2
c

1000kBT

)

I, (2.11)
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where NA is the Avogadro number and c identifies the regions in which ions intervene.
Replacing Eqs. (2.8), (2.10) and (2.11) into Eq. (2.7) we obtain the Poisson-Boltzmann (PB)
equation in its most standard form (for a one-to-one electrolyte)

∇·
(

ǫ(r)~∇φ(r)
)

−c(r)κ2sinh

(

ecφ(r)

kBT

)

=−4πec

M

∑
i=1

qiδ(r−ri). (2.12)

A weaker form of this equation exists when the electrostatics potential is small, in which
case sinh(x)≈x. Using this first order development of the hyperbolic sine function yields
the Linearized Poisson-Boltzmann (LPB) equation:

∇·
(

ǫ(r)~∇φ(r)
)

−c(r)κ2 ec

kBT
φ(r)=−4πec

M

∑
i=1

qiδ(r−ri). (2.13)

The linearized PB equation is simpler to solve, but is only valid under the assumption of
small electrostatics potentials, which limits its field of applications.

Both the PB and LPB equations are fully defined by their coefficients ǫ(r), c(r) and the
charge positions ri, which in turn are fully characterized by the biomolecular structure
under study. Three different zones are usually considered:

• Region 1: Molecular interior. Within the interior of the molecule, ǫ is set constant
(usually ǫ=1 or 2), c is set to 0 (no ions), and the charges qi are positioned according
to the atomic coordinates.

• Region 2: Stern region. The Stern region is an ion-excluded region around the
molecule in which ǫ is set constant to its value in solvent (usually ǫ=80), c is set to
0 (no ions to account for their size) and the source charge density is 0.

• Region 3: Solvent. In the bulk solvent, ǫ is set constant to usually 80, ion densities
are taken into account by setting c=1, and the source charge density remains 0.

While it is easy to define the coefficients of the PB equation within each zone, special
care must be taken when defining the interfaces between them, i.e. the molecular surface
between Region 1 and Region 2, and the ion excluded surface between Region 2 and
Region 3. These interfaces have been represented by a variety of models, described in
section 3.

2.2 Size modified Poisson-Boltzmann equation

When dealing with ion atmospheres around molecules, the Poisson-Boltzmann theory
has two limitations: it does not include ion size, nor does it account for ion-ion correla-
tions in its treatment. Ion size plays a role in electrostatics interactions, as was recently
shown for DNA in solutions containing competing cations [14]. The standard PBE usu-
ally accounts for ion size by using an exclusion layer, the so-called Stern region. Such a
model however cannot be applied to a complex mixture of ions with different sizes. It
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does not also account for excluded volume effects among the ions. In principle, Monte
Carlo approaches can be very accurate in studying ion concentrations [15]. These meth-
ods however come at a high computational cost, making them impractical. Coalson and
colleagues as well as Orland and colleagues developed an attractive solution to the prob-
lem of the influence of ion size using a lattice field theory [16–19]. This approach was
recently generalized by Chu et al. [20] to deal with ions with two different sizes. In this
approach, the hard core repulsion between solvated ions is approximated with an ex-
cluded term in the free energy density of a lattice gas model of the ionic solution. The
domain around the charged biomolecule is treated as a 3D lattice with evenly spaced
points a apart. This characteristic lattice spacing sets the volume of the larger ions at
a3; the volume of the smaller ions is set to a3/k, where k is a dimensionless parameter.
Let us suppose that the solution contains two species with valences z1 and z2, and bulk
concentrations c1 and c2, such that ion species one corresponds to the small ions, while
ion species two corresponds to the large ions. By computing the grand partition func-
tion for each lattice site and computing the chemical potential of each species µ as the
derivative of this partition function with respect to µ, Chu et al. derived a size modified
Poisson-Boltzmann (SMPB) equation:

∇·
(

ǫ(r)~∇φ(r)
)

=−4πec

M

∑
i=1

qiδ(r−ri)−c(r)
4πec

D(r)
×
{

z1c1e−z1ecφ(r)/kBT

[

1− f0+(c1a3/k)e−z1ecφ(r)/kBT
]k−1

+(1−c2a3)k−1z2c2e−z2ecφ(r)/kBT

}

, (2.14)

where

D(r)=
[

1− f0+(c1a3/k)e−z1ecφ(r)/kBT
]k

+(1−c2a3)k−1(c2a3e−z2ecφ(r)/kBT) (2.15)

and f0 =(c1a3/k)+c2a3 is the fractional occupancy of each lattice site.
The size-modified Poisson-Boltzmann equation was shown to be able to account for

differences in monovalent ionic association on DNA for ions of different sizes and con-
centrations ≤150 nM [20]. Note however that this approach is currently limited to mix-
tures of ions with two different sizes, and that extension to include three or more ion
sizes would prove cumbersome. Note also that the SMPB equation treats ion-ion interac-
tions with a mean field approximation. As such, it still neglects ion-ion correlations. This
remains an issue necessitating further advances in theory, especially for the treatment of
divalent anions.

2.3 Dipolar Poisson-Boltzmann equation

In the PB model, the medium is modeled by a homogeneous and isotropic dielectric
constant (see Eq. (2.6)). This assumption however does not take into account the strong
dielectric response of water molecules around charges. The discrete dipolar moments of
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water molecules orient themselves close to charges, giving rise to hydration shells and
to hydrophobic interactions. These phenomena are very important in many biological
processes, but are not accounted for by the PB equation. Recently, Abraskin et al. [21]
proposed a modified PB equation, the dipolar Poisson-Boltzmann (DPB) equation. In the
DPB model, the solvent is represented by Nd mobile dipoles, each with a dipolar moment
p. The charge density created by a point dipole p at point r0 is given by

ρd(r)=−p·~∇δ(r−r0).

Solving for p(r) using a mean field approach, Abrashkin et al. derived the dipolar Poisson-
Boltzmann (DPB) equation:

ǫ0∇
2φ(r)=−4πρion(r)−4πρ f (r)−4πλd p0

~∇·

[

~∇φ(r)

|~∇φ(r)|
Γ

(

p0|~∇φ(r)|

kBT

)]

, (2.16)

where λd is the fugacity of the dipoles, p0 is the assumed constant magnitude of the
dipoles, ρ f is the density of the fixed charges, and the function

Γ(u)=coshu/u−sinhu/u2.

Note that in reference to the Gauss law (see Eqs. (2.1)-(2.2)), the last term of Eq. (2.16) is
the divergence of the polarization ~P.

The DPBE model can be combined with the size modified PB model, to account for
the finite sizes of ions and dipoles. This was recently proposed by Azuara et al. [22]
in another modified PB equation, named GPBL which stands for Generalized Poisson-
Boltzmann Langevin, as the water is modeled with explicit Langevin dipoles. Compared
to the classical PB equation, the GPBL equation provides information on the water dipole
density around a solute. Based on this information, it is possible to color the solute with
a simple color code: red (solvated) for values at or above a threshold value, and blue
otherwise, where the threshold is computed based on the expected bulk water density.
Blue patches on the surface correspond to poorly solvated region for the protein. We have
shown that such regions matches with interface regions in homodimeric proteins [22].
This is illustrated here in the case of the Trp repressor, a 25kD protein that regulates
the biosynthesis of tryptophane in bacteria. Trp repressor is a fully helical protein that is
present in the cell mostly as an homodimer. The structure of the dimer was solved both by
X-ray crystallography and by NMR, in presence and in absence of its ligands. We chose
the NMR structure, available in the PDB with the identifier 2WRP. The interface between
the two monomers is large, representing approximately 29% of the total accessible surface
area of a monomer. Most of this interface region is predicted to be poorly solvated if a
monomer Trp repressor is put in solution (see Fig. 1.)

More generally, It will be of interest to see how the GPBL equation can help us under-
stand of hydration forces, ionic associations and short range hydrophobic effects.
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Figure 1: Predicting protein binding sites from their computed desolvation sites. Trp repressor is a large ho-
modimeric protein that regulates the biosynthesis of tryptophane (W) in bacteria. We studied the electrostatics
around one Trp repressor monomer, using the GPBL equation. The solution to this equation provides us with
the solvation free energy as well as with the solvent density around the molecule. We color the molecular surface
of the Trp repressor monomer such that red and blue regions represent solvated and poorly solvated regions,
respectively. Interestingly, many of the blue patches on the surface are part of the interface between the two
monomers in the Trp repressor dimer (the second monomer is shown in green, in line mode). The figure was
generated using pymol (http://www.pymol.org).

2.4 Numerical solutions to the Poisson-Boltzmann equation

The Poisson-Boltzmann equation (2.2) is a second order nonlinear elliptic partial differ-
ential equation. Analytical solution of the PBE is only available for simple geometry such
as spheres and cylinders [23, 24]. For the complex geometry of a biomolecule like a pro-
tein or a nucleic acid, analytical solutions are not available and the PBE must be solved
using numerical methods [25]. Many such solvers have been developed [26–28]; they can
be divided into two groups based on their underlying geometric model, namely, surface
based methods and volume based methods.

Integration of PBE on a surface mesh: The BEM approach. The PB equation needs to be
solved over the whole space surrounding the molecule(s) of interest. In this space how-
ever, it is easy to distinguish two regions: the ”interior” of the molecule (i.e. the volume
enclosed by its surface), in which electrostatics is basically described by a Poisson equa-
tion (2.4), and the ”outside” of the molecule, in which electrostatics is described by the
PB equation. Key to solving this problem is the requirement that the electrostatics poten-
tial and the normal component of the displacement field ~D be continuous at the interface
between these two regions. Boundary element methods exploit the fact that the differen-
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tial equations can be rewritten into a set of boundary integral equations that need to be
solved only on this interface, namely the surface of the molecule [27,29–31]. These meth-
ods use a polygonal representation of the molecular surface, usually a triangular mesh,
to express the PB (in its linearized form, Eq. (2.13)) as a collection of linear equations with
potential values (or a combination of potential values with their normal derivatives) at
the surface as unknowns. The electrostatics potential on the surface is subsequently de-
rived from the solutions of this system of equations (usually by interpolation), and the
volumetric potential is derived from the integral formulations of the PB equations. With
the recent introduction of fast multipole techniques, BEM methods have become faster
than the volumetric methods described below [29]. Their applications however remain
limited to cases for which the linearized PB equation applies, though there have been
attempts to combine BEM with a volumetric approach to speed up calculations while
maintaining the non linear part of the PB equation [32, 33].

Integration of the PBE over a volumetric mesh: FD and FEM approaches. Classical
methods for solving the PB equation rely on a discretization of the 3D space to project
the continuous solution on a finite set of basis functions. The most popular discretization
techniques use Cartesian or structured meshes to subdivide the space. Among these
methods, the finite difference methods (FD) remain predominant. The most general form
of FD solves the PB equation on a non-uniform Cartesian grid. A discrete version of
the PBE is derived at each vertex of this mesh; the differential operators are transformed
into differences involving the vertex and its neighbors on the grid, by means of a first or
second order Taylor expansion [28, 34, 35]. The corresponding set of discrete equations
form a large sparse matrix equation that is then solved either directly or iteratively in the
case of the nonlinear equation by a variety of linear algebra techniques, among which
multigrid methods prime (see the next paragraph). FD methods are usually simple to
setup; in return however, they are difficult to tune to the specificity of the system under
study. Atomic charges for example will generally not coincide with mesh vertices; it is
also impossible to increase the accuracy of the solution locally without increasing the
number of vertices across the entire grid. Adaptive finite element (FE) methods offer
solutions to both problems [10, 26, 36, 37]. Finite element meshes are unstructured by
nature; they are composed of vertices connected by edges, forming a series of simplices
(triangles and tetrahedra) that serve as support for the basis functions that approximate
the solution of the PB equation. As the set of vertices is not constrained to be a subset of
a Cartesian grid, it usually contains the atomic centers. Also, the number of vertices can
be arbitrarily increased in specific regions (such as in the neighborhood of the molecular
surface), with no impact on other regions of the grid.

Numerical solvers for the PB equation. All three approaches described above, namely
BE, FD and FE methods reduce the PB equation into a set of discrete algebraic equations,
which needs to be solved numerically. Most PB solvers use iterative methods to solve
these equations. In general, iterative methods can be grouped into two types: station-
ary methods such as Jacobi, Gauss-Seidel and Successive Over-Relaxation (SOR) meth-
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ods, and non stationary methods such as Conjugate Gradient(CG), Generalized Minimal
Residual (GMRES), and Biconjugate Gradient [38]. The choice between these two types
of iterative methods depends on the properties of the coefficient matrix coupled with the
linear system. As BE methods result in dense linear systems, their solvers mostly rely on
non stationary methods such as GMRES [29, 31]. In opposition, as the coefficient matrix
derived in FD and FE methods is usually sparse symmetric positive definite, both station-
ary and non stationary methods have been applied. Iterative methods start with an initial
guess for the electrostatics potentials, and repeatedly modify this guess until a solution
with a desired accuracy is reached. The speed at which this solution is obtained depends
on the size of the problem and the nature of the equation. As BE methods usually ex-
press the PB equation using a well conditioned integral formula, iterative approaches
are usually well suited as they can have a good convergence rate. In the case of FD and
FE methods however, direct application of iterative methods is usually not efficient, due
to their inabilities to reduce the effect of long range errors in the refinement of the so-
lution [39]. This problem is overcome by multigrid methods which use a hierarchy of
meshes with increasing resolution to represent the 3D space containing the system, with
the finest mesh corresponding to the original mesh used in standard iterative approaches.
The PB equation is first solved on the coarsest grid, and the corresponding solution serves
as initial guess for the next grid level considered. This procedure is then repeated until
a solution is reached on the finest grid. Multigrid methods provide significant speed up
compared to standard iterative methods [26, 28, 40].

Solving the modified Poisson-Boltzmann equation. Despite its apparent higher com-
plexity (see Eq. (2.14)), the size modified Poisson-Boltzmann (SMPB) equation is not more
difficult to solve than the standard PB equation: the equation is still elliptical and upon
discretization, the system of equations obtained remains definite positive. The only dif-
ference between the PB and SMPB equations is found in the Helmholtz term (i.e. the
non-linear term that defines the influence of the ions); both the Laplacian and the source
terms (i.e. fixed charges of the molecule) remain unchanged. For any grid point in the
mesh used to solve the SMPB equation, the Helmoltz term remains a function of the
electrostatic field at this grid point only. SMPB therefore can be solved using any of the
approaches described above.

The situation is different for the DPBE, as this equation (see 2.16) includes first order
terms (coming from the terms involving the electric field); there are no guarantees that
its operator matrix is positive definite. The only method currently available to solve
this equation applies a multigrid conjugate gradient procedure [22]. New solvers are
expected soon (P. Koehl, in preparation).

3 Biomolecular geometry for PBE discretization

An essential component in all numerical PBE solvers is the construction of a geomet-
ric mesh that decomposes the space and defines the three regions needed to specify the
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coefficients of the PBE (see Section 2.1). The geometric structure of these meshes sig-
nificantly influences both the accuracy of the solution and the efficiency of the solver
itself. The ideal mesh needs to be fine enough to provide an accurate representation of
the interfaces between the different regions (interior of the molecule, Stern region and
ion accessible region) and at the same time it should contain a small number of vertices
so that the solvers that use them can be fast. In practice, meshes are usually derived as a
compromise between these two conflicting constraints. In addition, multigrid techniques
need a method for simplifying a fine grid into a coarse grid, and reversely a geometric
interpolation technique to embed the coarse grid solution onto a finer grid.

In this section, we describe our recent work on generating meshes for biomolecular
systems, with a brief overview of the related work. We focus on the algorithms used
for generating high quality triangular and tetrahedral meshes for biomolecules that pro-
vide flexibility to fit complicated domains and ease of refinement. We also describe the
methods for constructing a hierarchy of tetrahedral mesh for multigrid methods.

Surface triangulation for molecules. Surface triangulation of molecular models has been
discussed in details in the literature [41–44]. It is noteworthy that there is no strong agree-
ment on which surface definition should be used to best represent the boundary of a
molecule. The three competing definitions correspond to the van der Waals surface (i.e.
the boundary of the union of balls representing the molecule, centered at the atomic po-
sitions, with radii equal to the van der Waals radii of these atoms), the accessible surface
(i.e. the surface generated by the center of a probe sphere rolling on the van der Waals sur-
face), and the molecular surface (i.e. the lower envelope generated by the rolling sphere).
MSMS developed by Sanner et al. [42] is probably the most widely used program to trian-
gulate the molecular surface. It has the drawback to generate some poorly shape triangles
(such as small area triangles) [29]. The problems faced by MSMS reflect the difficulties
encountered when trying to generate quality triangular meshes for large complicated
biomolecules. The main reason is the smoothness or rather lack of smoothness of the
existing surface models. The van der Waals surface and solvent accessible surface are not
smooth at the intersections of the spheres. The molecular surface is smooth in most cases
but it contains self-intersections that results in cusps on the surface. To overcome these
singularity problems, Edelsbrunner [45] introduced the skin surface based on the frame-
work of the Voronoi diagram and Delaunay triangulation of a set of weighted points.
The molecular skin surface is an application of this concept to biomolecules, for which
the weighted points are the atoms with weights equal to their vdW radii augmented with
the radius of the water probe, usually chosen to be 1.4 Å. The skin surface is smooth, free
of self-intersection, and can be parameterized and triangulated with good quality and
deformed freely with smooth transitions [45].

We developed efficient algorithms for triangulating the skin surface. Our approach is
based on an advancing front technique combined with a Delaunay mesh generation tech-
nique. In particular, we use the restricted union of balls, which is a set of balls centered
on the surface, to generate an ε-sampling of the skin surface. A subset P of points on a
skin surface is an ε-sampling if for every point x on the surface there is a point p∈P such
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Figure 2: Molecular skin surface mesh. Left: The molecular skin surface of a tRNA molecule. Right: Zoomed
in view of the partial mesh in the red box in the left. All the triangles in the mesh have a minimum angle of at
least 23◦.

Figure 3: Tetrahedral skin mesh of a protein. A tetrahedral skin mesh decomposes the region bounded by a
sphere into a collection of tetrahedra that conforms to the surface mesh of an ATP synthase, whose structure
was solved by NMR spectroscopy and deposited in the Protein Structure DataBank (PDB, [51]) under the name
1C17. The left panel shows a partial tetrahedral mesh obtained by cutting the original mesh by a plane. Red
tetrahedra are inside the molecule while green tetrahedra are outside. The right panel shows a zoomed view of
the center part of the left panel. The tetrahedral mesh consists of 235,892 vertices and 1,402,859 tetrahedra.
Each tetrahedron in the mesh has a guaranteed quality.

that the distance between x and p is at most ε̺(x), in which ε is a constant smaller than 1
and ̺(x) is the radius of the maximum curvature at the point x. In order to guarantee the
topological correctness of the surface triangulation, we restrict the ε to be smaller or equal
to a constant value of 0.279 [46], resulting in a dense, adaptive set of sample points on
the skin surface. Our algorithm generates these sample points incrementally and guar-
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antees a lower bound on the distance of each sample point to their nearest neighbors. In
parallel, it builds their Delaunay triangulation. A specified subset of this Delaunay trian-
gulation, namely the restricted Delaunay triangulation, forms a quality triangulation of
the skin surface when the algorithm terminates. A Delaunay triangle is called restricted
Delaunay to a skin surface if the dual Voronoi edge of the triangle intersects the skin
surface [47]. A robust and efficient implementation of this algorithm was developed and
will be distributed under the GNU license. Fig. 2 shows the molecular skin model of a
tRNA molecule. Our implementation of these algorithms triangulates this surface within
31 seconds on a Mac PC with a 2.66GHz Dual Core Intel Xeon processor. The triangu-
lation consists of 58,946 vertices and 117,896 triangles. Every triangle in the mesh has a
minimum angle greater than 23◦, which implies a high quality triangular mesh.

Tetrahedral mesh generation. While a surface mesh is enough for boundary element
methods, a conforming tetrahedral mesh is needed to apply the finite element methods
to solve the PB equation. Here conforming mesh refers to the property that the surface
mesh is an exact subset of the faces in the tetrahedral mesh that divides the tetrahedra
into two sets, those interior to the boundary, and those exterior. Various methods such as
the advancing front method, the octree method and the Delaunay based methods have
been applied to the problem of generating biomolecular tetrahedral meshes [48–50]. In
particular, it is worth citing the tool chain setup by Lu et al. [33] that automates the gen-
eration of conforming tetrahedral meshes through three steps, namely generation of the
surface mesh, smoothing of the latter to remove low quality triangles, and generation of
a conforming mesh.

In the line of the algorithms we developed for meshing molecular skin surfaces, we
developed a new algorithm to generate quality tetrahedral meshes for the volumes inside
and outside the skin surface, where the outside volume is bounded by a large sphere.
The algorithm builds an initial Delaunay mesh including the surface mesh and applies
the Delaunay refinement to improve its quality. In particular, the algorithm inserts the
circumcenters of badly shaped tetrahedra with a priority parameterized by the value of
the distance function defined by the surface. The algorithm achieves an upper bound
on radius-edge ratio of the tetrahedral mesh after the refinement. All the slivers are re-
moved in a post processing procedure. The algorithm terminates with guarantees on the
tetrahedral quality and an accurate approximation of the original surface boundary [52].
See Fig. 3 for an example. In Fig. 4, we plot the computing time needed for generating the
quality surface and tetrahedral meshes of 20 proteins with sizes varying from 30 to 500
residues. It is noteworthy that there is no obvious relationship between the computing
time and the number of the atoms. The computing time required to generate a tetrahe-
dral mesh is mainly defined by the number of triangles in the surface mesh, which is a
function of the surface area and the curvature of the surface, with no direct relationship
to the number of atoms.

Hierarchical tetrahedral meshes. Methods that solve the PB equations using a multi-
grid approach rely on a hierarchy of embedded meshes. The PBE is first solved on the
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Figure 4: Computing the molecular skin surface mesh and the corresponding conforming tetrahedral mesh. The
CPU time required to compute the skin surface mesh (lower curve) and the tetrahedral mesh (upper curve) are
plotted versus the number of atoms in the molecule. Note that the CPU time for tetrahedral mesh generation
is the total time, i.e. it includes the time required to generate the surface skin mesh. Computations were
performed on a Mac PC with a 2.66GHz Dual Core Intel Xeon processor.

coarser grid, and the corresponding solution is used as a starting point for the next level.
This procedure is propagated through the whole hierarchy such that an accurate solu-
tion is derived on the finer mesh. Key to the success of the method is the quality of
the hierarchy of meshes: if a coarse grid reflects poorly the geometry of the system, the
solution derived on it will be a poor approximation for solving the PBE on the follow-
ing finer grid. We have developed an algorithm for generating a hierarchy of meshes
starting from the tetrahedral mesh conforming with the skin surface of the molecule, in
which each coarser mesh maintains the topology of the skin surface, and contains high
quality tetrahedra. We aim to generate 4 levels of coarse meshes such that each level of
the coarse mesh decreases the number of vertices by a factor of 2, which effectively re-
duces the number of the vertices from the finest mesh to the coarsest mesh by a factor
of 8. Our algorithm simplifies the surface meshes using three operations, namely point
deletion, edge flipping and point insertion. In the point deletion operation, we check
the link conflict property in order to preserve the topology of the simplified mesh [53].
As a result, the operations performed on a fine mesh decrease its resolution and at the
same time guarantee the topology and the quality of the simplified surface mesh. Once
a coarse surface mesh has been derived, we apply our tetrahedral mesh generation algo-
rithm described above to construct a quality tetrahedral mesh. See Fig. 5 for an example
of the quality surface and volumetric meshes at two different levels of resolution. Our
hierarchical tetrahedral meshes have a number of advantages that will facilitate fast and
accurate multigrid PBE solvers. Firstly, the quality of both the surface triangulations and
tetrahedral meshes is guaranteed. Secondly, the interface in the tetrahedral mesh is an
accurate approximation of the molecular boundary. In particular, all the boundary points
are on the surface. Thirdly, our meshes are Delaunay meshes. Finally, the meshes are
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Figure 5: A two level hierarchical skin tetrahedral mesh for a protein. A fine and coarse tetrahedral meshes of
the volume of a protein (PDB ID 1M1W) are showed in the top row and bottom row respectively. The left
panels show the boundary of the tetrahedral meshes while the right panels show the interior tetrahedra using
a cutting plane. The fine tetrahedral mesh contains 141,229 tetrahedra while the coarse mesh contains 23,161
tetrahedra.

adaptive to the geometry. Our algorithms can be easily extended to control the size of the
mesh elements through a user-defined sizing field, which enables different mesh resolu-
tions within different regions both on the surface and inside the molecular surface.

4 Conclusion

Computational studies of biomolecules and their interactions in solution need to take
into account the effect of the environment around the molecules. Numerous approaches
were developed to perform this task, and among those the ones based on the Poisson-
Boltzmann equation are currently the most popular.
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Despite being based on a mean field approximation with a continuum constant dielec-
tric for the solvent and a Boltzmann distribution for the ions, the electrostatics potential
obtained by solving the PB equation provides reasonable estimates of solvation energies.
There are limitations however to the applications of the PB equation, as it neglects ion
sizes, fluctuations in the concentration of the ions and solvent based on the presence of
charges, as well as ion-ion and ion-solvent correlations. In a nutshell, PB methods work
reasonably well for biomolecules with low charge density in monovalent salt solutions
in low concentrations [54], and can give incorrect results for highly charges biomolecules
(such as RNA or DNA), or in more concentrated solutions, or in the presence of multiva-
lent ions. We have shown in this paper that there are many recent developments in the
theory of the Poisson-Boltzmann equation that attempt to solve these problems, using
lattice field theory to deal with ion size, and Langevin dipoles to account for density fluc-
tuation of the solvent. It should be noted that the resulting modified Poisson-Boltzmann
equations still ignore correlations (a drawback of using a mean field approach), and as
such will still be of limited use when analyzing solutions of multivalent ions. There is
therefore still room for further advances in theory.

The standard Poisson-Boltzmann equation is a non-linear elliptic equation of second
order, with discontinuous coefficients, that cannot be solved analytically for any system
with a shape more complicated than a sphere or a cylinder. Numerical methods for solv-
ing the PBE have been constantly refined over the past twenty years. The critical element
there is probably that the field of application of PB equation is constantly evolving, with
people interested in larger and larger systems, with more complicated environments.
Interestingly, no consensus method has appeared and existing competing softwares still
advertise their scientific computing approach as being the fastest and most robust. Solver
developments focus on parallel implementation to reduce computing time and to extend
to size of the problems they can handle, as well as on the iterative techniques used to solve
the underlying discretized algebraic equations. While these developments are essential,
we believe that efforts should also be put in developing better methods for embedding
the molecular system under study onto the mesh used to discretize the solution. We have
shown in this paper that geometry provides the required tools to perform such a task. We
have proposed to represent the boundary of a molecule using its skin [45], i.e. a smooth
surface devoid of self intersection. We have developed algorithms for generating surface
triangular mesh of the skin, as well as conforming tetrahedral meshes. We anticipate that
these geometric methods will prove essential for the development of more accurate PBE
solvers.
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