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1 Introduction

In the first paper of this series [1], we have discussed some primary concepts of the lattice
Boltzmann method for solving partial differential equations. The goal of the present pa-
per is to extend the introduction of the lattice Boltzmann method to nonlinear problems
while keeping the presentation as elementary as possible.

The outline of the paper is as follows. In Section 2 we consider the one-dimensional
Navier-Stokes equations, and identify the requirements for lifting them to a kinetic equa-
tion. Construction of the kinetic equation begins in Section 3 where we derive the perti-
nent entropy function. In Section 4, we derive the corresponding equilibrium. In Section
5, we describe geometry of the phase space of kinetic equations, hydrodynamic and ki-
netic subspaces, and introduce the notion of detail balance as a geometrical statement.
This section contains preliminary information which is used in the construction of colli-
sion integrals (Section 6). We develop general methods of constructing admissible colli-
sion integrals based on the entropy function. In Section 7, we consider linearization of
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collision integrals at equilibrium, and discuss in detail the notion of thermodynamic pro-
jector. In Section 8 we consider a special class of collision integrals which have the feature
that their linearization is spectrally equivalent to the linearized Bhatnagar-Gross-Krook
kinetic model (single relaxation time gradient models). In Section 9 we consider the en-
tropic lattice Boltzmann scheme for these new models, and give a thorough analysis of
the hydrodynamic limit of the discrete-time kinetic equation. We conclude in Section 10
with a brief discussion.

Finally, we did every effort to make the presentation self-containing, thus, references
are kept at a minimal level. For a further reading on the lattice Boltzmann method, we
direct the reader to the papers [2–5] and reviews [6–9]. Development of the entropic
lattice Boltzmann method can be found in [10–20].

2 Hydrodynamic and kinetic equations

2.1 Navier-Stokes equations in one dimension

The target equations are the balance equations for the density ρ(x,t) and the momentum
density j(x,t)=ρu(x,t):

∂tρ+∂x(ρu)=0, (2.1)

∂t(ρu)+∂xP=0, (2.2)

P=ρc2
s +ρu2−2νρ∂xu. (2.3)

This is the simplest example of the Navier-Stokes equations. We have written them in the
‘conservation laws + constitutive equation’ form. Now we have two equations for the
conservation laws (for the density ρ and for the momentum j). The constitutive equation
for the pressure P (2.3) consists of two parts. The first part, PE,

PE =ρc2
s +ρu2, (2.4)

is the value of the pressure at the equilibrium. If (2.4) is substituted instead of P in the
balance equation for the momentum (2.2), the resulting non-dissipative hydrodynamic
equations (2.1) and (2.2) form the simplest set of Euler equations. The second part of the
pressure, Pneq is the non-equilibrium contribution,

PNS =−2νρ∂xu. (2.5)

Parameter ν > 0 is the viscosity coefficient. While in the Eqs. (2.3) and (2.5) the viscosity
coefficient appears simply as a parameter, we can infer that it will be expressed in terms
of kinetic parameters of the kinetic models (relaxation time) once we will write it down
(the same happened to the diffusion coefficient in the example of the advection-diffusion
equation in [1]). The form of the constitutive relation (2.5) where the non-equilibrium
pressure is proportional to the gradient of the momentum is typical of the Newtonian
fluid.



198 I. V. Karlin, S. S. Chikatamarla and S. Ansumali / Commun. Comput. Phys., 2 (2007), pp. 196-238

2.2 Tailoring the moment system

The first step in setting up a kinetic system capable of reconstructing the target macro-
scopic equations (the one-dimensional Navier-Stokes equations in our example) is to find
out how the moments of the populations should look like in the equilibrium. This is al-
ways possible even before one decides about the form of the equilibrium. To this end, we
introduce the density ρ, the momentum flux j, and the pressure P:

ρ( f (x,t))= f−(x,t)+ f0(x,t)+ f+(x,t),

j( f (x,t))=−c f−(x,t)+c f+(x,t), (2.6)

P( f (x,t))= c2 f−(x,t)+c2 f+(x,t).

Assuming the Bhatnagar-Gross-Krook (BGK) model [21]† for the populations fi, i =
1,.. .,nd, where nd = 3 in our three-velocities example, i = 1 corresponds to left-movers
(c1 =−c), i = 2 corresponds to stopped particles (c2 = 0), and i = 3 corresponds to right-
movers (c3 = c), the kinetic equation reads,

∂t fi+ci∂x fi =−
1

τ
( fi− f

eq
i (ρ( f ), j( f ))). (2.7)

Consistency requirement for the equilibrium population f
eq
i (ρ, j) assumes two local con-

servation laws (of the density and of the momentum),

nd

∑
i=1

( fi− f
eq
i (ρ( f ), j( f )))=0,

nd

∑
i=1

ci( fi− f
eq
i (ρ( f ), j( f )))=0. (2.8)

Eq. (2.7) is equivalently rewritten in terms of the three moments,

∂tρ+∂x j=0,

∂t j+∂xP=0, (2.9)

∂tP+∂xQ=− 1

τ
(P−Peq).

Here Q is the third-order moment (the energy flux),

Q=
nd

∑
i=1

fic
3
i . (2.10)

Geometry of the three-velocities set ci implies

Q= c2 j, for any f . (2.11)

†One usually considers BGK for the analysis of the moment constraints for the sake of simplicity. However,
the result of this analysis concerns only the equilibrium values of the non-conserved moments, and can be
used for setting up different kinetic models on the same velocity sets as well. We shall consider other such
models later in this paper.
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Thus, the third-order moment is a linear combination of the locally conserved fields (it is
proportional to the momentum flux), and the system (2.9) is closed.

When the relaxation time τ is small, we expect that dynamics of the pressure P will be
slaved by the dynamics of the locally conserved density and momentum, that is, P(x,t)=
P(ρ(x,t), j(x,t)). In order to find out this dependence, we write down the invariance
equation and solve it approximately to order τ (see [1]). The invariance condition equates
the time derivative of P(ρ, j) due to the dynamics of density and momentum to the time
derivative of P due to the moment system (2.9):

∂P

∂ρ
∂tρ+

∂P

∂j
∂t j=∂t P. (2.12)

Spelling out the time derivatives of the locally conserved fields, this gives

∂P

∂ρ
(−∂x j)+

∂P

∂j
(−∂xP)=−∂xQ− 1

τ
(P−Peq). (2.13)

This invariance equation is solved upon substituting

P= P(0)+τP(1)+O(τ2), (2.14)

where P(0) annihilates the relaxation term, that is, P(0) = Peq, and we derive

P(1) =
∂Peq

∂ρ
(∂x j)+

∂Peq

∂j
(∂xPeq)−∂xQeq. (2.15)

In order to evaluate the right hand side of this equation, we need an input for the equi-
librium pressure. We require that the equilibrium pressure differs only by the terms of
order O(j4) and higher from the Euler pressure (2.4), that is

Peq = PE+O(j4)=ρc2
s +

j2

ρ
+O(j4). (2.16)

Moreover, the equilibrium value of the energy flux Qeq is known due to the relation (2.11)
which holds for any population, that is, also in the equilibrium Qeq=c2 j. With this input,
we find

P(1) =ρ(c2
s−c2)∂x

(

j

ρ

)

+(3c2
s−c2)

(

j

ρ

)

∂xρ+∂x

(

j3

ρ2

)

+O(j5). (2.17)

The underlined term is the one which will reproduce the viscosity term in the target
Navier-Stokes equation of our model. The rest of the terms are anomalous. Terms desig-
nated as O(j5) are due to any anomaly of the orderO(j4) in (2.16).

The final step of the analysis is to find out what can be done in order to cancel as
many as possible of the anomalies. Let us address what can be required in this kinetic
model in order that it reconstructs the Navier-Stokes equations as closely as possible.



200 I. V. Karlin, S. S. Chikatamarla and S. Ansumali / Commun. Comput. Phys., 2 (2007), pp. 196-238

These requirements are imposed on the pressure tensor and other parameters such as the
speed of sound, and they will be delegated in a form of constraints to the construction of
the equilibrium. It is instructive to trace these requirements in orders of the momentum
j. So, what can (and should) be required in this model?

• Galilei invariance to orderO(j4). It is absolutely crucial to require that the equilibrium
pressure tensor should have the leading-order terms in the momentum as given by
the Euler form:

Peq =ρc2
s +

j2

ρ
+O(j4).

This we have already used when deriving (2.17). Anomalous terms of the order
j4 can be tolerated since their effect is negligible once the Mach number is kept
low. Some would prefer not to have any anomalous terms of whatever order in
this expression. This is not critical, for two reasons: (i) Anomaly of the order O(j4)
is separated from the j2 term by two orders of magnitude, and it is always easy to
find operating window where the effect of the anomalous terms is nihil, and (ii)
Even if the anomaly in the pressure tensor is cancelled, we still need to trade off
the operating window because of the lower-order (cubic) anomalous terms in the
energy flux (see below). Moreover, insisting on the cancellation of the anomaly in
the pressure tensor is even counter-productive because, as we shall see it later in this
paper, this inevitably leads to unstable schemes in the most challenging domain of
low viscosities. Therefore we shall not display anomalous terms of the order j4 and higher
in any expression below unless it is required to avoid a confusion.

• Speed of sound leading to a cancellation of anomalous O(j) terms in the non-equilibrium
pressure. If the speed of sound cs in Eq. (2.17) is set as

3c2
s = c2, (2.18)

then the second term in this expression cancels, and we have

P(1) =−2c2
s ρ∂x

(

j

ρ

)

+∂x

(

j3

ρ2

)

. (2.19)

The two conditions, (2.16) and (2.18), are what we need to care about when constructing
the equilibrium. Let us also answer the question: What cannot be required in this model?

• Cubic anomaly in the non-equilibrium pressure. After we managed to respect the two
requirements on the equilibrium pressure and the speed of sound mentioned above,
the non-equilibrium pressure becomes (2.19) which contains an anomalous term,
∂x(j3/ρ2). It comes due to the anomalous cubic term in the energy flux Q. This cubic
anomaly cannot be eliminated by any choice of the equilibrium because of the lat-
tice structure. Indeed, Q will always be the linear function of the momentum. If we
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could have required

QMB =3c2
s j+

j3

ρ2
, (2.20)

then the cubic terms would cancel. This expression is well known in kinetic theory,
and corresponds to the Maxwell-Boltzmann equilibrium distribution. However, in
our three-velocity model the expression Q= c2 j is hard-wired and cannot be negoti-
ated. The only way to minimize this anomaly is to operate the model at low enough
velocities. Experience shows that the maximal tolerable velocity umax is of the order
umax∼0.1cs.

Thus, assuming the equilibrium f eq is found in such a way that the requirements
(2.16) and (2.18) are verified, and the operating window is at sufficiently low Mach num-
bers, the kinetic model reconstructs the following Navier-Stokes equations at small τ:

∂tρ+∂x j=0, (2.21)

∂t j=−∂x

(

ρc2
s +

j2

ρ

)

+2(τc2
s )∂x

(

ρ∂x

(

j

ρ

))

, (2.22)

where the viscosity is identified as
ν=τc2

s . (2.23)

These are the target Navier-Stokes equations. Now we proceed with finding the equilib-
rium populations.

3 Entropy function

The lesson we learned from the kinetic model for the advection equation [1] is that one
should begin the construction with finding an appropriate entropy function H. In [1],
this was relatively straightforward to do because for linear systems a general form of the
entropy function is readily available. In the nonlinear case as here it is not immediately
obvious what the entropy function should be, and so we begin with its derivation.

We define the equilibrium as the minimizer of a convex entropy function H under the
constraints imposed by locally conserved fields,

H→min,
nd

∑
i=1

fi =ρ,
nd

∑
i=1

ci fi =ρu. (3.1)

We shall look for the function H of the form,

H =h0( f0)+h1( f−)+h1( f+). (3.2)

Convex functions of one variable h0(z) and h1(z) are yet unknown. The form (3.2) ac-
counts for the symmetry between the left- and right-movers, that is, we have assumed
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h−(z)= h+(z)= h1(z) (this assumption is certainly natural but it could be relaxed at the
beginning of the construction, the result will nevertheless be the same as we obtain be-
low).

Each individual member of the family of the convex functions (3.2), when used in
the minimization problem (3.1), delivers a certain equilibrium. Equilibria for different H
are not equivalent in their properties, so we need to find such pair of functions h0 and
h1 which give us the ‘right’ equilibrium. The conditions deciding between the right and
wrong equilibria were found in the previous section upon the analysis of the kinetic equa-
tion (2.7): The right equilibrium must deliver the pressure (2.16), whereas the speed of
sound in this expression must satisfy (2.18). In this section we shall use the pair density-
velocity (ρ,u) instead of density-momentum (ρ, j), and the condition for the equilibrium
pressure reads:

Peq =
nd

∑
i=1

f
eq
i cici =ρc2

s +ρu2. (3.3)

It is important to digest the difference between the constraints in the minimization prob-
lem (3.1) and the constraint (3.3). The former are the definitions of the locally conserved
fields (mass and momentum) whereas (3.3) is the implication of the equilibrium (and
hence of the choice of the entropy function in (3.1)) for the non-conserved field P at equi-
librium. In other words, (3.3) is the equilibrium piece of the constitutive relation (2.4),
and cannot be treated on equal footing with the definitions of the locally conserved fields.
Thus, it is absolutely meaningless to include (3.3) into the list of the constraints in (3.1),
rather, it must be verified by the equilibrium found in (3.1).

In the next step, we formulate the requirement (3.3) as the implication of the solution
of the minimization problem (3.1). Using the entropy function of the form (3.2), we in-
troduce the derivatives dh0(z)/dz and dh1(z)/dz, and write the extremum condition in
terms of Lagrange multipliers

dh0

dz

∣

∣

∣

∣

f
eq
0

=χ,

dh1

dz

∣

∣

∣

∣

f
eq
−

=χ−λc, (3.4)

dh1

dz

∣

∣

∣

∣

f
eq
+

=χ+λc,

where χ and λ are the Lagrange multipliers corresponding to the density and the momen-
tum constraints, respectively. Denoting µ0 and µ1 the inverse of the derivatives dh0,1/dz,

µ0(z)=

[

dh0

dz

]−1

, µ1(z)=

[

dh1

dz

]−1

,
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we obtain

f
eq
0 =µ0(χ),

f
eq
− =µ1(χ−λc), (3.5)

f
eq
+ =µ1(χ+λc),

The Lagrange multipliers χ and λ are (implicitly) related to ρ and ρu upon substitution
of the equilibria (3.5) into the constraints in (3.1). This gives

µ0(χ)+µ1(χ+λc)+µ1(χ−λc)=ρ,

cµ1(χ+λc)−cµ1(χ−λc)=ρu.
(3.6)

The condition for the pressure at the equilibrium (3.3) then reads,

c2µ1(χ+λc)+c2µ1(χ−λc)−(ρu2+ρc2
s)=0. (3.7)

For the time being, the speed of sound cs in (3.7) will be considered as a free parameter
(we shall see below that the choice of the speed of sound is a consistency condition).
Expressing ρ and u in the right hand side of (3.7) in terms of (3.6) we rewrite the condition
for the equilibrium pressure (3.7) in terms of the functions µ0 and µ1

c2[µ1(χ+λc)+µ1(χ−λc)]− c2[µ1(χ+λc)−µ1(χ−λc)]2

µ0(χ)+µ1(χ+λc)+µ1(χ−λc)

−c2
s [µ0(χ)+µ1(χ+λc)+µ1(χ−λc)]=0. (3.8)

Eq. (3.8) is a nonlinear functional equation for the functions µ0 and µ1 (and hence for
the functions h0 and h1 constituting the entropy), containing also the parameter cs. The
functional Eq. (3.8) is the central point in the construction of the entropy functions of the
lattice Boltzmann method [11]. The entropy functions which satisfy (3.8) are called perfect
entropy functions.

We shall now solve Eq. (3.8) approximately by using a Taylor series expansion to
order λ2 around λ = 0. This solution will set the accuracy of the model to be applicable
for simulations of low Mach number flows, that is, it will satisfy the pressure condition
(that is, it will differ from (3.8) by terms of order u4 and higher, see previous section). We
write,

µ1(χ±λc)=µ1(χ)±λc
dµ1(χ)

dχ
+

1

2
(λc)2 d2µ1(χ)

dχ2
+O(λ3). (3.9)

Substituting this expansion into Eq. (3.8), we require that the terms of the order λ0 and
λ2 are equal to zero (terms of the order λ cancel out identically). After a few algebra one
obtains a system of an ordinary differential and an algebraic equations:

µ0(χ)=2

(

c2

c2
s

−1

)

µ1(χ),

(

dµ1(χ)

dχ

)(

dµ1(χ)

dχ

)

=
1

2

(

c2

c2
s

−1

)

µ1(χ)
d2µ1(χ)

dχ2
. (3.10)
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The speed of sound cs must now be chosen in such a way that the differential equation
in the last line of (3.10) admits solutions compatible with the concavity requirement for
the entropy function (3.2). At this point we turn our attention to the requirement on the
speed of sound which we have already derived while analyzing the hydrodynamic limit,
namely (2.18). If we set in (3.10):

cs =
1√
3

c, (3.11)

this results in the ordinary differential equation,

(

dµ1(χ)

dχ

)(

dµ1(χ)

dχ

)

=µ1(χ)
d2µ1(χ)

dχ2
. (3.12)

The latter equation admits a special solution (see also Appendix A.1 for the general solu-
tion to this equation)

µ1(χ)= eχ−1, (3.13)

and from the algebraic equation in (3.10) it follows

µ0(χ)=4eχ−1. (3.14)

The derivatives of the functions h0 and h1 are found upon inverting the functions µ0 and
µ1,

dh0

dχ
= ln

(χ

4

)

+1,
dh1

dχ
= lnχ+1, (3.15)

whereupon

h0 =χln
(χ

4

)

, h1 =χlnχ. (3.16)

Finally, using the latter functions in (3.2), we find the solution for the entropy function:

H = f0 ln

(

f0

4

)

+ f− ln f−+ f+ ln f+. (3.17)

By looking at the result (3.17), we recognize that this entropy function is of the Boltz-
mann type. Thus, it could be also derived from Boltzmann’s ansatz (see Appendix A.2). Let
us now verify that the equilibrium corresponding to the entropy function (3.17) indeed
satisfies the condition for the equilibrium pressure (3.3) for small values of the velocity
u. In order to do this, we need to evaluate the equilibrium populations as a function of
u. Exact equilibrium can actually be found (see the next section, Eq. (4.1)). However, for
the present purpose of verification, we do not even need the full solution, rather, just a
few terms of its expansion around the zero-velocity equilibrium. Such approximation is easily
obtained by expanding the Lagrange multipliers χ and λ into a series in the powers of u
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(see Appendix A.3). The result of this expansion up to order u2 reads:

f
eq
0 =

2ρ

3

(

1− u2

2c2
s

)

+O(u3)

f
eq
− =

ρ

6

(

1− uc

c2
s

+
u2

c2
s

)

+O(u3) (3.18)

f
eq
+ =

ρ

6

(

1+
uc

c2
s

+
u2

c2
s

)

+O(u3).

Here the speed of sound is not arbitrary anymore but is given by the expression (3.11). By
retaining the terms spelled out explicitly in (3.18), we evaluate the equilibrium pressure,

Peq =
nd

∑
i=1

f
eq
i c2

i = c2 f
eq
− +c2 f

eq
+

=ρc2
s +ρu2+O(u4). (3.19)

Note that the odd-order terms u3, though they are not explicitly written in (3.18), do not
contribute (cancel out) in the equilibrium pressure (3.19). Thus, the equilibrium corre-
sponding to the entropy function (3.17) satisfy the equilibrium pressure condition (3.3) to
the desired order of accuracy in the Mach number, so the desired perfect entropy function
(3.17) is derived.

4 Equilibrium

Once the entropy function (3.17) is derived, we can ask for the equilibria which mini-
mize H (3.17) subject to the fixed density ρ and momentum density ρu. In the example
considered here we find analytically the local equilibrium of the H-function (3.17),

f
eq
0 (ρ,u)=

2ρ

3

(

2−
√

1+Ma2
)

,

f
eq
+ (ρ,u)=

ρ

3

(

uc−c2
s

2c2
s

+
√

1+Ma2

)

, (4.1)

f
eq
− (ρ,u)=

ρ

3

(

−uc+c2
s

2c2
s

+
√

1+Ma2

)

,

where Ma2 =u2/c2
s is the Mach number squared, cs = c/

√
3.

Derivation of the equilibrium populations (4.1) is straightforward. Denoting the ex-
ponentials of Lagrange multipliers corresponding to the momentum conservation as Y,

Y = ecλ, Y−1 = e−cλ, (4.2)



206 I. V. Karlin, S. S. Chikatamarla and S. Ansumali / Commun. Comput. Phys., 2 (2007), pp. 196-238

we write the system of constraints as follows

eχ

(

4+Y+
1

Y

)

=ρ,

eχc

(

Y− 1

Y

)

=ρu.

(4.3)

Dividing the second equation by the first, we derive a quadratic equation for Y:

(

1− u

c

)

Y2− 4u

c
Y−

(

1+
u

c

)

=0. (4.4)

The relevant root of this equation is the one which tends to 1 as u tends to 0. Taking into
account the definition of the speed of sound for this model, cs =c/

√
3, this root is written

as

Y =

2u√
3cs

+
√

1+ u2

c2
s

1− u√
3cs

. (4.5)

Substituting this solution into the density equation, we derive the function eχ, and, after
some algebra, the equilibria in the form (4.1).

We have already encountered the equilibrium populations when discussing the ki-
netic model for the advection-diffusion equation in [1]: equilibrium functions were ob-
tained from (4.1) by fixing the velocity u at a constant value v.

Let us find it out when the equilibria (4.1) have the meaning of populations, that is,
when they are positive. We easily see that this is dictated by the sign of the populations
of no-moving particles f

eq
0 :

f
eq
0 (ρ,u)>0, when |u|< c. (4.6)

When |u| exceeds c, the populations of the moving particles stay positive but the popula-
tion f

eq
0 does not. That is, for |u|>c, there is no equilibrium, the problem of minimization

of the entropy function (3.17) ceases to exist. Some telling values of the equilibria are
collected in (4.7):

f
eq
i u= c u=−c u=0

f
eq
0 0 0 2

3 ρ

f
eq
+ ρ 0 1

6 ρ

f
eq
− 0 ρ 1

6 ρ

(4.7)

The fact that the equilibria do not exist when the absolute value of the average velocity
u exceeds the maximal speed c in the system is quite understandable, and is not a concern
here. Indeed, by the construction, we are anyway restricted to small values of the Mach
number Ma = |u|/c. More precisely, the order of the accuracy of the model as a tool to
recover the Navier-Stokes equation is restricted by the terms of the order (u/c)4 in the
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equilibrium pressure, and, moreover, by the terms of the order (u/c)3 in the equilibrium
energy flux.

For the sake of completeness, we report the exact form of the equilibrium pressure
corresponding to the equilibrium (4.1):

Peq =
nd

∑
i=1

f
eq
i c2

i =ρc2
s

(

2

√

1+
u2

c2
s

−1

)

. (4.8)

Expanding this expression to the order Ma4, we obtain

Peq =ρc2
s

(

1+Ma2− 1

4
Ma4+O(Ma6)

)

. (4.9)

We see that, for small Mach numbers, this expression differs from the Eulerian pressure
PE =ρc2

s (1+Ma2) only by a vanishing term ρc2
s Ma4/4, as already reported.

Our next step towards the lattice Boltzmann scheme is to write up a set of kinetic
equations (continuous time and space),

∂t fi+ci∂x fi =Qi, i=−,0,+. (4.10)

Since we have derived equilibrium populations explicitly, we can write the collision in-
tegral Qi in (4.10) in the BGK form,

Qi =−
1

τ

(

fi− f
eq
i (ρ( f ),u( f ))

)

, (4.11)

and thus the BGK kinetic model (2.7) is set up completely.
However, it is more instructive to develop general methods for constructing collision

integrals. Indeed, as we have seen it above, evaluation of the equilibrium required solv-
ing a set of algebraic equation like we did it in (4.4). We managed to solve the problem
here (it was simple) but we cannot expect that explicit evaluation of f eq is possible always
(and actually it is not always possible). In the next section, we shall develop very general
principles of constructing collision integrals for kinetic models.

5 Hydrodynamic and kinetic subspaces

Here it is most convenient to use vector notations. We remind that the populations are
represented by three-dimensional (nd = 3) column-vectors f which we write using the
natural coordinate system corresponding to the components fi. The three-dimensional
space of the column-vectors will be denoted as E . The column-vectors with nonnegative
components fi≥0 build a cone F⊂E (the phase space). Elements of the conjugated space
will be denoted as row-vectors eT where T stands for transposition,

eT =
(

e1 e2 e3

)

. (5.1)
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We consider the standard scalar product (or inner product, or dot-product in some liter-
ature) between the column-vectors and the row-vectors

eT · f = f T ·e=
(

e1 e2 e3

)





f1

f2

f3



= e1 f1+e2 f2+e3 f3. (5.2)

In the three-dimensional linear space of row-vectors ET, let us introduce the two-dimensional
linear subspace HT spanned by the two linearly independent row-vectors hT

ρ and hT
u ,

where
hT

ρ =
(

1 1 1
)

, hT
u =

(

−1 0 1
)

. (5.3)

Any row-vector hT from the subspace HT can be represented as a linear combination of
the row-vectors (5.3),

hT∈HT, if and only if hT = aρhT
ρ +auhT

u . (5.4)

The subspace HT is called the hydrodynamic subspace (of the space ET) because the
locally conserved (hydrodynamic) fields ρ and ρu are expressed as the scalar products
between the row-vectors (5.3) and the column-vectors of the populations,

ρ=hT
ρ · f , ρu= chT

u · f . (5.5)

A few comments are in order here. The row-vectors (5.3) form a basis, that is, a maximally
linear independent system of the hydrodynamic subspace HT. They are indeed linearly
independent (check this!) and even orthogonal to each other: if we make the column-
vector hu by transposing the row-vector hT

u , then

hT
ρ ·hu =0.

This is convenient but not really necessary, any other choice of the basis to represent
HT would also do. The only important thing is the dimension, the number of the basis
vectors must be equal to the number of the linearly independent conservation laws (in
our case it is two).

Now let us consider the subspace H⊂ E which consists of the column-vectors ob-
tained by the transposition of the row-vectors hT∈HT,

H=
(

HT
)T

. (5.6)

The kinetic subspace KT ⊂ET consists of all row-vectors kT which are orthogonal to the
subspaceH

kT∈KT if and only if kT ·h for any h∈H. (5.7)

This is the general definition valid for any construction of the minimal kinetic model.
In our case the space ET is three-dimensional and the hydrodynamic subspaceHT is two-
dimensional (three populations and two locally conserved fields, respectively), so the
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kinetic subspace is one-dimensional. It is convenient to represent the kinetic subspace as
a line spanned by the row-vector gT ,

gT =
(

1 −2 1
)

. (5.8)

It is straightforward to verify that the row-vector gT (5.8) is orthogonal to any of the
column-vectors of the transposed hydrodynamic subspaceH, that is,

gT⊥H.

Indeed, any column-vector h∈H has the form h= ahρ +bhu, where a and b are constants.
Therefore, by linearity, it is sufficient to prove that gT ·hρ =0 and gT ·hu =0. The latter is
obvious.

Thus, all row-vectors of the kinetic subspace are represented as

kT = agT =
(

a −2a a
)

, −∞< a<∞. (5.9)

In a sequel we shall also need a special representation of the kinetic row-vector gT as a
difference of two row-vectors with non-negative components:

gT = gT+−gT−,

gT+ =
(

1 0 1
)

, (5.10)

gT−=
(

0 2 0
)

.

This is called a stoichiometric representation, and we shall later explain why this has to do
with the established notion of chemical kinetics.

The choice of the basis row-vector gT (5.8) to build the kinetic subspace KT is not
unique (we could take any row-vector agT instead). In practice, it is usually convenient
to chose the basis of the kinetic subspace in such a way that as many as possible of their
components are integer (this saves computational time in the numerical realization). This
was our motivation when choosing gT (5.8).

Summarizing, we have decomposed the space of row-vectors into two subspaces, the
hydrodynamic and the kinetic subspace,

ET =HT +KT. (5.11)

Such a decomposition is unique and is required as the first step in the construction of any
kinetic model. The hydrodynamic subspace supports all the local conservations (density
and momentum in our case), while ‘all the rest of ET’ is non-conserved and thus belongs
to the kinetic subspace. The decomposition (5.11) is always a ‘doable’ exercise for any set
of discrete velocities and a given set of local conservation laws.

We conclude this section with a simple but very useful consequence of the decompo-
sition (5.11), namely, a different specification of the equilibrium states. To that end, we
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need to introduce the column-vector of the partial derivatives of the entropy function H
(3.17),

∇H =





(∂H/∂ f1)
(∂H/∂ f2)
(∂H/∂ f3)



=





ln( f−)+1
ln( f0/4)+1
ln( f−)+1



. (5.12)

Equilibrium states furnish the minimum of H under fixed locally conserved fields.
Thus,∇H at the equilibrium is a linear combination of the gradients of the constraints,

∇H
∣

∣

f eq =χhρ+λhu , (5.13)

or, which is the same, ∇H at equilibrium belongs to the transposition of the hydrody-
namic subspace,

∇H
∣

∣

f eq ∈H. (5.14)

Now, the kinetic subspace was defined as the orthogonal to H, therefore, the equilibria
are also defined as those states at which the column-vector∇H becomes orthogonal to the
kinetic subspace of row-vectors,

∇H
∣

∣

f eq⊥KT. (5.15)

The latter statement can be written in the form of an equation,

gT ·∇H
∣

∣

f eq =0. (5.16)

Together with the constraints, hT
ρ · f eq=ρ, chT

u · f eq=ρu, Eq. (5.16) forms a set of three equa-
tions for three components of the equilibrium row-vector f eq. The equilibrium condition
in this form is called detailed balance.

Let us to prove with a direct computation that this system of equations again leads to
the equilibrium (4.1). Computing the scalar product of the row-vector gT (5.8) with the
column-vector ∇H (5.12), we write the detailed balance (5.16) explicitly,

16 f
eq
+ f

eq
− =

(

f
eq
0

)2
. (5.17)

With the definition of the hydrodynamic fields at the equilibrium,

f
eq
− + f

eq
0 + f

eq
+ =ρ, f

eq
+ − f

eq
− =ρu/c,

we have three equations (two linear and one nonlinear) for three unknowns. Expressing
f

eq
± in terms of f

eq
0 , and substituting these expressions into the detailed balance (5.16), we

obtain a quadratic equation for f
eq
0 ,

3
(

f
eq
0

)2−8ρ f
eq
0 +4ρ2

(

1− u2

c2

)

=0,
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whereupon the relevant solution reads

f
eq
0 =

2

3
ρ

(

2−
√

1+
3u2

c2

)

.

Introducing the speed of sound cs = c/
√

3, we see that this expression is identical with
the equilibrium of no-movers in (4.1). Same holds also for f

eq
± .

6 Admissible collision integrals

6.1 Admissibility conditions

Collision integrals in our geometric language are (column) vector-functions Q( f ). Colli-
sion integrals must respect three basic properties which we shall formulate now.

First, Q must be orthogonal to the hydrodynamic subspaceHT,

if hT∈HT , then hT ·Q( f )=0 for any f . (6.1)

By linearity, it is sufficient to require the orthogonality of Q with respect to any basis of
the hydrodynamic space. In our case, we can require Q to be orthogonal to the basis
row-vectors hT

ρ and hT
u (5.3),

hT
ρ ·Q( f )=0, hT

u ·Q( f )=0 for any f . (6.2)

The requirement (6.1), or, equivalently, (6.2), is called local conservation laws, or (local)
invariants of the collision. Local conservation laws in the construction of collision integrals
always refer to the hydrodynamic fields (hence, to the basis row-vectors (5.3) in our case).
It should be stressed at this point that Q should have no local conservation laws in the
kinetic subspace. In our case this means,

if Q( f ) 6=0, then kT ·Q( f ) 6=0, for kT∈KT . (6.3)

In brief, collision integral must respect the hydrodynamic local conservation laws and
must have no other conservation laws.

The second requirement concerns the zero of the vector-function Q. Namely, the col-
lision integral must be equal to zero (column-vectors with zero components) if and only
if at the equilibrium,

Q( f )=0 if and only if f = f eq. (6.4)

Finally, the third basic requirement concerns the entropy production inequality. It states
that the scalar product between the row-vector ∇HT (obtained by the transposition of
the column-vector ∇H (5.12)) at the state f and the row-vector Q at the same state is
non-positive,

σ=∇HT( f )·Q( f )≤0, for any f . (6.5)
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The equality sign in (6.5) should take place only at equilibrium (when f = f eq). In all other
(non-equilibrium) states the entropy production must be strictly negative.

The three requirements (the local conservation laws (6.1), the zero of collisions (6.4),
and the entropy production inequality (6.5)) must be met by any collision integral Q. Col-
lision integrals which respect all these three requirements are called admissible. We leave
it as an exercise to the reader to verify that the BGK collision integral (4.11) is admissible.

However, there are many more admissible collision integrals than just the BGK, and
we shall now construct some of them for our discrete three-velocity model.

6.2 Gradient models

In this section we shall consider to families of admissible collision integrals. Both these
families are constructed from the gradient of the entropy function,∇H, and we shall call
them gradient models.

6.2.1 Family A gradient models

Let Ψ(z) be a function of one variable z (it is called kinetic function), which satisfies the
following three properties:

Ψ(0)=0, Ψ(z) 6=0 if z 6=0, zΨ(z)≥0. (6.6)

The collision integrals of the family A have the form:

Q=− 1

τ
gΨ(gT ·∇H). (6.7)

Here the factor 1/τ is introduced for a purpose of a later comparison to the BGK model.
The rest of the construction follow the logic like this: Since we need to respect the lo-
cal conservations, Q must be an element of the (row-vector) kinetic subspace K. This
motivates Q∝ gΨ in (6.7). Next, the proportionality coefficient Ψ must vanish at the equi-
librium (zero of collisions), so it must depend on the scalar product gT ·∇H which is zero
at the equilibrium (see the detailed balance condition (5.16)). Therefore, we come up with
the first two requirements on the function Ψ (6.6). Finally, the third requirement in (6.6)
guarantees the entropy production inequality (verify this!). Thus, all collision integrals
of the family A are a admissible.

6.2.2 Family B gradient models

The construction is based on the stoichiometric representation of the column-vector gT

(5.10). Let Φ(z) be again a function of one variable which satisfies the property of strict
monotonicity,

Φ(z1)>Φ(z2) if z1 > z2, (6.8)
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and which implies

(z1−z2)(Φ(z1)−Φ(z2))>0 for any z1,z2, z1 6= z2 (6.9)

Then the collision integrals of the family B have the form

Q=− 1

τ
g
(

Φ(gT+ ·∇H)−Φ(gT− ·∇H)
)

. (6.10)

The idea behind the collision integral (6.10) is much the same as for the family A: Q is
proportional to g, while the proportionality coefficient is constructed upon rewriting the
detailed balance condition (5.16) as

gT+ ·∇H
∣

∣

f eq = gT− ·∇H
∣

∣

f eq . (6.11)

Then the entropy production inequality becomes a simple implication of the monotonic-
ity property (6.9),

σ=− 1

τ

(

∇HT ·g+−∇HT ·g−
)(

Φ(gT+ ·∇H)−Φ(gT− ·∇H)
)

=− 1

τ

(

gT+ ·∇H−gT− ·∇H
)(

Φ(gT+ ·∇H)−Φ(gT− ·∇H)
)

≤0. (6.12)

Thus, all members of the family B are also admissible collision integrals.
The construction of the collision integrals of the families A and B requires the follow-

ing ingredients: (i) Specification of the kinetic subspace (row-vector gT in our case, and,
in addition, the stoichiometric representation in the case of the family B), (ii) Specification
of the entropy function H (function (3.17), and (iii) Specification of the kinetic function of
one variable Ψ or Φ with the properties (6.6) and (6.8), respectively. The key issue why
the resulting collision integrals are admissible is in the detailed balance condition at the
equilibrium. What is not required in the construction is the explicit form of the equilib-
rium (populations (4.1). This is the difference between the BGK collision model (which
does require the explicit form of the equilibrium). As we shall see it below, from the stand-
point of reconstruction of the target Navier-Stokes equations all the models we discuss
are equivalent.

Let us now finish the construction of the collision integrals (6.7) and (6.10). What
remains to be done is to specify the kinetic functions Ψ and Φ, and we shall consider the
three most common choices.

Linear function. Function Ψ(z)= z satisfies (6.6), and the same function satisfies (6.8).
In this case, family A and family B lead to the same collision integral

Q=− 1

τ
ggT ·∇H, (6.13)

or, explicitly,

Q=− 1

τ





1
−2
1



ln

(

16 f− f+

f 2
0

)

. (6.14)
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Collision integrals of the form (6.14) will be called gradient-A models.
Exponential function. Function Ψ(z) = ez−1 satisfies (6.6), and leads to the collision

integral (6.7) of the form

Q=− 1

τ
g
(

egT ·∇H−1
)

, (6.15)

or, explicitly,

Q=− 1

τ





1
−2
1





(

16 f− f+

f 2
0

−1

)

. (6.16)

Collision integrals of the form (6.16) will be called gradient-B models.
The analog of this collision integral for the family B corresponds to the kinetic func-

tion Φ(z)= ez , which gives in (6.7)

Q=− 1

τ
g
(

egT+·∇H−egT−·∇H
)

, (6.17)

or, explicitly,

Q=− 1

τ





1
−2
1





(

16 f− f+− f 2
0

)

. (6.18)

Collision integrals of the form (6.18) are called quasi-chemical models. It is a place here to
comment on this notion. Let us consider the populations as concentrations of some fic-
titious species A−, A0 and A+, participating in a reversible ‘reaction’ with the following
stoichiometric mechanism

A++A−⇄2A0. (6.19)

In the direct reaction (→), one ‘molecule’ of A− reacts with one ‘molecule’ of A+ to pro-
duce two ‘molecules’ of A0. In the inverse reaction (←), two molecules of A0 produce one
molecule of A− and one molecule of A+. Thus, the stoichiometry of the direct reaction is
given by the row-vector,

gT+ =
(

1 0 1
)

,

(participation of one molecule of A− and one molecule of A+), and by the row-vector,

gT−=
(

0 2 0
)

,

for the reverse reaction (participation of two molecules of A0). These row-vectors are
precisely the stoichiometric representation of the row-vector gT (5.10). The rate of the
reaction (6.19) can be constructed in the mass action law form. That is, the gain rate is pro-
portional to the product w+ f− f+, while the loss rate is proportional to w− f0 f0. The ratio
of the equilibrium reaction constants w+/w− is dictated by the detailed balance condition
(5.16), and is equal to 16 in our case. The total rate is thus written as ‘gain minus loss’
which leads to (6.18).
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Table 1: Number of operations required to evaluate collision integrals.

Gradient-A (6.14) 45

Gradient-B (6.18) 5

Quasi-chemical (6.16) 6

BGK (4.11) 10

Thus, we have constructed several admissible collision integrals for the set of kinetic
equations (4.10). As we shall see it in the next section, in spite of the fact that collision
integrals (4.11), (6.14), (6.16) and (6.18) look rather different, they all lead to the same
Navier-Stokes equations in the hydrodynamic limit. The idea about why this is so is
quite simple: only the linearization of the collision integrals near equilibrium is relevant
for the hydrodynamic limit, and the linear parts of all the collision integrals mentioned
here are equivalent (warning: this is not so in higher dimensions!). On the other hand,
these collision integrals are not equivalent in terms of their performance in the simula-
tion. Indeed, they require not the same number of operations for their evaluation at a
given state f . The most ‘expensive’ is the model (6.14) because it involves a logarithmic
operation. On the other hand, the models (6.16) and (6.18) require even less operations
than the BGK model. A comparison is given in Table 1 (where the logarithmic operation
is estimated approximately as 40 operations).

In this section we have learned how to construct admissible collision integrals without
knowing the equilibrium but only knowing the entropy function in the case when the
kinetic subspace KT is one-dimensional (one basis row-vector gT).

We conclude this section with a generalizations of the Gradient-A collision integral
to kinetic subspaces of any dimension. Let us consider a nd-dimensional space of row-
vectors ET , and its decomposition (5.11), where the dimension of the hydrodynamic sub-
space HT is nc (the number of linearly independent conservation laws), and the dimen-
sion of the kinetic subspace KT is nk = nd−nc. Let gT

(1),. . .,g
T
(nk) be a basis (a maximal

linearly independent system of row-vectors) of KT . Let H be a strictly convex function
of the populations f1,. . ., fnd

, and ∇H the column-vector of its partial derivatives. Let K
be a positive-definite nk×nk matrix with matrix elements K(s)(p), s, p=1,··· ,nk. Then the
following collision integral is obviously admissible:

Q=−
nk

∑
(s)=1

nk

∑
(p)=1

g(s)K(s)(p)g
T
(p) ·∇H. (6.20)

7 Linearization of collision integrals at equilibrium

7.1 Linearization of gradient models

When the populations become close to the (local) equilibrium, nonlinearity of the colli-
sion integrals becomes unimportant, and the relaxation at its final stages is governed by
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the linearized collision integrals. In this section we shall collect the formulas of the lin-
earized collision integrals of the previous section. They will be needed below to establish
the hydrodynamic limit of the numerical schemes based on the minimal kinetic model.

We begin with the general formula of linearization for the collision integral of the
family A (6.7). Substituting the population vector which slightly deviates from the equi-
librium

f = f eq+δ f ,

into (6.7), and retaining only the terms linear in δ f , we obtain a perturbation of the colli-
sion integral (6.7) at equilibrium

Q( f eq)+δQ=− 1

τ
g



Ψ
(

gT ·∇H
∣

∣

f eq

)

+
dΨ

dz

∣

∣

∣

∣

z=gT ·∇H
∣

∣

f eq

gTG( f eq)δ f



 . (7.1)

Here G is the matrix of second derivatives of the entropy function evaluated at the equi-
librium,

G( f eq)=









1
f

eq
−

0 0

0 1
f

eq
0

0

0 0 1
f

eq
+









. (7.2)

In this section, we shall not display the evaluation point f eq in G, and write simply

G( f eq)=G.

Thanks to the detailed balance (5.16), and to the properties of the kinetic function (6.6),
we thus have in (7.1)

δQ=− 1

τ
Ψ′(0)ggT Gδ f , (7.3)

where Ψ′(0) is the derivative of the kinetic function at z=0. Note that due to (6.6) Ψ′(0)
is strictly positive.

Since (7.3) is valid for any δ f≪ f eq, we can write δQ (which is called the differential of
the operator Q at equilibrium), in the form of the linear operator (3×3 matrix) acting on
the column-vector δ f

δQ= Lδ f , (7.4)

where

L=− 1

τ
Ψ′(0)ggT G (7.5)

is called the linearized collision integral (or the Jacobian of the vector field Q at equilibrium).
We leave it as an Exercise to obtain the explicit matrix form of the linearized collision
integral (7.5) for the Gradient-A and Gradient-B models, (6.14) and (6.16).
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Let us find the matrix L for the models (6.14) and (6.16). The derivative of the kinetic
function Ψ(z)=z (Gradient-A model) at z=0 is Ψ′(0)=1, and the corresponding deriva-
tive of the function Ψ(z)=ez−1 (Gradient-B model) is also Ψ′(0)=1. Thus, the linearized
collision integral (7.5) for both these models is the same,

L=− 1

τ
ggTG. (7.6)

Furthermore,

ggT =





1
−2
1





(

1 −2 1
)

=





1 −2 1
−2 4 −2
1 −2 1



. (7.7)

Multiplying this expression with the matrix G
∣

∣

f eq , we obtain

L=− 1

τ









1
f

eq
−

− 2
f

eq
0

1
f

eq
+

− 2
f

eq
−

4
f

eq
0

− 2
f

eq
+

1
f

eq
−

− 2
f

eq
0

1
f

eq
+









. (7.8)

Linearization of the collision integrals of the Family B (6.7) is much the same, and we
shall write down the answer, leaving the derivation to the reader as an exercise:

L=− 1

τ
Φ′
(

gT+ ·∇H
∣

∣

f eq

)

ggTG, (7.9)

where the derivative of the kinetic function Φ(z) is taken at z = gT+ ·∇H
∣

∣

f eq . By the

detailed balance the latter value is also equal to gT− ·∇H
∣

∣

f eq , thus, we can also write

L=− 1

τ
Φ′
(

gT− ·∇H
∣

∣

f eq

)

ggTG. (7.10)

However, the most telling way to write the linearized collision integral for the Family B is
the symmetrized form which is obtained by summing these two expressions and dividing
by 2

L=− 1

2τ

[

Φ′
(

gT+ ·∇H
∣

∣

f eq

)

+Φ′
(

gT− ·∇H
∣

∣

f eq

)]

ggTG. (7.11)

Let us find the matrix L (7.11) for the quasi-chemical collision integral (6.18). Evaluating
the derivative of the kinetic function Φ(z)= ez at z= gT± ·∇H

∣

∣

f eq , and using the result of

the previous Exercise, we find

L=− 1

2τ

(

16 f
eq
− f

eq
+ + f

eq
0 f

eq
0

)









1
f

eq
−

− 2
f

eq
0

1
f

eq
+

− 2
f

eq
−

4
f

eq
0

− 2
f

eq
+

1
f

eq
−

− 2
f

eq
0

1
f

eq
+









. (7.12)

We shall postpone the discussion of the properties of the linearized gradient collision
integrals to the end of this section, and will consider first the linearization of the BGK
operator.



218 I. V. Karlin, S. S. Chikatamarla and S. Ansumali / Commun. Comput. Phys., 2 (2007), pp. 196-238

7.2 Linearized BGK operator and thermodynamic projector

Let us turn to the linearization of the BGK collision integral (4.11). We write

δQ=− 1

τ

(

δ f− ∂ f eq

∂ρ
δρ− ∂ f eq

∂u
δu

)

. (7.13)

Now we shall use the fact that the variation of the density ρ and of the velocity u are
written as scalar products between the column-vector δ f and the row-vectors of the hy-
drodynamic subspace

δρ=hT
ρ ·δ f ,

δu=
c

ρ

(

hT
u ·δ f

)

− u

ρ

(

hT
ρ ·δ f

)

.
(7.14)

With this, the linearized collision integral of the BGK is written as

L=− 1

τ
(1−P)δ f , (7.15)

where 1 is the unit matrix, and P is a projector (this is the simplest instance of the thermo-
dynamic projector [22])

P=

(

∂ f eq

∂ρ
− u

ρ

∂ f eq

∂u

)

hT
ρ +

(

c

ρ

∂ f eq

∂u

)

hT
u . (7.16)

Operator P is called projector if its repeated action on any vector δ f equals the action of
P, or

PP= P. (7.17)

Let us verify that the operator P (7.16) satisfies the projector property (7.17):

PPδ f =

(

∂ f eq

∂ρ
− u

ρ

∂ f eq

∂u

)[(

hT
ρ ·
(

∂ f eq

∂ρ
− u

ρ

∂ f eq

∂u

))

(hT
ρ ·δ f )+

c

ρ

(

hT
ρ ·

∂ f eq

∂u

)

(hT
u ·δ f )

]

+

(

c

ρ

∂ f eq

∂u

)[(

hT
u ·
(

∂ f eq

∂ρ
− u

ρ

∂ f eq

∂u

))

(hT
ρ ·δ f )+

c

ρ

(

hT
u ·

∂ f eq

∂u

)

(hT
u ·δ f )

]

. (7.18)

Evaluating scalar products in this expression, we have
(

hT
ρ ·
(

∂ f eq

∂ρ
− u

ρ

∂ f eq

∂u

))

=
∂ρ

∂ρ
− u

ρ

∂ρ

∂u
=1,

(

hT
ρ ·

∂ f eq

∂u

)

=
∂ρ

∂u
=0,

(

hT
u ·
(

∂ f eq

∂ρ
− u

ρ

∂ f eq

∂u

))

=
1

c

∂(ρu)

∂ρ
− u

cρ

∂(ρu)

∂u
=0,

c

ρ

(

hT
u ·

∂ f eq

∂u

)

=
1

ρ

∂(ρu)

∂u
=1.

(7.19)
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Substituting these expressions into (7.18), we continue the computation of PPδ f ,

PPδ f =

(

∂ f eq

∂ρ
− u

ρ

∂ f eq

∂u

)

(hT
ρ ·δ f )+

(

c

ρ

∂ f eq

∂u

)

(hT
u ·δ f )

=P·δ f . (7.20)

Since δ f was arbitrary in this computation, we have proven the projector property (7.17).
Because operator P is a projector, then operator 1−P is also a projector,

(1−P)(1−P)=1−2P+PP=1−P. (7.21)

Thus, the linearized BGK operator is just proportional to the projector 1−P. Properties of
the projectors P and 1−P are so much important that we shall discuss them here in some
detail.

We first remind that two linear subspaces, denoted as imP (the image of P) and kerP
(the kernel of P) are associated with any projector. Each vector of the kernel is annihilated
by the projector, P f =0 if f ∈kerP. Vectors of image of the projector satisfy the condition
P f = f . The kernel of projector P (7.16) is the kinetic subspace K,

kerP=K. (7.22)

For the projector 1−P, the situation is opposite,

im(1−P)=K. (7.23)

The proof of (7.22) (and, accordingly, of (7.23)) follows from the definitions of the sub-
space K: any vector of the kinetic subspace K has the form ag, so

Pag= a

(

∂ f eq

∂ρ
− u

ρ

∂ f eq

∂u

)

(hT
ρ ·g)+a

(

c

ρ

∂ f eq

∂u

)

(hT
u ·g)=0. (7.24)

Thus, any vector of K is annihilated by P. On the other hand, for any nontrivial vector h
from the hydrodynamic subspace, either hT

ρ ·h 6=0 or hT
u ·h 6=0 (certainly, these quantities

can be both non-zero), thus, Ph 6=0 for any h∈H. Since any vector can be represented as
ag+h with some a and some h∈H, we have proven (7.22). The proof of (7.23) follows
from the fact that (1−P)ag= ag.

The dimension of the subspace imP is dim(imP)=nd−dim(kerP), in our case dimimP=
2 (thus, dim(ker(1−P))=nd−dim(im(1−P)), in our case dimker(1−P)=1). The image
of P (7.16) is a linear subspace spanned by the two column-vectors,

eρ =
∂ f eq

∂ρ
, eu =

∂ f eq

∂u
. (7.25)

That is,
imP=

{

All vectors of the form aeρ+beu

}

. (7.26)
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In order to prove this statement, we need to show that

P(aeρ+beu)= aeρ+beu,

for any coefficients a and b. This is achieved by a direct computation

P(aeρ+beu)

=

(

∂ f eq

∂ρ
− u

ρ

∂ f eq

∂u

)(

hT
ρ ·
(

a
∂ f eq

∂ρ
+b

∂ f eq

∂u

))

+
1

ρ

∂ f eq

∂u

(

chT
u ·
(

a
∂ f eq

∂ρ
+b

∂ f eq

∂u

))

=

(

∂ f eq

∂ρ
− u

ρ

∂ f eq

∂u

)(

a
∂ρ

∂ρ
+b

∂ρ

∂u

)

+
1

ρ

∂ f eq

∂u

(

a
∂(ρu)

∂ρ
+b

∂(ρu)

∂u

)

=

(

∂ f eq

∂ρ
− u

ρ

∂ f eq

∂u

)

a+
1

ρ

∂ f eq

∂u
(au+bρ)

=a
∂ f eq

∂ρ
+b

∂ f eq

∂u
= aeρ+beu. (7.27)

The image of the projector P has the following geometric interpretation. The set of the
equilibrium populations can be viewed as two-dimensional sub-manifold (a surface) in
the three-dimensional space of populations. This sub-manifold is parameterized by two
parameters, ρ and u. The tangent space to this sub-manifold at the point f eq(ρ,u) is the
linear hull of the two partial derivatives, ∂ f eq(ρ,u)/∂ρ and ∂ f eq(ρ,u)/∂u. These deriva-
tives are precisely the vectors eρ and eu (7.25), and the tangent space to the equilibrium
sub-manifold at the point with the coordinates (ρ,u) is the image of the projector P (7.16).
Put differently, we can say that P projects onto the tangent space of the equilibrium sub-
manifold (imP), and parallel to the kinetic subspace (kerP). For the projector 1−P, the
situation is opposite, it projects onto the kinetic subspace parallel to the tangent space.
All projections are understood locally, that is, the tangent space is different at different
points on the sub-manifold.

A one more question which one typically needs to answer when considering a projec-
tor is about orthogonality. When speaking of orthogonality, one refers to a scalar product.
Above, we have considered the orthogonality of the kinetic and the hydrodynamic sub-
spaces with respect to the standard scalar product · (5.2). Orthogonality of projector P with
respect to a specified scalar product ∗means that every vector of the kernel is orthogonal
to any vector of the image in the sense of ∗. Is the projector P in (7.16) orthogonal with
respect to the standard scalar product ·? The answer is negative, it is not orthogonal with
respect to this scalar product, the image of the projector P has the components in both the
kinetic and the hydrodynamic subspaces. In order to show this, it is sufficient to find a
non-trivial pair of vectors, one from the kernel of P and another from the image of P such
that their standard scalar product is not equal to zero. For example, let us consider the
vector eρ (7.25) at the zero-velocity equilibrium f eq(ρ,0). Let us find the standard scalar
product between this vector and the vector g. From (4.1) we have

eρ(0)=
∂ f eq(ρ,u)

∂ρ

∣

∣

∣

∣

u=0

=

(

1

6

4

6

1

6

)T

. (7.28)
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It follows from (5.8) that
gT ·eρ(0)=−1 6=0. (7.29)

However, there exists another scalar product relative to which P is orthogonal. This scalar
product is called the entropic scalar product, and it is constructed with the help of the
positive-definite matrix of the second derivatives of the entropy function. In our case
this is the matrix G given by (7.2). We shall denote ∗ the entropic scalar product between
vectors e and f ,

eT∗ f = f T∗e= eT ·G · f =
e− f−

f
eq
−

+
e0 f0

f
eq
0

+
e+ f+

f
eq
+

. (7.30)

Orthogonality of P with respect to ∗ (7.30) means

((1−P)e)T∗P f =0 (7.31)

for any pair of vectors e, f . In order to demonstrate this in our case, it is sufficient to
prove that

gT∗(aeρ +beu)=0. (7.32)

Indeed, the vectors of the kernel of P are proportional to vector g, while all vectors of the
image of P have the form (7.26), so equality (7.32) implies orthogonality of P with respect
to the entropic scalar product. Verification of (7.32) is done upon a direct computation.
We shall do this computation without even a reference to the specific entropy function of
our example in order to stress generality.

Since a and b are arbitrary in (7.32), it is sufficient to prove that

gT∗
(

∂ f eq

∂ρ

)

=0, gT∗
(

∂ f eq

∂u

)

=0. (7.33)

Computing the first of these expressions, we have

gT∗
(

∂ f eq

∂ρ

)

= gT ·G ∂ f eq

∂ρ

=gT ·
(

∂∇H
∣

∣

f eq

∂ρ

)

=
∂
(

gT ·∇H
∣

∣

f eq

)

∂ρ
=0. (7.34)

In the last line of the computation we have again used the detailed balance condition
(5.16). Computation of the second of the scalar products in (7.33) is done in just the same
way. Since the scalar product in (7.32) is a linear combination of the products (7.33), we
have proven the orthogonality of P with respect to the entropic scalar product. We see
that the orthogonality of P is the implication of the detail balance in every point of the
equilibrium manifold f eq(ρ,u).

Let us prove, as an example, the orthogonality (7.32) for the Boltzmann entropy func-
tion

H =
nd

∑
i=1

fi ln

(

fi

Wi

)

.
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(For the H-function (3.17), W±=1, W0 =4). Indeed,

gT∗(aeρ +beu)=
nd

∑
i=1

gi

f
eq
i

(

a
∂ f

eq
i

∂ρ
+b

∂ f
eq
i

∂u

)

=
nd

∑
i=1

gi

(

a
∂ln f

eq
i

∂ρ
+b

∂ln f
eq
i

∂u

)

=
nd

∑
i=1

gi

(

a
∂(ln( f

eq
i /Wi)+lnWi)

∂ρ
+b

∂(ln( f
eq
i /Wi)+lnWi)

∂u

)

=a
∂(gT ·∇H

∣

∣

f eq)

∂ρ
+b

∂(gT ·∇H
∣

∣

f eq)

∂u

=0. (7.35)

Thus, P projects orthogonally with respect to the entropic scalar product. The immediate
consequence of this is that P is self-adjoint (in the same, entropic scalar product sense).
Operator (matrix) A† is called adjoint to operator A, if for any two vectors e and f we
have

eT∗(A f )= f T∗(A†e). (7.36)

Note again that specification of the scalar product is required when talking about adjoint
operators. Operator A is called self-adjoint (with respect to ∗) if

A† = A. (7.37)

Orthogonal projectors are also self-adjoint (the inverse of this statement is also true).
Thus, projector P (7.16) (and also projector 1−P) is self-adjoint in the entropic scalar
product

P† = P, (1−P)† =(1−P). (7.38)

We suggest the reader to prove this statement as an exercise.

From all the above discussion we conclude that the linearized BGK operator is propor-
tional to the orthogonal projector 1−P, and we have described this operator completely
(that is, we know its kernel and image). Thus, we also know the complete solution to the
eigenvalue problem for this operator,

Lδ f =λδ f . (7.39)

There are two eigenvalues for this problem, λ0 = 0 and λ =−1/τ. The eigenspace cor-
responding to the zero eigenvalue λ0 is twice degenerated, and corresponds to the two-
dimensional image of the projector P. The eigenspace corresponding to λ is spanned by
the kinetic vector g, and corresponds to the kernel of P. These eigenspaces are orthogonal
to each other in the sense of the entropic scalar product. Operator L is self-adjoint with
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respect to the entropic scalar product, and, moreover, is non-positive definite. The latter
means that,

(δ f )T∗(Lδ f )≤0 for any δ f , (7.40)

and we leave it to the reader to verify this inequality.

7.3 Thermodynamic projector in canonic form

Let us come back to the discussion of properties of the linearized operators (7.5) and
(7.11). These operators differ only by a factor (which nevertheless may depend on f eq),
so we consider a general form

L=− 1

τ
kggT G, (7.41)

where the positive factor k takes the following values

k=Ψ′(0) for (7.5),

k=
1

2

[

Φ′
(

gT+ ·∇H
∣

∣

f eq

)

+Φ′
(

gT− ·∇H
∣

∣

f eq

)]

for (7.11).
(7.42)

In order to find out the properties of the operator L (7.41), and to compare it with the
linearized BGK operator, it proves instructive to rewrite (7.41) as follows:

L=− 1

τ
k(gT ∗g)(1−Π), (7.43)

where we have used the above notation for the entropic scalar product (
√

gT∗g can be
termed the entropic norm of the kinetic vector g at equilibrium), and we have introduced
operator Π

Π=1− 1

(gT∗g)
ggTG. (7.44)

It is easy to prove that Π is again a projector:

ΠΠ=

(

1− ggT G

(gT∗g)

)(

1− ggT G

(gT∗g)

)

=1−2
ggTG

(gT∗g)
+

g(gT ·Gg)gT G

(gT∗g)2

=Π. (7.45)

The kernel of the projector Π is again the kinetic subspace,

kerΠ=K. (7.46)

This is verified immediately:

Πg= g−g
(gT ·Gg)

(gT∗g)
= g−g=0. (7.47)
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By looking at our previous result for the thermodynamic projector P, Eq. (7.22), we notice
that Π and P have identical kernels,

kerΠ=kerP. (7.48)

However, the form of Π (7.44) does not look much similar to P (7.16). Nevertheless, projector
Π is the same thermodynamic projector! This means, that also the image of Π is the tangent
space to the equilibrium manifold. Indeed, we can compute the action of Π on any vector
from imP (7.26) to see that Π leave invariant such vectors:

Π(aeρ+beu)=a

(

eρ−
g(gT ∗eρ)

(gT∗g)

)

+b

(

eu−
g(gT ∗eu)

(gT∗g)

)

=aeρ+beu, (7.49)

and this proves
imΠ= imP. (7.50)

Two projectors P1 and P2 with identical kernels and identical images are equivalent (one
writes P1∼P2). Projectors Π (7.44) and P (7.16) have the same kernel and the same image,
so they are equivalent,

Π≡P. (7.51)

Projector Π is therefore called thermodynamic projector in canonic form. Note that while we
needed to compute derivatives of the equilibrium populations f eq(ρ,u) when writing the
thermodynamic projector P (7.16), we did not need anything like that when writing its
canonic form Π. In other words, Π is just the orthogonal (in the ∗-sense) projector with the
kernel K.

One more interesting observation can be made here. Suppose we were not knowing
anything about the thermodynamic projector P (7.16). Then we would still have found
the image of Π quite easily: let us consider any vector h of the hydrodynamic subspace
H, and transform it with the inverse operator G−1. This transformed vector h̃,

h̃=G−1h, (7.52)

is a vector of the image of Π:

Πh̃= h̃− ggTGG−1h

(gT∗g)
= h̃− g(gT ·h)

(gT∗g)
= h̃, (7.53)

by the orthogonality (with respect to ·) of kinetic and hydrodynamic subspaces. Thus, the
image of Π is also described as a linear transformation of the hydrodynamic subspace

imΠ=G−1H. (7.54)

But thanks to equivalence of P and Π the linear subspace G−1H must be the same thing
as imP (7.26). Both representations of imΠ (or of imP) can be now compared, that is, there
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must be a non-degenerated linear transformation which transforms vectors of the form
G−1h (7.52) into vectors of the form aeρ+beu. Let us find this transformation explicitly.
We write, using the fact that ∇H at equilibrium is a linear combination of the vectors hρ

and hu

G(aeρ+beu)=a
∂∇H

∣

∣

f eq

∂ρ
+b

∂∇H
∣

∣

f eq

∂u

=a

(

hρ
∂χ

∂ρ
+huc

∂λ

∂ρ

)

+b

(

hρ
∂χ

∂u
+huc

∂λ

∂u

)

=ãhρ+ b̃hu, (7.55)

where

ã= a
∂χ

∂ρ
+b

∂χ

∂u
, b̃= ac

∂λ

∂ρ
+bc

∂λ

∂u
, (7.56)

or, in a matrix form,
(

ã

b̃

)

=

( ∂χ
∂ρ

∂χ
∂u

c ∂λ
∂ρ c ∂λ

∂u

)

(

a
b

)

. (7.57)

Eq. (7.57) establishes the relation between the two representations of the image of the
thermodynamic projector, (7.26) and (7.54). In order that this relation be one-into-one,
the matrix D (which has the dimension nc×nc, where nc is the number of conservation
laws, 2×2 in our case),

D=

( ∂χ
∂ρ

∂χ
∂u

c ∂λ
∂ρ c ∂λ

∂u

)

, (7.58)

must be non-degenerated,

detD= c

(

∂χ

∂ρ

)(

∂λ

∂u

)

−c

(

∂χ

∂u

)(

∂λ

∂ρ

)

6=0. (7.59)

Matrix D is the Jacobian of the map of Lagrange multipliers, χ and λ, into the hydrody-
namic variables, ρ and u. The non-degeneracy condition (7.59) tells that the coordinates ρ
and u distinguish points on the equilibrium manifold f eq(ρ,u), two different pairs of val-
ues, (ρ1,u1) and (ρ2,u2), correspond to two different equilibria, f eq(ρ1,u1) and f eq(ρ2,u2).
Condition (7.59) is called transversality condition. It is straightforward to verify that the
equilibrium (4.1) satisfies the transversality condition (7.59).

The linearized collision integral (7.41) is just proportional to the same projector 1−
P as the linearized BGK, hence, the properties of (7.41) are also much the same. The
difference is that the proportionality coefficient K(gT∗g) can depend on the equilibrium
populations, and thus be a function of ρ and u. The spectrum of the operator (7.41)
consists of two eigenvalues: the twice degenerated λ0 = 0 and λ =− 1

τ k(gT ∗g). Unlike
the case of the BGK model, the latter eigenvalue can be a function of ρ and u. A small
modification of gradient models is required if we want their linearization to be exactly as
the linearized BGK.
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8 Single relaxation time gradient models

As we can infer from the above remarks, one needs to compensate for the “extra” fac-
tor (7.41) by by dividing the collision integral with k(gT ∗g). Let us do this “division”
carefully for the Family A, where k = Ψ′(0) is a constant (even then we still have the de-
pendence of the eigenvalue λ on ρ and u entering through the entropic scalar product
gT∗g at equilibrium). Let us begin with a slight generalization of the gradient models,
and will spell out all the dependencies on the populations in all the expressions (though
a bit bulky, this is needed in order to avoid confusion).

Q( f )=− 1

τ
K( f )gΨ

(

gT ·∇H
)

, (8.1)

where we have introduced a yet undefined positive function of populations K( f ). Obvi-
ously, all collision integrals (8.1) are admissible. Linearization of (8.1) gives

Q( f eq)+δQ=− 1

τ
K( f eq)gΨ(0)− 1

τ
K( f eq)Ψ′(0)ggT G( f eq)δ f

− 1

τ
(∇KT( f eq)·δ f )gΨ(0), (8.2)

where∇KT( f eq) is the row-vector of the partial derivatives of the function K at the equi-
librium. The first and the last terms in this expression vanish‡, and we thus have for the
linearized collision integral

L=− 1

τ
K( f eq)Ψ′(0)ggT G( f eq), (8.3)

or, using the results of the previous section, and spelling out the entropic scalar product
gT∗g,

L=− 1

τ

(

K( f eq)Ψ′(0)gT ·(G( f eq)g)
)

(1−Π). (8.4)

We see that the single relaxation time condition requires

K( f eq)Ψ′(0)gT ·(G( f eq)g)=1, (8.5)

or

K( f eq)=
1

Ψ′(0)gT ·(G( f eq)g)
. (8.6)

We see that the condition (8.6) is the only requirement on the function K which, once
satisfied, makes the linearized collision integral just as the linearized BGK. One obvious
way to achieve this is to set

K( f )=K( f eq(ρ( f ),u( f ))=
1

gT ·(G( f eq)g)Ψ′(0)
, (8.7)

‡If Q is admissible collision integral, then δ(KQ)= δKQ( f eq)+K( f eq)δQ=K( f eq)δQ.
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in (8.1). In other words, we can define the function of populations K( f ) as in (8.7), and use
the gradient model

Q=− 1

τ

(

1

gT ·(G( f eq)g)Ψ′(0)

)

gΨ
(

gT ·∇H
)

, (8.8)

which is then equivalent to the BGK in the linear approximation.
However, this is not yet a very interesting suggestion from the practical standpoint

because the equilibrium population needs to be known explicitly for writing up (8.7). A
more interesting model is established upon extending the single relaxation time condition
(8.6) from equilibrium onto all other states. That is, instead of (8.7), we define the function
K as

K( f )=
1

gT ·G( f )gΨ′(0)
. (8.9)

Here the denominator in the right hand side contains the entropic scalar product in the
state f (rather than in the equilibrium). In order to stress this fact, we write

gT∗ f g= gT ·G( f )g=
1

f−
+

4

f0
+

1

f+
. (8.10)

With the choice (8.9), the single relaxation time model (SRTM) within the Family A is written
as

Q=− 1

τ

(

1

gT∗ f gΨ′(0)

)

gΨ
(

gT ·∇H
)

. (8.11)

For the linear and for the exponential functions Ψ considered in Section 6.2, Ψ′(0) = 1,
and we list here the corresponding SRTM modifications of them. The SRTM gradient-A
model (see (6.13)) reads,

Q=− 1

τ
(gT∗ f g)−1ggT ·∇H, (8.12)

or, explicitly (see (6.14)),

Q=− 1

τ

(

1

f−
+

4

f0
+

1

f+

)−1




1
−2
1



ln

(

16 f− f+
f 2
0

)

. (8.13)

The SRTM gradient-B model reads,

Q=− 1

τ
(gT∗ f g)−1g

(

egT ·∇H−1
)

, (8.14)

or, explicitly (see (6.16)),

Q=− 1

τ

(

1

f−
+

4

f0
+

1

f+

)−1




1
−2
1





(

16 f− f+

f 2
0

−1

)

. (8.15)
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The SRTM collision integrals (8.13) and (8.15) have the following properties: They do not
require the equilibrium to be evaluated explicitly, and, at the same time, their linearization around
equilibrium is the same operator, as it is for the BGK model.

We conclude this section by writing down a SRTM Gradient-A model for a multi-
dimensional case. In order to do this, we choose the nk×nk matrix K in (6.20) as follows
[14]:

K =C−1, (8.16)

where C is the correlation matrix with the components

C(s)(p)=
nd

∑
i=1

nd

∑
j=1

g(s)i
∂2H

∂ fi∂ f j
g(p)j. (8.17)

9 Entropic lattice Boltzmann scheme

9.1 Hydrodynamic limit in the discrete-time picture

With the results derived above (the entropy function, the equilibrium, and a set of ad-
missible single relaxation time collision integrals), we are in a position now to derive the
entropic lattice Boltzmann scheme for the present model. Since the principles of con-
struction of the entropic scheme were discussed in detail in the previous paper [1], we
here present only the resulting formulas. Populations are updated according to the fully
discrete kinetic equation,

fi(x+ciδt,t+δt)− fi(x,t)=Q∗i ( f (x,t)), (9.1)

where Q∗ is dressed (or stabilized) single relaxation time collision integral,

Q∗= βαQ. (9.2)

Here β∈ [0,1] is a parameter related to viscosity (see (9.36) below), and α is the scalar
function of the population vector. Function α ensures the discrete-time H-theorem, and
is the nontrivial root of the scalar nonlinear equation,

H( f )= H( f +αQ( f )). (9.3)

Put differently, collision integrals are merely directions in the space of populations, point-
ing towards the change of the state during the collision step. Parameter α defines the
maximal admissible collision step along this direction so that the entropy will not de-
crease. The combination βα is thus the effective relaxation parameter in the fully discrete
kinetic picture.

Identification of the viscosity coefficient in the entropic lattice Boltzmann method is
done on the basis of the Chapman-Enskog analysis in the vicinity of the local equilibrium.
Let us consider this derivation in some detail below. Before so doing, we shall consider
linearization of dressed collision integral (9.2) for single relaxation time models.
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9.2 Linearization of dressed collision integrals

Linearization of the dressed collision integral (9.2) may be written as,

δQ∗i = βα( f eq)

(

nd

∑
i=j

∂Qj

∂ f j

∣

∣

∣

∣

f eq

δ f j

)

+β

(

nd

∑
i=j

∂α

∂ f j

∣

∣

∣

∣

f eq

δ f j

)

Qi( f eq). (9.4)

Second term in (9.4) is equal to zero by the construction of the collision integral (Qi( f eq)=
0). Denoting αeq =α( f eq), we have

δQ∗i = βαeq

nd

∑
j=1

Lijδ f j. (9.5)

Linearized BGK collision integral and the single relaxation time collision integrals con-
sidered in Section 8 have the form

Lij =−
1

τ
(δij−Pij), (9.6)

where Pij is the matrix of the thermodynamic projector. Only such collision integrals will
be considered below.

Function αeq is found upon expanding Eq. (9.3) at equilibrium up to the quadratic in
δ f terms (see [1]). Using the formula for the linearized single relaxation time collision
integral just derived, we find the following quadratic equation for the unknown αeq:

α2
eq

2τ2
((1−P)δ f )T∗((1−P)δ f ))− αeq

τ
(δ f T∗((1−P)δ f ))=0. (9.7)

From the orthogonality of the thermodynamic projector it follows:

δ f T∗(1−P)δ f =(Pδ f +(1−P)δ f )T∗(1−P)δ f =((1−P)δ f )T∗(1−P)δ f .

Hence, (9.7) reduces to
α2

eq

2τ2
− αeq

τ
=0, (9.8)

and the nontrivial solution reads (see also [1]):

αeq =2τ. (9.9)

Thus, the formula for the linearized dressed collision integral corresponding to a single
relaxation time model (9.6) may be written in vector notation as

L∗=−2β(1−P). (9.10)

Formulas obtained in this section will be used below when deriving the hydrodynamic
limit of the discrete-time kinetic equation (9.1).
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9.3 Multi-scale expansion

Expanding the shift operators in (9.1) to second order in δt, we have

δt[∂t+ci∂x] fi+
1

2
δt2 [∂t+ci∂x][∂t+ci∂x] fi+O(δt3)= βαQi( f ). (9.11)

Introducing a characteristic time scale T so that t= Tt′, there t′ is of the order 1, and also
introducing ǫ=δt/T, (9.11) is rewritten, omitting the error term of the order ǫ3,

ǫ[∂t′+ci∂x′ ] fi+
1

2
ǫ2 [∂t′+ci∂x′ ][∂t′+ci∂x′ ] fi = βαQi( f ), (9.12)

where x′=(Lx)/T is the reduced coordinate.
Now, if ǫ≪ 1, (9.12) is singularly perturbed (derivatives are multiplied with a small

number), and thus shows a multi-scale behavior. It should be noted that the smallness
parameter ǫ is the ratio between the discretization time δt and the characteristic variation
of the populations on a larger time and space scales, T and L, respectively. This is similar
to what happens in the classical kinetic theory where the physical smallness parameter
in the Boltzmann kinetic equation, Knudsen number Kn, measures the ratio between the
molecular time scale (mean time of free flight of particles) relative to a characteristic time
scale of hydrodynamic processes. In our case, however, there is a one more characteristic
time, the discretization time δt. So, the origin of the multi-scale behavior is different
although formally very similar to the continuous-time kinetic equations.

Solution is found in terms of the expansion,

fi = f
(0)
i +ǫδ f

(1)
i +ǫ2δ f

(2)
i +O(ǫ3), (9.13)

subject to the multi-scale expansion of the time derivative,

ǫ∂t′=ǫ∂
(1)
t′ +ǫ2∂

(2)
t′ +O(ǫ3). (9.14)

Substituting (9.13) and (9.14) into (9.12), and grouping the terms of same order in ǫ, at
zeroth order we have

βα( f (0))Qi( f (0))=0, (9.15)

whereupon

f
(0)
i = f

eq
i , (9.16)

and, taking into account the result (9.9), we also have

α( f (0))=αeq =2τ. (9.17)

Thus, solution in the form (9.13) concerns small deviations from the local equilibrium, as
pertinent to the hydrodynamic limit,

fi = f
eq
i +δ f

neq
i . (9.18)
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The non-equilibrium part δ f neq is sought orthogonal (in the sense of the standard · scalar
product) to the hydrodynamic subspace. In the case of three velocities, this means

hT
ρ ·δ f neq =0, hT

u ·δ f neq =0. (9.19)

This orthogonality condition, as we shall see it below, immediately leads to a solvability
condition which defines the unique solution δ f neq.

At first order of the multi-scale expansion we arrive at the following equation for f
(1)
i :

−2β
nd

∑
j=1

(1−P)ijδ f
(1)
j =[∂

(1)
t′ +ci∂x′ ] f

eq
i . (9.20)

While deriving (9.20), we have used the properties of the linearized dressed collision inte-
gral summarized in section 9.2. It is instructive to rewrite Eq. (9.20) using the geometrical
language of the previous sections. To this end, we introduce the column-vector ∆ with
the components

∆
(1)
i =(∂

(1)
t′ +ci∂x′) f

eq
i . (9.21)

With this, Eq. (9.20) reads simply

−2β(1−P)δ f (1) =∆(1). (9.22)

Solvability condition (Fredholm’s alternative) requires

∆(1)∈kerP, (9.23)

or, in other words, that vector ∆(1) belongs to the kinetic subspace,

∆(1)∈K, (9.24)

or, that it is orthogonal to the hydrodynamic subspace,

HT⊥∆(1). (9.25)

The latter condition defines the action of the operator ∂
(1)
t . Indeed, for the basis vectors of

the hydrodynamic subspace (vectors hρ and hu in our case), we have

hT
ρ ·∆(1) =0, chT

u ·∆(1) =0. (9.26)

Evaluating these scalar products, we obtain

∂
(1)
t′ ρ=−∂x′(ρu), ∂

(1)
t′ (ρu)=−∂xPeq, (9.27)

where Peq is the local equilibrium pressure (see Sections 2 and 4). We remark that the

definition of the action of operator ∂
(1)
t′ (9.27) makes it possible to compute the first-order

time derivative of any function ψ(ρ,ρu),

∂
(1)
t′ ψ(ρ,ρu)=

∂ψ

∂ρ
∂
(1)
t′ ρ+

∂ψ

∂(ρu)
∂
(1)
t′ (ρu)=−∂ψ

∂ρ
∂x(ρu)− ∂ψ

∂(ρu)
∂xPeq.



232 I. V. Karlin, S. S. Chikatamarla and S. Ansumali / Commun. Comput. Phys., 2 (2007), pp. 196-238

By Fredholm’s alternative, solution to (9.22) is written,

δ f (1) =δ f
(1)
spec+δ f

(1)
hom,

where δ f
(1)
hom is the general solution to the homogenous equation, (1−P)δ f

(1)
hom = 0, and

δ f
(1)
spec is a specific solution to the inhomogeneous equation (9.20). The homogeneous

solution is set to zero by the orthogonality condition (9.19), while the specific solution
(and hence the solution δ f (1)) is

δ f (1) =− 1

2β
∆(1). (9.28)

We remark that solution of the form (9.28) is also valid for any single relaxation time
collision integral, in any dimension.

Finally, at second order of the multi-scale expansion we have:

−2β
nd

∑
j=1

(1−P)ijδ f
(2)
j −β





nd

∑
k=1

∂α

∂ fk

∣

∣

∣

∣

∣

f = f eq

δ f
(1)
k





nd

∑
j=1

(1−P)ijδ f
(1)
j

=∂
(2)
t′ f

eq
i +[∂

(1)
t′ +ci∂x′ ][−β

nd

∑
j=1

(1−P)ijδ f
(1)
j +δ f

(1)
i ]. (9.29)

Note that the vector of the derivatives of the function α at equilibrium has to be found
separately from the entropy estimate (9.3), same as it was done for the value of this func-
tion at equilibrium αeq. This analysis is not required here. Indeed, we are solely in-
terested in the second-order time derivative of the locally conserved fields, and this is
readily obtained from the solvability condition of (9.29). Introducing vector ∆(2) with the
components

∆
(2)
i =∂

(2)
t′ f

eq
i −

(1−β)

2β
[∂

(1)
t′ +ci∂x′ ]∆

(1)
i , (9.30)

(9.29) is written

−2β(1−P)δ f (2)−β(∇αT
eq ·δ f (1))(1−P)δ f (1) =∆(2). (9.31)

Solvability requires

hT
ρ ·∆(2) =0, chT

u ·∆(2) =0. (9.32)

The first condition gives

∂
(2)
t′ ρ=0. (9.33)

In other words, the first-order time derivative of the density (9.27) is exact. The second
condition gives us the non-equilibrium contribution to the time derivative of the momen-
tum,

∂
(2)
t′ (ρu)=2

(

c2
s(1−β)

2β

)

∂x′(ρ∂x′u). (9.34)
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While deriving the latter equation we have neglected terms of order u3 and higher (same
as we did in the continuous-time derivation in Section 2). We also remind that c2

s =1/3.

Finally, collecting the time derivative of the hydrodynamic fields (9.27), (9.33) and
(9.34), and returning to the variables t and x we find that the entropic lattice Boltzmann
scheme reconstructs the Navier-Stokes equations of the form

∂tρ=−∂x(ρu),

∂t(ρu)=−∂x

(

c2
s ρ+ρu2

)

+2

(

c2
s(1−β)

2β

)

∂x(ρ∂xu).
(9.35)

Viscosity coefficient is identified as

ν=
c2

s (1−β)

2β
. (9.36)

Zero viscosity limit corresponds to β→1.

While the viscosity coefficient (9.36) is parameterized by β, where β∈ [0,1), it is in-
structive to compare it with the continuous-time result (2.23) which is parameterized by
the relaxation time τ. The relation between β and τ is given by the formula (see [1] for a
detailed discussion):

τ =
1−β

2β
. (9.37)

9.4 Example: Shock tube simulation

For a numerical illustration, we shall compare the lattice Boltzmann method for the three
different collision integrals: the BGK model, the SRTM gradient-A model (8.13) and the
SRTM gradient-B model (8.15). We consider evolution of a one-dimensional front in a
shock tube, a very classical problem in which it appears a compressible shock front,
moving into the low-density, and a rarefaction front moving into the high-density re-
gion. These two fronts leave an intermediate region in the central portion of the tube
with uniform density and uniform velocity.

Runs were performed on the lattice with 800 nodes. At t=0 the lattice was populated
as to give the density ρ−= 1.5 for 0≤ x≤ 400, and ρ+ = 1.0 for 400 < x≤ 800. Standard
bounce back boundary conditions were applied at both ends of the tube. The lattice
Boltzmann method (9.1) with fixed α = αeq was used for all the three models. In Figs. 1,
2, and 3, the density profile is reported at t=500 lattice time steps for the BGK, the SRTM
gradient-A, and the SRTM gradient-B models, respectively. Viscosity was ν=0.06 for all
the three models, as given by the formula viscosity. As expected, in the hydrodynamic
regime, all the three models are equivalent, and give practically the same result for the
density.
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Figure 1: BGK model. Density profile in the shock tube simulation at t=500; viscosity ν=0.06.
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Figure 2: Gradient-A model. Density profile in the shock tube simulation at t=500; viscosity ν=0.06.
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Figure 3: Gradient-B model. Density profile in the shock tube simulation at t=500; viscosity ν=0.06.

10 Conclusion

In this second paper of our series, we have considered on the example of the one-dimen-
sional kinetic equation, the full problem of derivation of stable lattice Boltzmann schemes,
beginning with the construction of the entropy function down to the entropic lattice
Boltzmann scheme. We have developed a theory of admissible collision integrals and
have derived new single relaxation time gradient models which are easily generalized
to any dimension (some generalizations are given in the paper, and we shall consider
these models in a more detail in the forthcoming contributions to this series). The next
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paper will be presenting the entropic lattice Boltzmann method for three-dimensional
hydrodynamics.

A Appendix to Section 3

A.1 General solution to (3.12)

Let us consider the general solution to ordinary differential equation (3.12), and find the

corresponding entropy functions. Eq. (3.12) can be rewritten as
d2 lnµ1

dχ2 = 0, whereupon

the general solution reads, µ1(χ)= AeBχ, and thus µ0(χ)=4AeBχ. Our previous solution
corresponds to A=e−1 and B=1. Let us carefully trace the changes caused by the general
case. Inversion of the functions µ0,1 reads:

dh0

dχ
=

1

B
ln
( χ

4A

)

,
dh1

dχ
=

1

B
ln
( χ

A

)

, (A.1)

whereupon

h0(χ)=
χ

B
ln
( χ

4A

)

− χ

B
+C0, h1(χ)=

χ

B
ln
( χ

4A

)

− χ

B
+C1, (A.2)

where C0 and C1 are constants (in the above derivation we have set C0=C1=0). The most
general form of the entropy function now follows

H =
1

B

(

f0 ln

(

f0

4

)

+ f− ln f−+ f+ ln f+

)

− ln A+1

B

nd

∑
i=1

fi+2C1+C0. (A.3)

The general expression (A.3) differs from (3.17) on three counts: (i) Multiplication by a
positive constant B−1

> 0; (ii) Adding a constant C = 2C1+C0, and (iii) Adding a linear
function of the density ρ = ∑

nd

i=1 fi (multiplied by a constant −B−1(lnA+1)). However,
none of these differences affect the solution for the local equilibrium. Indeed, minimization of
the function (A.3) under the constraints of fixed density and momentum leads to the the
following extremum conditions:

1

B

[

ln

(

f
eq
0

4

)

+1

]

− lnA+1

B
=χ,

1

B

[

ln f
eq
± +1

]

− ln(A)+1

B
=χ±λv.

(A.4)

The Lagrange multipliers in this expression are yet undetermined, thus the factor B−1

and the constants can be adsorbed into the definition of the multipliers,

f
eq
0 =4exp(χ̃), f

eq
± =exp(χ̃±λ̃v), (A.5)
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where

χ̃= B

(

χ+
lnA+1

B
−1

)

, λ̃= Bλ. (A.6)

The dependence of the equilibrium on the density and on the momentum is found from
the constraints, ∑

nd
i=1 f

eq
i = ρ, ∑

nd
i=1 f

eq
i vi = ρu, and it does not matter whether we use

f
eq
i (χ̃,λ̃) or f

eq
i (χ,λ) in the latter equations. Thus, the use of the specific H (3.17) is just

equivalent to using any of the entropy functions (A.3).

A.2 Derivation of the perfect entropy function from Boltzmann’s ansatz

In this Appendix we shall give an alternative derivation of the entropy function (3.17)
from Boltzmann’s ansatz of the form

H = f0 ln

(

f0

W0

)

+ f− ln

(

f−
W1

)

+ f+ ln

(

f+
W1

)

. (A.7)

Our goal is to find the weights W0 and W1 such that the equilibrium pressure has the
form (3.3) with the accuracy of the order u4.

Minimization of the function (A.7) gives

f
eq
0 =W0exp(χ), f

eq
− =W1exp(χ−cλ), f

eq
+ =W1exp(χ+cλ), (A.8)

where χ and λ are Lagrange multipliers corresponding to the density and to the mo-
mentum constraints, respectively. First, we find the equilibria in a form of a velocity
expansion. We expand Lagrange multipliers into powers of the velocity u

χ=χ0+χ1u+χ2u2+O(u3),

λ=λ0+λ1u+λ2u2+O(u3).
(A.9)

Substituting these expressions into (A.8), and expanding the exponentials, we obtain

f
eq
0 =W0eχ0

(

1+χ1u+

(

χ2
1

2
+χ2

)

u2

)

+O(u3),

f
eq
− =W1eχ0−cλ0

(

1+(χ1−cλ1)u+

(

χ2
1+c2λ2

1

2
+χ2−c2λ2

)

u2

)

+O(u3), (A.10)

f
eq
+ =W1eχ0+cλ0

(

1+(χ1+cλ1)u+

(

χ2
1+c2λ2

1

2
+χ2+c2λ2

)

u2

)

+O(u3).

Substituting (A.10) into the constraints, and equating terms of equal orders in u, we ob-
tain the following coefficients χk and λk:

χ0 = ln

(

ρ

W0+2W1

)

, χ1 =0, χ2 =−W0+2W1

4c2W1
,

λ0 =0, λ1 =
W0+2W1

2c2W1
, λ2 =0.

(A.11)
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Substituting this result into (A.10), we obtain the expansion of the equilibrium popula-
tions to second order in velocity u as a function of yet undetermined weights W0 and
W1:

f
eq
0 =

ρW0

W0+2W1

(

1− u2(W0+2W1)

4c2W1

)

+O(u3),

f
eq
− =

ρW1

W0+2W1

(

1− u(W0+2W1)

2cW1
+

u2W0(W0+2W1)

8c2W2
1

)

+O(u3), (A.12)

f
eq
+ =

ρW1

W0+2W1

(

1+
u(W0+2W1)

2cW1
+

u2W0(W0+2W1)

8c2W2
1

)

+O(u3).

Note that these functions depend only on the ratio W0/W1.
In the next step we compute the equilibrium pressure Peq, using the expansion (A.12):

Peq =
nd

∑
i=1

f
eq
i c2

i = c2 f
eq
− +c2 f

eq
+ =ρ

2c2W1

W0+2W1
+ρu2 W0

4W1
+O(u4). (A.13)

Note that the accuracy of the pressure (A.13) is of the fourth order in u in spite of the fact
that the expansion of the equilibrium (A.12) are valid only up to the third order. Indeed,
by symmetry, any terms of the order u3 cancel out in the equilibrium pressure (A.13).

We now require that the equilibrium pressure (A.13) be equal to the pressure as given
by the Euler relation (3.3). That is,

c2
s =

2c2W1

W0+2W1
, 1=

W0

4W1
, (A.14)

whereupon cs=c/
√

3. Thus, we have derived the ratio of the weights (A.14) in the ansatz
for the entropy function (A.7) which satisfies the pressure relation with the desired accu-
racy in the velocity u:

H = f0 ln

(

f0

4W1

)

+ f− ln

(

f−
W1

)

+ f+ ln

(

f+
W1

)

. (A.15)

Since adding any linear function of the locally conserved quantity (density) to the entropy
function is immaterial (see previous section), we can put W1 = 1 in the latter expression
to obtain again the result (3.17):

H = f0 ln

(

f0

4

)

+ f− ln f−+ f+ ln f+. (A.16)

The speed of sound derived herewith also coincides with the already derived value (3.11).
Comment: This alternative derivation using a Boltzmann-like entropy function ansatz and
subsequent requirements for the non-conserved moments like pressure, heat flux etc at
equilibrium will be used in some derivations in the next papers of this series. However,
the full derivation which does not assume any functional form of H a priori is the only
systematic route to access uniqueness of the constructed entropy functions.
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A.3 Derivation of the polynomial approximation to the equilibrium

In order to derive equilibrium populations (3.18), it is sufficient to specify W1 = 1 and
W0 =4 in (A.12).

Acknowledgments

I.V.K. gratefully acknowledges support by the BFE Project 100862. S.S.C. was supported
by the ETH Project 0-20280-05.

References

[1] I.V. Karlin, S. Ansumali, C.E. Frouzakis, S.S. Chikatamarla, Commun. Comput. Phys. 1
(2006) 616-665.

[2] F.J. Higuera, S. Succi, R. Benzi, Europhys. Lett. 9 (1989) 345-349.
[3] Y.H. Qian, D. d’Humieres, P. Lallemand, Europhys. Lett. 17 (1992) 479-484.
[4] X. Shan, X. He, Phys. Rev. Lett. 80 (1998) 65.
[5] H. Chen, S. Kandasamy, S. Orszag, R. Shock, S. Succi, V. Yakhot, Science 301 (2003) 633-636.
[6] R. Benzi, S. Succi, M. Vergassola, Phys. Rep. 222 (1992) 145-197.
[7] S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30 (1998) 329.
[8] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford Univer-

sity Press, Oxford, 2001.
[9] S. Succi, I.V. Karlin, H. Chen, Rev. Mod. Phys. 74 (2002) 1203-1220.

[10] I.V. Karlin, A. Gorban, S. Succi, V. Boffi, Phys. Rev. Lett. 81 (1998) 6-9.
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